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BRLMM: an Improved Genotype Calling Method for the
GeneChip® Human Mapping 500K Array Set

Introduction

Highly accurate and reliable genotype calling is an essential component of any high-
throughput SNP genotyping technology. The Dynamic Model (DM, [1]) which has been
extensively used for the GeneChip® Human Mapping 100K Array Set and the
GeneChip® Human Mapping 500K Array Set has proven to be very effective, however it
ispossible to do better. Rabbee & Speed recently developed a model called the Robust
Linear Model with Mahalanobis distance classifier (RLMM, pronounced ‘realm’) which
provided an improvement over DM on the Mapping 100K set [2,3,4]. We present here an
extension of the RLMM model developed for the Mapping 500K product which provides
asignificant improvement over DM in two important areas — it improves overall
performance (call rates and accuracy) and it equalizes the performance on homozygous
and heterozygous genotypes. The difference between RLMM and this approach is the
addition of a Bayesian step which providesimproved estimates of cluster centers and
variances, the new model is called BRLMM (pronounced ‘B-realm’).

The performance improvement is achieved by two main advances over the DM model.
Firstly, RLMM (and hence BRLMM) performs a multiple chip analysis, enabling the
simultaneous estimation of probe effects and allele signals for each SNP. Just asit hasin
the now reasonably mature field of probe-level expression analysis, accounting for probe
specific effects resultsin lower variance on alele signal estimates. The second main
source of improvement is the estimation of genotypes by a multiple-sample classification,
borrowing information as necessary from other SNPs to better predict the properties of
the underlying clusters corresponding to the { AA,AB,BB} genotypes. By contrast, the
DM approach calls genotypes by analyzing the probe-level intensities one SNP and one
chip at atime, using strong assumptions about what the underlying probe intensity
patterns should look like in the context of each of the genotypes. RLMM and BRLMM
make weaker assumptions about the behavior of probe intensities than does DM, making
them far more robust in the presence of real-world data.

Figure 1 presents an overview of the BRLMM approach. Thefirst step isto normalize
the probe intensities and estimate allele signal estimates for each SNP in each
experiment. The allele signal estimates are then transformed to a 2-dimensional spacein
which the underlying genotype clusters are ‘well behaved’ in terms of having similar
variance for each of the clusters. In parallel we derive an initial guess for each SNP's
genotype using the DM approach (with confidence threshold set to 0.17 for high
stringency). We then look across SNPs to identify cases where there are at least a certain
minimum number of examples of each of the 3 genotypes according to the initial guesses.
This subset of SNPsis used to estimate a prior distribution on the typical cluster centers
and variance-covariance matrices. Each SNP isthen visited in turn and the cluster
centers and variances implied by the initial genotype guesses are combined with the prior
information in an ad-hoc Bayesian procedure to derive a posterior estimate of cluster
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centers and variances (it is principally this step that distinguishes BRLMM from
RLMM). Finally, a genotype and confidence score is assigned for each observation
according to its Mahalanobis distance from the three cluster centers.

The remainder of this manuscript steps through each of the above stepsin detail and then
presents a detailed assessment comparing various aspects of BRLMM and DM
performance.
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Figurel: BRLMM algorithm workflow

Normalization and Allele Summarization

The normalization and allele summarization steps of the BRLMM a gorithm consist of
producing asummary value for each allele of a SNP in each experiment. The“A” allele
summary value increases and decreases with the quantity of the“A” alelein the target
genome, and similarly the “B” alele summary value increases and decreases with the
quantity of the “B” allele in the target genome. These summary values are calculated to
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remove extraneous effects — chip-chip variation, background, and the relative brightness
of different probes on the array. This section explains the technical details of this
summarization process, which is similar to that used on expression arrays.

For each SNP of interest, the array contains multiple probes designed to hybridize to each
alele of the SNP. Theintensities of these features typically vary together in systematic
ways for each genotype of the SNP. We therefore summarize these intensitiesin asingle
value for the features corresponding to each alele, the “signal” for that allele. (Note: due
to cross-hybridization with the aternate allele, this signal does not directly correspond to
the concentration of the perfectly matched allele.) Theintensities of the probes matched
tothe“A” dlele are expected to decrease with decreasing quantities of the “A” dlele, and
similarly for the “B” alele probes. Since these change in opposite directions, we
summarize the probes for each alele as independent signals. Therefore, for each SNPin
each experiment, we obtain two values—an “A” signal and a“B” signal, which
summarize the probes.

From the field of expression analysis on arrays, we know how to summarize several
probesto asingle signal value effectively. We need to account for extraneous effects on
the probe intensity that vary from experiment to experiment (normalization), account for
potential differences in background from chip to chip (background adjustment), and
account for the systematic differences in feature intensity due to probe composition
(feature effects). While there are many options available for each of these effects, we
have chosen to use off-the-shelf options. quantile normalization at the feature level, no
background adjustment, a log-scale transformation for the perfect match intensities, and a
median polish to fit feature effects to the data obtaining asignal. Thisis exactly the
same methodology that can be applied to summarize an expression array and produce a
signal for a probe-set.

Quantile normalization is performed asin the literature — the intensities on each chip are
ranked, and then the average intensity across experiments for each rank of intensity is
substituted within each experiment for the given rank. [If R(1) isthe rank of intensity
within achip, and Q(R) is the average intensity for a given rank, the quantile normalized
intensity within achip is Q(R(l))]. Because the quantile function is slowly varying and
smooth, we approximate the Q(R) function for each chip with alinear interpolation for
processing speed [“sketch” normalization]. This allows usto normalize millions of data
points per chip rapidly with compact summaries of the data.

Several background adjustments were explored during development, and we settled on
using no adjustment for background. Unlike expression arrays, the target concentrations
are well above background for the majority of the fragments containing SNPs. For this
assay, background adjustment was not useful for downstream genotyping, and therefore
the (normalized) perfect match intensities are used without adjustment for background.

To account for systematic differences in relative brightness between features, we fit the
standard log-scale additive model to the probes for each allele separately: log(li;) = fi + ;
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+gij, wheref; is the effect due to feature i across experiments, t; is the effect with
experiment j responding to the genotype of the SNP and the relative quantity of the
fragment on which it islocated (because of cross-hybridization to the other alleleit
cannot be interpreted as simply the effect due to the concentration of target for allele A),
and &;; isthe multiplicative error for the observation. We fit this model using the
standard median polish procedure for f and t, and for each experiment output the fitted
valuefor t asthe signal for that allele. For identifiability, we require sum(f) = 0. The
output signal valueisretransformed to lie on the origina linear intensity scale: signal =

exp(t).

These stages constitute the normalization and allele summarization portion of the
algorithm. At the end of these steps, we have for each SNP in each experiment two
signal values: one for the “A” alele probe set, and one for the “B” allele probe set. Each
SNP therefore has a 2xN matrix of values output — 2 signals for each of N experiments.
This output matrix is then used to evaluate each SNP for the genotype present in each
experiment.

Clustering Space Transformation

Now that we have signals for the two alleles of the SNP across all experiments, we will
be evaluating distances between a prototype (cluster center) for a given genotype (AA,
AB, BB) and the actual data seen in any one experiment. However, raw “signal” value,
while very useful for expression analysis, is not perfectly suited for genotype cluster
analysis (figure 2a). We transform each pair of signals for each experiment into a space
with properties more suitable for evaluating genotypes.
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Figure 2: Clustering Space Transfor mations. For each of avariety of clustering space
transformationsthe cluster centers (as estimated using DM with a stringent 0.17 threshold) are
determined. Each plotted point correspondsto an estimate of the cluster center for one genotypein
one SNP, with color indicating genotype (AA isred, AB isblue, BB isgreen). Theblack x’sdenote
the grand mean of cluster centersfor each genotype, and the black ellipses are derived by taking the
average within-cluster variance and covariance —thusthe ellipsesareto beinterpreted as
representative of the ‘typical’ variance of a cluster. Sub-plot (a) plotsthe untransformed allele signal
estimates on log2 scale. Sub-plot (b) is motivated by the MvA or M A plots from expression and plots
(logx(Sa)+00g2(Se))/2 on they-axis against thelog? ratio on the x-axis. Sub-plot (c) plotsthe signal
strength log,(Sa + Sg) against the allele contrast (Sa - Sg)/ (Sa+ Sg). Sub-plot (d) issimilar to (c) but
the contrast istransformed by the Cluster-Center-Stretch (CCS) transfor mation (see figure 3).
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The desirable qualities for such a space include approximate independence of the
difference between genotypes and the magnitude of signal, and controlling the variation
within the various clusters to be comparable. For example, the standard “MvA” or “MA”
transformation used to plot expression analysis could be applied to the two signals,
resultingin M =10g(Sa)-109(Sg) and A = (log(Sa)+l0g(Sg))/2. Thisisolates most of the
difference between genotypes into the M axis, leaving a mostly irrelevant “ brightness”
component in the A axis.

However, this MVA transformation space is sub optimal, because it increases the
variation asymmetrically for homozygous and heterozygous genotypes — in the presence
of an AA genotype Sg will be near zero and hence highly variable on the log scale, and
conversely for Sa in the presence of BB. Theresult isthat the MVA transformation
artificially makes the homozygous clusters more broadly variable than the heterozygous
cluster (figure 2b). This causes points to be more often miscalled homozygous than
heterozygous because the distance to the homozygous cluster tends to be under-
estimated, asit is scaled by the observed standard deviation, leading to heterozygote
dropout.

We therefore wish to use a space in which the spread of homozygous clusters can be
controlled, even when a signal estimate is near zero, and where the typical variation can
be adjusted to be similar between heterozygous and homozygous genotype clusters. Let
us define two axes. Contrast = (Sa-Sg)/(Sa+Sg) and Strength = log(Sa+Sg). Strength of
course measures the overall brightness, which is mostly independent of genotype, and
Contrast is a quantity that will depend most strongly on genotype ranging from -1 for the
ideal BB genotypeto +1 for theideal AA genotype. Asseen infigure 2c this
transformation still has the property that the homozygous clusters tend to display more
variability than the heterozygous, and so we further generalize the Contrast axis to define
a Transformed Contrast = asinh(K(Sa-Sg)/(Sa+Sg))/asinh(K), where K isatuning
constant. Figure 3 shows the functional form of this transformation for different values
of K. The effect of varying K isto change the amount of “stretch” of the difference
between A and B signals when the differenceis small (i.e. likely to be heterozygous), vs.
the difference between A and B signals when the differenceislarge (i.e. likely to be
homozygous), thus K can be used to balance the variability in homozygous and
heterozygous genotypes and remove any heterozygous dropout. By experimentation
across several data sets, we ascertained that the value K=4 worked well to balance the
variation of genotype clusters (figure 2d).

While many other transformations of the data could be used, this space worked well for
clustering genotypes while avoiding heterozygous dropout. We therefore implemented
thisas“ Contrast Center Stretch” (CCS) option within the software, and cluster in this
transformed signal space.
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Figure 3. Examples of the Cluster Center Stretch (CCS) transformation. The CCStransformation is
defined as asinh(K* Contrast)/asinh(K) where Contrast is defined as (Sa-Sg)/(SatSg). The effect of
the transformation isto stretch contrast values near zer o (corresponding to heter ozygous genotypes)
and to compress contrast values near -1 and +1 (corresponding to homozygous genotypes). Higher
values of K apply a more extreme transformation, setting K to 1 yields effectively an identity
transformation. Thevalue of K can thusbetuned to alter the balance between performance on
homozygotes and heter ozygotes, with higher K values making het calls more likely.

Calling Genotypes

We call genotypes by atemplate-matching procedure comparing the transformed alele
signal values observed in an experiment to the typical values (prototype) we expect for
each genotype. The genotype that is closest in typical valueisthe onethat is assigned (a
minimum distance classifier). The approximate confidence we have in that call is based
on theratio of the nearest prototype to the second nearest prototype. This allows usto
rank the genotype assignments by quality, and hence make the decision not to call in
cases of ambiguity.

Every SNP is expected to have three genotypes, “AA”, “AB”, and “BB”. For each
genotype for a given SNP, we expect to have a prototype (typical observed values for that
genotype, or cluster center), with some scatter of values around the prototype. We
approximate the scatter by a multidimensional normal distribution (and the careful choice
of the CCS transformation ensures thisis a good approximation). For clusters of this
type, the standard method of evaluating the distance from the cluster center (prototype) to
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atest point isto use the Mahalanobis distance. The Mahalanobis distance takes into
account the variation (and covariation) in the cluster along each axis, and is defined by
sgrt[(x-p)' Z(x-p)] where p isthe cluster center, x isthe test value, and T isthe
variance-covariance matrix describing the multidimensional normal of the cluster.

So, within any experiment, we derive transformed values x for a SNP and compare to the
three cluster centers paa, pag, and psg With covariance matrices £aa, Xag and Zgg,
obtaining distances daa, dag and dgg. We call the genotype of the SNP as the genotype
with the smallest such distance. In our clustering space, each prototype consists of two
components — a center and avariance. The center component consists of a mean Contrast
and Strength for the cluster, ug= (Contrasts,Strengthg) where G denotes the genotype.
The variance component is a 2x2 variance-covariance matrix Xg = (61,1, 612, 621, 62,2),
and is symmetric with 61, = 621. The distance dg is computed as defined above.

The confidence we assign to this call is di/d,, where d; is the smallest distance of the
three and d; is the second-smallest distance. This confidence is always between zero and
1. Itisarough measure of the quality of the call (but isnot a“p-value’). Weset a
threshold for quality of 0.5 for a call/no-call decision, based on the performance on
several test data sets. This can be adjusted by the user to tune the tradeoff between call
rate and accuracy — see the results section for a comparison of performance at various
thresholds.

The next section describes how we learn the prototypes and their variation for each SNP
from the data.

Estimating Cluster Centers and Variances

The above section dealt with how to call genotypes and ascribe confidence valuesto
those calls given an appropriate prototype. This section deals with how to derive these
prototypes.

Thisis achieved in an ad-hoc Bayesian procedure, where we start by deriving a generic
prior describing genotype clusters and centers for the ‘typical’ SNP, and then visit each
SNP in turn, combining the generic SNP prior with initial genotype estimates for the
specific SNP to derive a posterior estimate of cluster centers and variances. This
posterior estimate iswhat is then used in the manner described in the previous section to
call genotypes. Figure 4 provides a couple of examples of SNPs to which this procedure
has been applied.
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Figure 4: Examples of SNP clustering in action. The samplesand SNPshereare part of HapMap
and so we have an independent estimate of the genotype for each case, indicated by the color of each
point (red=AA, blue=AB, green=BB). In each plot the prior estimates of cluster centersand variance
areindicated in thelight gray x’sand ellipses. Note that because we are using here a generic prior
for all SNPstheprior isthe samefor both examples. The cluster centersand variancesfrom the
observed data as estimated by using DM with a stringent 0.17 threshold for seeding are indicated by
the black x’sand the black ellipses. The posterior estimates of cluster centersand variancesare
indicated by the magenta x’sand ellipses. In all casesthe ellipses extend to a M ahalanobis distance
of 2 from the cluster center. Onethingto noteisthat in both SNPsthe heter ozygote and major
homozygote clustersthe posterior estimate is essentially the same asthe estimate provided by the
data, which iswhat we would want —ther e is sufficient data available for these clustersthat the prior
isoverridden. For the minor homozygotesthe posterior estimateis more strongly influenced by the
prior asthere arefew data available for thisrare genotype. A second thingto noteisthat this
clustering approach is comfortably handling the phenomenon of unequal allele signalsfor A and B
alleles—particularly in the case of the SNP on the left which is quite shifted from theideal
heter ozygotes contrast value of zero.

To start the process we need to seed with some initial genotype estimates from which to
build the generic prior. We have an excellent candidate in the existing DM approach
which we use with a highly-stringent confidence threshold of 0.17 to determineinitial
genotype calls. Notethat in thisuse of DM calls for a starting point thereis still an
indirect reliance on the MM probes, however we have demonstrated that it is possible to
get sufficiently good initial estimates without requiring MM probes so it is feasible to
make new chip designs with at least half the number of probes. With these initial callsin
hand we then take a random sample of 10,000 SNPs and scan through them to identify
SNPs which each have at least 2 initial DM calls (the minimum requirement to have a
variance estimate for each genotype). Note this places arequirement of an absolute
minimum of 6 samplesto run together, though in practiceit is generally better to have
more (discussed in more detail below). The use of arandom sample of SNPs alows for
faster and more memory efficient processing — only asmall subset of the probe intensities
needs to be loaded and analyzed. The random sampling isformally a simple random
sample from al SNPs on the chip and isimplemented in a deterministic fashion so that
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re-anayzing the same data at a different time or on a different operating system will yield
the sameresults. Thisresult of this step istypically ~5,000 SNPs (depending on sample
size and genetic diversity) which are then used to derive the generic SNP prior.

What we loosely term the generic prior consists of a4 components:

m The 6-dimensional vector of the average cluster center coordinates across
SNPs (6 free parameters)

M The 6x6 variance-covariance matrix of cluster center coordinates across
SNPs with entries m;; (21 free parameters)

S The block-diagonal 6-dimensional variance-covariance matrix of within-
genotype transformed allele signal estimates with entriess;; (9 free
parameters. 3 genotypes each with avariance term in each of the two
transformed allele signal dimensions and one variance-covariance term)

p The * effective number of observations' or ‘ pseudo-count’ associated with
the variance estimate S. We supply this as a predetermined value (default
is 40) rather than estimating it from the data. Results are quite insensitive
to the setting of this parameter.

In total, the generic prior consists of 36 parameters estimated from thousands of SNPs,
and one parameter p, which is set up-front. This generic prior can be derived on-the-fly
within the dataset being analyzed or can be derived up-front from a previous dataset and
applied to anew one. We have tried out both ways and found that there is generally little
difference between either approach, provided the dataset used to generate the prior is
similar in terms of overall call ratesto the dataset to which it is applied, however if the
datasets have overall very different levels of performance applying the prior generated
from one dataset to the other can lead to sub-optimal (though still very good)
performance. The recommended default is to estimate the generic prior on-the-fly,
though it is quite likely that future work will find improved modes of running which
involve aworkflow where parameters are estimated in alarge training dataset up-front.

Having estimated the generic prior, the next step isto visit each SNP in turn to combine
the prior with whatever DM initial estimates may be available for the particular SNP to
come up with a posterior estimate for cluster centers and variances. To set up some
notation, we have the following SNP-specific quantities:

Observed data for the given SNP

% The 6-dimensional vector of the cluster center coordinates, estimated as
the average transformed intensity value within each genotype. Some or all
of these entries may be null if there are no DM initial estimates of one or
more of the 3 genotypes.

W The 6x6 block-diagonal variance-covariance matrix of within-genotpe
variances and covariances. The entries of the matrix are w;; withw;; =0
for |i-j| > 1. Some or al of these entries may be null if there are not at
least 2 DM initia estimates of one or more of the 3 genotypes.

Page 10 of 18



BRLMM: an Improved Genotype Calling Method for the GeneChip® Human Mapping 500K Array Set
Revision Date: 2006-04-14
Revision Version: 1.0

N A 6x6 diagona matrix with entries (Naa, Naa, Nag, Nag, Nes, Nes), the
number of DM initial estimates for each of the 3 genotypes.

SNP-specific posterior estimates

n The 6-dimensional posterior estimate of cluster center coordinates to be
used in the prototype for calling genotype estimates.

Y The 6x6 block-diagonal estimate of within-genotype variances of
transformed alele signal estimates. The entries of the matrix are o;j with
oij = 0for fi-]| > 1.

Having set up this notation, the posterior estimates are derived as a two-step process.
Firstly we obtain a posterior estimate of the 9 non-zero parametersin S by doing point-
wise shrinkage towards the prior estimate, using an effective number of observations p
which is chosen up-front:

oij = ((niF-D) wij +ps,) / ((n-1) +p)

This Bayesian update has the intuitively sensible property that when thereislittle or no
data available for a genotype within a SNP (n;; small) the variance-covariance matrix to
be used for the genotype will be predominantly driven by the typical variance-covariance
that we see across most SNPs. Conversdly, if there is abundant information for a
particular genotype of a SNP (n;; large) there will be little reliance on the prior and the
estimate will be primarily based on data specific to the SNP. The point of transition
between the reliance on prior and observed is tuned by the number of pseudo-
observations, p. We have found that overall performance isinsensitive to the setting of p,
though it is possible that it may have alarger effect on certain genotypes, such asrare
genotypes. The recommended default value for p is 40.

The final step isto come up with a posterior estimate of the cluster centers, u. We make
the assumption that cluster variances are independent of the centers. The updateruleis

p= M1+ (NS (MIm + (NS)™V)

Again, this has the intuitively sensible property that when thereislittle or no labeled data
available the estimate of cluster centers will be driven mainly by the prior estimate m,
and when there is alot of data available for a given genotype the estimate will be driven
by v. Loosely speaking, this update rule has the form of aweighted average of the prior
and observed data, with the prior having weight inversely proportional to M, the
variance-covariance matrix of cluster centersin the SNPs used to build the prior, and the
observed data for the particular SNP having weight inversely proportional to NS, a
product of the number of observations and the variance in the observed data.

With these posterior estimates of center and spread for each cluster, genotypes and
confidences are then determined as outlined in the previous section.
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Special Cases

The preceding algorithm assumes that the observations for each SNP are well described
by prototypes for each genotype. However, for SNPs on the X chromosome, there are
distinct clusters for each gender due to males having one fewer copy of the X
chromosome. This not only changes the location of the cluster centers for XY
individuals, but the SNPs located on chrX may end up being called as heterozygote. We
therefore treat the chrX SNPs differently for XX individuals than for XY individuals.
Note that the special treatment of chrX SNPs described here is only applied to SNPs on
chrX in the nono-pseudo-autosomal region, and for the rest of this section when we talk
about chrX it isto be interpreted as chrX excluding the pseudo-autosomal region

We detect the difference between XY and XX individuals by the seed calls from DM.
XY individuals are estimated as those having heterozygosity less than 7.5% on chrX.
The remaining individuals are classified as XX. For each chrX SNP, we treat XX
individuals and XY individuals as separate data sets.

XX individuals are handled using the standard BRLMM methodology for all chrX SNPs,
that is, three cluster centers are learned from the data along with covariance matrices and
used to classify observations. However, no datafrom XY individualsisused in this
calculation.

XY individuals are handled using a modification of the BRLMM methodology for all
chrX SNPs. Only two cluster centers can be learned from the data (AA and BB), and
only the datafor the XY individuals are used. Therefore the following modifications are
performed. First, only DM homozygous calls are used to seed the learning procedure that
estimates cluster centers. This provides approximate locations for the homozygous
prototypes for the SNP-specific clustering.

Second, we modify the heterozygous cluster for the generic prior to remove it from the
range of typical data (thisisto avoid having special-purpose code for two or three
prototypes). This surgery removes any reasonable possibility of making a heterozygous
call inan XY individual. The modification moves the heterozygous prototype to
(Contrast=0, Size = -Infinity), and modifies the heterozygous prototype covariance
matrix to be (0.01, O, 0, 0.01). The covariance with the other cluster prototypesin the
prior is set to be zero. Thisremoves any influence the heterozygous cluster has on the
homozygous clusters, and vice versa.  Thus, for XY individuals, only “AA” and “BB”
genotypes are fit, and for any real observed data, “AB” will never be called.

Fitting of XX and XY individuals separately improves the genotyping performance
within each group. Modifying the prior for XY individualsto avoid heterozygous calls
improves the genotyping performance for XY individuals. Thisisthe justification for
having a special purpose modification for chrX SNPswithin BRLMM.
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Results

The ideal way to assess performance would be to evaluate the tradeoff between accuracy
and call rate in data generated from a collection of samples for which the true reference
genotypes are available for al SNPs on the Mapping 500K set. Fortunately something
closely approximating this has been made possible by the International HapMap
Consortium — the phase 2 release provides reference calls on a collection of 270 samples
for approximately 70% of the SNPs on the Mapping 500K set. This constitutes an
excellent resource for the performance evaluation; though it is important to bear in mind
the caveat that the genotype calls in HapMap themselves do have some small but non-
zero error rate. Additionally, the HapMap samples consist of some trios, enabling the
evaluation of Mendelian inheritance error rates. Finally, we also look at reproducibility
of genotype calls on sample replicates.

For evaluation of call rates, accuracy and Mendelian inheritance error rate we use a
collection of HapMap samples generated by a customer of the Mapping 500K product.
This dataset consists of 66 HapMap samples — 33 CEPH Caucasian samples and 33
African (Yoruban) samples. All 66 of the samples meet the Mapping 500K product
specification of 93% call rate with DM at a confidence threshold of 0.33. We use asthe
gold standard calls from HapMap release 20 after excluding any calls submitted to
HapMap by Affymetrix (to reduce risk of positive bias in performance estimates). We
also swapped the A«<»B naming convention for 70 HapMap SNPs for which the allele
names were clearly swapped (SNPs for which the per-SNP accuracy jumped from below
10% to above 90% when alleles were swapped). To account for the fact that one can
adjust the confidence threshold to trade off between call rate and accuracy we look at
performance at all possible thresholds and plot the relationship between HapMap
concordance and no-call rate, as shown in Figure 5. The figure demonstrates the
significant improvement in both call rate and accuracy comparing BRLMM with DM.
Moreover, looking at the performance curves broken out by the type of the reference call
(homozygous or heterozygous) we also see that BRLMM makes a large reduction in the
performance differential between the two classes. Table 1 presents performance for DM
and BRLMM at various thresholds combining performance across the Nsp and Sty chips.
We have set the default BRLMM threshold to 0.5, it can be tuned for higher call rates or
higher accuracy according to what will better suit the requirements of downstream
anaysis.

The performance improvement seen on the dataset as awhole is also seen consistently
across all samples, as can be seen in figure 6.
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Figure 5: Performance of BRLMM and DM on HapM ap samplesfor Nsp (left) and Sty (right) chips.
Concordance with HapM ap is assessed for all possible confidence thresholdsfor each genotype
calling method and the resulting concordance with HapM ap reference callsis plotted against the no-
call rate. Theideal method and data would consist of a curvethat reachesthe top-left of each plot,
corresponding to 100% accuracy at 100% call rate. Resultsfor BRLMM and DM are presented in
solid and dashed linesrespectively. The dot on each curveindicates the performance at the default
confidence threshold (0.5 for BRLMM, 0.33 for DM). There aretwo main pointsto make about the
results—firstly, BRLMM provides a significant improvement in overall call rate and overall
accuracy compared to DM (red curves). Secondly, BRLMM has markedly mor e even performance
on homozygote (green curve) and heter ozygote (blue curve) genotypesthan DM, which has notably
lower performance on heter ozygotes..
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Figure 6. Comparison of per-sample call rates between BRLMM (at 0.5) and DM (at 0.33). Results
on theleft arefor Nsp and on theright arefor Sty. BRLMM improvescall ratesin all cases. In
absolute termsthe perfor mance improvement islarger for lower call rate samplesthough when
viewed asafold-reduction in no-call rate we see a fairly consistent 2/3 reduction in no-call rate
relativeto DM at 0.33. Thecall ratesarevery correlated whichever method is used, which indicates
that while BRLMM improves perfor mance overall thereisan intrinsic ranking to the samples

wher eby the resultsfor some samplesare better than othersregardless of how they are analyzed.
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Performance with respect to HapM ap reference samples has been evaluated in this
manner on other datasets of varying degrees of quality and we find that the call rate
improvement can be characterized as a consistent 2/3 reduction in no-call rate going from
DM at athreshold of 0.33 to BRLMM at athreshold of 0.5. At the sametime we
consistently find about a 0.1% increase in HapMap concordance going from DM at its

more stringent threshold of 0.26 to BRLMM at athreshold of 0.5.

Confidence Overall Hom Het Call Overall Hom Het
Method Call Call
Threshold Rate Concordance | Concordance | Concordance
Rate Rate
DM 0.26 94.16% 97.24% | 86.32% 99.15% 99.39% 98.38%
DM 0.33 95.96% 98.24% 90.16% 98.94% 99.27% 97.93%
BRLMM 0.3 97.40% 97.40% 97.75% 99.40% 99.34% 99.55%
BRLMM 0.4 98.27% 98.30% 98.48% 99.31% 99.25% 99.47%
BRLMM 0.5 98.79% 98.82% 98.93% 99.26% 99.20% 99.40%
BRLMM 0.6 99.15% 99.18% 99.25% 99.17% 99.11% 99.33%

Table 1: Performance on HapM ap dataset for DM and BRLMM at various fixed thresholds. Results
are based on combining the Nsp and Sty chips. At the default confidence of 0.5, BRLMM achieves
approximately a 2/3 reduction in no-call rate over DM at a threshold at 0.33, a finding that has been
consistently observed on a variety of datasets. At the sametimeit achievesan improvement of about
0.1 % in HapM ap concor dance compar ed to DM at a more stringent threshold of 0.26, or about
0.2% compared with DM with threshold at 0.33. The other big improvement of BRLMM isthelarge
reduction in call rate and accuracy differences between homozygotes and heter ozygotes. In the
evaluation of concor dance on homozygotes we found on the order of 25 SNP which exhibited what
appeared to be ‘allele swap’ wher e the concor dance with HapM ap genotypes was extremely low (on
the order of 20% or less) but which jumped to very high (90% or more) when the A and B alleles
wer e swapped —we attribute such SNPsto errorsin HapMap and swap the alleles before reporting
final accuracy.

One caveat about evaluating concordance with HapMap is that to some extent it provides
only alower bound estimate for accuracy, since HapMap itself does have a certain error
rate. With thisinmind, it isuseful to look at aternative measures of performance. The
dataset used here contains (father,mother,child) trios of samples which can be assessed
for Mendelian consistency. The Mendelian accuracy is estimated looking only at
informative trios (those in which we have a call for all three samples where the parents
are not both called heterozygous), call thisnumber T. If the number of such trios which
exhibit aMendelian inconsistency is E then the Mendelian accuracy is estimated as (T-
E)/3T, which is based on the assumption that when there is an inconsistency in atrio that
itisonly one of the three callswhich isin error the vast mgority of the time. Measured
in this manner we find that the Mendelian accuracy using DM at a confidence threshold
of 0.33is99.83%, increasing to 99.93% using BRLMM at a confidence threshold of 0.5
(approximately a 2-fold reduction in Mendelian error rate).
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The final metric of performance we evaluate is reproducibility on sample replicates.
Arguably thismetric isless useful than those above since it only reports on the
consistency of calls made but not on whether or not those calls are actually correct.
Nevertheless, other things being equal a reproducible method will generally be preferable
to onethat isn't. We evaluate reproducibility on a different set of HapMap samples
which includes 7 samples each replicated twice. Within this dataset we find that the
reproducibility of DM calls at athreshold of 0.33 is 99.77%, which improves to 99.85%
when calls are made with BRLMM at the default threshold of 0.5.

Discussion

BRLMM provides a significant improvement over DM method, raising call rates,
accuracy and just as importantly, establishing balanced performance between
homozygotes and heterozygotes. As a multiple-chip method it has some extra
considerations which need to be taken into account in practice.

One matter to consider is the batch size in which to apply BRLMM. While more samples
will generally lead to better performance, we have found that for good datasets
performance reaches a plateau with as few as 50 samples, whereas for lower-quality
datasets it can take as many as 100. The working definition of ‘good’ used hereisa
dataset with an average call rate of 95% using DM at athreshold of 0.33, and for ‘lower-
quality’ we mean a dataset with an average call rate of 93% using DM at a threshold of
0.33 (of course these call rates increase when called with BRLMM). When we talk about
numbers of samples we really mean number of distinct DNAs analyzed — a dataset
consisting of many replicates of the same sample may not have sufficient genetic
diversity to build the prior. Note that with the default settings BRLMM requires at least
two observations of each genotype to build the prior, so the absolute minimum number of
samples required is 6, though running with this small a number is not advised.

Another consideration is the extent to which datasets can be combined. On the one hand
this should help in terms of increasing the number of observations, particularly for rare
genotypes, thereby improving the performance on rarer genotypes. On the other hand,
the validity of combination of datasets will depend on the degree to which the combined
datasets have the same underlying probe intensity distribution, probe effects, cluster
centers and cluster variances. We have found that combination of datasets from different
labs can change performance dlightly in either direction, and understanding the criteria
under which it will and won’t succeed remains an area of future work.

The main differences between BRLMM and the previously-developed RLMM [2,3,4]
method lie in the clustering space transformation and in the estimation of cluster centers
and variances. There are anumber of other potential improvements which have been or
arein the process of being evaluated. Though some of them are enabled in the software
implementing the BRLMM method these features are not part of the default
recommended workflow as they have not been as thoroughly tested, but it is conceivable
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that these approaches or some modification of them may lead to further improvement in
future. Theseare:

Robustnessin estimation of cluster properties: The presence of an outlier value
can have alarge effect on the center and variance estimated for a given
genotype cluster and it is possible that introduction of robust estimates of
center and spread may improve performance in such circumstances,
however we have so far found that robust estimates have little effect on
overall performance and can have alarge effect on the balance of
performance between homozygotes and heterozygotes.

SNP fragment nor malization: It has been shown for the Mapping 100K product
that there can be notable biases in fragment amplification in the WGSA
assay and that they can be successfully normalized, leading to alarge
reduction in noise [5,6]. We have found that similar approaches can
benefit in the evolution of the WGSA assay used for the Mapping 500K
product and it is possible that this will tighten the clusters for some
datasets.

Alternative metrics of quality: We have found that a genotype call threshold
based on a method suggested in [7] can lead to a dlightly better tradeoff
between call rate and accuracy —theideais that instead of using the ratio
of smallest to second-smallest Mahal anobis distances one uses
(Mahalanobis distance)® + log(|=|) + log(prior probability of being in
cluster). Given more testing this metric may turn out to do even better.

Analysisof asingle sasmple at atime: It would be a great practical convenience
to be able to attain the same performance improvement running only a
single sample at atime. Single-sample analysisistypically logistically
and computationally more convenient, especially when used in a high-
throughput environment. Thisis possible if one can safely make
assumptions about the applicability of previously-computed quantities to
each newly-generated chip: the probe intensity distribution to which
intensities should be normalized, the estimated probe effects, and the SNP-
specific cluster centers and variances. We have found that these
assumptions do hold approximately and some of this functionality is
enabled in the software implementing BRLMM but the area needs more
work.

Treatment of strand information: The current approach ignores the available
information about the strand from which each probe is selected, relying on
the assumption that beyond the usual probe-specific effects thereisno
overal difference between the two strands. The mgjority of the timethis
appears to be a reasonabl e assumption but there are some cases whereit is
clear that the probes for one of the strands are providing limited or even
conflicting information. Itislikely that an approach that allows for
different treatment of the two strands may extract alittle more
performance out of such SNPs.
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Adaptive homozygous/heter ozygous balancing. We have chosen a default
value of K, the tuning parameter in the allele signal transformation, which
achieves an optimal hom/het performance balance in various datasets used
for training but have found that in test datasets although it aways yields a
large reduction in the hom/het discrepancy as compared to DM, it isn't
always optimal. An areafor future work is to adaptively estimate K or to
use some suitably parameterized aternative transformation to further
minimize any hom/het discrepancy.

Finally, though the BRLMM method on the Mapping 500K set provides avery
significant performance improvement, the existing DM method is till an important part
of the workflow. BRLMM can only be run in multiple-chip mode (at least for now), and
in atypical high-throughput environment one needs the instant performance metric
provided by the DM call rate that can be applied to each chip in turn to decidein real-
time if a sample needs to be re-hybridized or re-done.
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