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SUMMARY. A dense set of single nucleotide polymorphisms (SNP) covering the genome and an efficient 
method to assess SNP genotypes are expected to be available in the near future. An outstanding question is 
how to use these technologies efficiently to identify genes affecting liability to complex disorders. To achieve 
this goal, we propose a statistical method that has several optimal properties: It can be used with case- 
control data and yet, like family-based designs, controls for population heterogeneity; it is insensitive to 
the usual violations of model assumptions, such as cases failing to be strictly independent; and, by using 
Bayesian outlier methods, it circumvents the need for Bonferroni correction for multiple tests, leading to 
better performance in many settings while still constraining risk for false positives. The performance of our 
genomic control method is quite good for plausible effects of liability genes, which bodes well for future 
genetic analyses of complex disorders. 

KEY WORDS: Bayesian inference; Case-control; Complex genetic disorder; Outliers; Population heterogene- 
ity; Single nucleotide polymorphism genotypes. 

1. Introduction 

A spin-off of the Human Genome Project is the massive gov- 
ernmental and industry-sponsored effort to develop a dense 
set of biallelic markers (single nucleotide polymorphisms; 
SNP) throughout the human genome (Collins et al., 1998; 
Wang et al., 1998). Coupled with this effort is intense research 
to produce techn6logy to assess SNP genotypes rapidly and 
economically. These efforts have been spurred by the realiza- 
tion that a dense set of SNP throughout the genome could 
yield critical information for determining the genetic basis of 
complex diseases (Risch and Merikangas, 1996), in large part 
through population-level association induced by the interplay 
of linkage and evolution. 

An outstanding question is how to use SNP technology effi- 
ciently. One possibility is to apply it to case-control samples. 
Case-control studies have numerous advantages for the ge- 
netic dissection of complex traits (Morton and Collins, 1998; 
Risch and Teng, 1998). Case-control studies have been criti- 
cized, however, because they rely on the unrealistic assump- 
tion of population homogeneity; in the face of population het- 
erogeneity, spurious associations can arise (Li, 1972). There- 
fore, alternative methods, which employ family-based sam- 
pling to obviate the effects of population heterogeneity (Falk 

and Rubinstein, 1987; Spielman, McGinnis, and Ewems, 1993; 
Curtis, 1997), have become increasingly popular. 

Despite population heterogeneity, case-control designs are 
appealing because they do not require recruitment of addi- 
tional family members for cases, which can be expensive at 
best. What is needed is a method that has the advantages 
of both case-control and family-based designs. In this article, 
we propose such a method for either SNP association scans or 
tests of candidate genes. For case-control data, our method 
effectively uses the genome itself to induce controls similar 
to family-based studies and to determine what constitutes a 
significant departure from the null model of no linkage dise- 
quilibrium. 

An advantage of dense association genomic scans is that 
they can detect loci having a small impact on risk to hu- 
man disorders (Risch and Merikangas, 1996). A disadvantage 
is that a large number of false positives occur when many 
significance tests are conducted. A traditional solution is to 
impose Bonferroni correction. Instead we propose a Bayesian 
outlier test as a means of determining which markers ex- 
hibit significant linkage disequilibrium with the disorder. In 
essence, the outlier test bypasses the usual rigid assumptions 
required to obtain chi-square distributed random variables in 
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favor of more flexible statistics and weaker assumptions. This 
test is appropriate for family-based and case-control designs. 
For this article, however, we focus on the latter. 

Another feature of our proposed methodology is that it 
allows for violations in the usual model assumption, indepen- 
dence of observations, which, when violated, leads to extra 
variance in the test statistic. For instance, for case-control 
studies, affected individuals are more likely to be related than 
are control individuals because they share a genetic disorder 
and, ideally, a common genetic basis for the disorder. In fact, 
this is the sine qua non of association-based genetic studies. 
Hence, for case-control studies, test statistics are generally 
inflated relative to expectation under the assumption of an in- 
dependent sample and no genetic association with the disease. 
For this reason, simple marker-by-marker hypothesis tests will 
almost surely produce false positives, even after a Bonferroni 
correction. These false positives often are attributed to pop- 
ulation heterogeneity, but we offer cryptic relatedness as a 
more important explanation. 

Our proposed method, when applied to case-control stud- 
ies, does not require knowledge of the genealogy of the pop- 
ulation or the nature of population heterogeneity. The test 
adapts and corrects for problems arising from population het- 
erogeneity, poor choice of controls, and cryptic relatedness of 
cases, albeit at a cost in power. Our goal in this article is 
to describe the method and assess its power for reasonable 
choices of population and genomic characteristics. 

2. Methods 
2.1 The Data and Genetic Models 
2.1.1. Properties of a single locus. For a case-control study 
and n biallelic markers, the data for each marker are given in a 
standard 2 x 3 table of genotype by case and control (see Table 
1). To test for lack of independence, three 1-d.f. chi-square 
statistics are possible, corresponding to dominant, recessive, 
and additive genetic models. For an association genome scan 
to assess the genetic basis of a complex disorder, there is 
usually no prior information about mode of inheritance. In 
this setting, then, an additive model should perform well, 
and this is the model that we will investigate in depth. The 
additive genetic model can be tested using Armitage's trend 
test (Armitage, 1955), 

y 2 N{N(ri + 2r2) - R(n1 + 2n2)} 2 

R(N -R)fN(ni + 4n2) -(ni + 2n2)21} 

This test is equivalent to the score test in the logistic 
regression model. 

For each marker, the data also can be summarized via 
a 2 x 2 allelic table (Table 2). (See Sasieni [1997] for a 
thorough analysis of the features of allelic versus genotypic 
analyses.) Here we review some of his results and explore 
these issues further, as they are critical to our methodological 
development. 

Based on the allelic data, the chi-square test for associa- 
tion is 

2 - 2N{2N(ri + 2r2) - 2R(n1 + 2n2)}2 2 
^ (2R)2(N - R){2N(n1 + 2n2) - (ni + 2n2)2} 

( 

The numerators of both trend and allelic tests are 
proportional to the square of the weighted difference between 

Table 1 
Genotype distribution 

A1 alleles 

0 1 2 Total 

Case ro r1 r2 R 
Control so SI S2 S 

Total no n1 n2 N 

the number of A1 alleles in the cases and the controls, 
N(rl + 2r2) - R(ni + 2n2) = S(rl + 2r2) - R(sl + 2S2)- 
The tests differ due to their denominators and, as we shall 
see shortly, by their assumptions concerning independence, 
i.e., 

y4/Y2 = 1 + 4non2 - n/{(nr + 2n2)(n1 + 2no)}. (3) 

Under independence or Hardy-Weinberg equilibrium in the 
population, this ratio is approximately equal to one (Sasieni, 
1997). The trend test is more conservative than the allelic test 
because this ratio tends to be greater than one, even under 
the null hypothesis, when the population is not in Hardy- 
Weinberg equilibrium. 

Let F denote Wright's coefficient of inbreeding (Elandt- 
Johnson, 1971, p. 214). Here we define inbreeding broadly to 
denote any form of mating leading to increased homozygosity. 
Two distinct processes lead to this end: matings among 
relatives and population substructure. For either process, F 
measures the correlation between uniting gametes, but the 
value and meaning of F is context dependent. 

If pi is the frequency of Ai in the population, then the 
genotypic frequencies are described by 

Pr(i A ) {Fpi + (1 1-F)pi2 if _ Pr(A~A3) 12(1 - F)p-pj if i <j (4 

Let G be the number of A1 alleles in the genotype of a 
single individual. Clearly, E[G] is not a function of F, but 
the variance of G is inflated by a factor of (1 + F) from that 
expected for a population in Hardy-Weinberg equilibrium, 
var[G] = (1 + F)2p1p2 (cf., Elandt-Johnson, 1971, pp. 216- 
218). 

Noting that E(nI + 2n2)/2N = P1 and replacing nmj i 
O, 1, 2, by their expected values reveals that (3) is approxi- 
mately equal to (1 + F) under any population genetic model 
for which genotype probabilities are given by (4). Conse- 
quently, we see that the trend test automatically accounts 
for the extra-binomial variance induced by correlation of 
uniting gametes. What of correlation across individuals? The 
trend test assumes that the genotypes of individuals are 

Table 2 
Allele distribution 

A1 A2 Total 

Case rl + 2r2 rl + 2ro 2R 
Control sl + 2s2 sl + 2so 2S 

Total -nr + 2t12 nr + 2no 2N 
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independent, but that assumnption is false if there is 
population substructure or related individuals within one or 
both of the samples. 

In fact, concern about the effect of population substructure 
on case-control studies is common (Spielman et al., 1993). 
The Wahlund effect, a well-known result of substructure, 
predicts an allelic correlation within genotypes, which results 
in an excess of homozygotes in a substructured population. 
As we just saw, the trend test accounts for this effect. More 
troublesome, then, is the fact that the allelic correlation 
extends across individuals within the subpopulation as well. 
For a substructured population, F is also the correlation 
between alleles from members of the same subpopulation. As a 
consequence of this correlation, the usual chi-square analyses 
can result in a rate of false positives exceeding the nominal 
level. As we demonstrate below, whether or not excess false 
positives occur depends on the nature of the substructure. 

Let Gi, i = 1,.. , R, denote the number of A1 alleles 
in the ith case. Let Hj, j = 1, ... , S, denote the same 
for the controls. Let al, a2,.. ., am and bl2,b . . ., bm denote 
the sample size of cases and controls from each of the m 
subpopulations, E ak = R and E bk = S. For simplicity 
of exposition, take R = S. The trend and allelic tests are 
proportional to the square of T = Gi - EZ Hj. We analyze 
the behavior of the test statistic T under the null hypothesis. 
The variance of T is highly dependent on the similarity 
between ak and bk, 

R S 

var (T) Zvar(Gj) + Zvar(Hj) 
Z=l j=l 

+ 2Ecov(G GIO) +2Ecov(Hj,H1) 
i<l j<l 

- 2ZE cov(Gi,Hj). 

i i 

From the above, we have var(Gi) var(Hj) = 2plp2(1 + F). 
For any pair of genotypes from the same subpopulation, 
cov(Gi,GI) = cov(Hj,HI) = cov(Gi,Hj) = 4FpIp2,i 4 
l,j # 1. 

It follows that the variance of the difference above equals 

4Rplp2 (1 + F) 

+ 4Fplp2 {ak(ak-1) + bk(bk -1) -2akbk} (5) 
k 

This quantity achieves its maximum, 2Rpip2 (2 + F(2R - 1)), 
when ai takes the value R for some i and a3 0, j 7& i, and 
bk takes the value S for some k, k 7& i, and b.3 0, j 71 k. Its 
minimum, 4Rplp2(1 -F), occurs when ak = bk, k 1,. . , m. 
Contrast these with the limiting variance utilized in the trend 
test, 4Rplp2(1 + F), and the allelic test, 4RpIp2. Define 
A = var(T)/{4Rplp2(1 + F)} as the variance inflation factor 
relative to the trend test. 

The most extreme effect of substructure occurs if cases and 
controls define distinct subpopulations. In this instance, even 
small values of F can have a large impact on the variance 
of T. Alternatively, it is optimal for affection status to be 
independent of subpopulation membership. In this scenario, 
population substructure has essentially no impact on the 
distribution of T. In fact, at its minimum, A = (1-F)/(1+F). 

For most cases, however, the probability of affection varies 
somewhat by subpopulation. To see its effect, take F 0.05, 
R = S = 100, m = 10, and ak = bl = 16 for k 1,.5. ,5 
and I = 6, ... I,10 and ak = bl = 4 for k = 6,. ..,10 and 

= 1,.. ., 5. This fairly extreme scenario results in a variance 
inflation factor A of 1.3. For a more realistic level of admixture, 
F = 0.01, A is only 1.06. 

In a case-control study of a disease with a genetic basis, 
cases are likely to be related; after all, they share a genetic 
disorder. By contrast, the controls are more likely to be 
independent, but they too may be related to a minor degree. 
For an inbred population, F is the probability uniting gametes 
that are identical by descent (i.b.d.). The kinship coefficient 
gives a related quantity: For relatives i and j, it is the 
probability that an allele selected randomly from i and an 
allele selected randomly from the same autosomal gene of j 
are i.b.d. In both cases, F can be interpreted as the correlation 
between alleles. 

Because cryptic relatedness among affected individuals may 
have a large impact on a case-control study, we turn our 
attention to this case. For simplicity, consider a case-control 
sample with R = S; an allelic correlation equal to F1 (F2) 
is assumed for all individuals in the case (control) sample. 
Case and control samples are independent. This model is 
mathematically equivalent to assuming the most extreme 
substructure except that F1 need not equal F2. Under this 
model, var[Zi Gi] = 2RpIp2 x {1 + F1 (2R - 1)}. A similar 
argument holds for the controls. Consequently, under the null 
hypothesis of no genetic association, 

var[T] = 2RpIp2 x {2 + (F1 + F2) x (2R - 1)}. (6) 

Thus, even for small values of F1 and F2, the variance of 
T is substantially inflated over the binomial variance and 
it increases as a function of the sample size. For example, 
if F1 0.001, F2 = 0, and R = S = 1000, A is 2; with 
R= S 2000, A is 3. 

Compare this result with the admixture example given 
above for F = 0.01. Consider a sample of cases who 
are cryptically related and assume the case and control 
subpopulations differ somewhat with F1 = 0.0075, F2 = 
0.0025, and F1 + F2 = 0.01. For R = S = 100, the variance 
inflation is 2 versus 1.06 for substructure alone. While these 
examples are quite artificial, the same arguments apply for 
more complicated instances of cryptic relatedness because the 
variance of T is the product of the binomial variance and a 
complex function of various kinship coefficients. 

2.1.2. Variance inflation estimated from multiple markers. 
With data from a single locus, it is impossible to correct for 
the effect of population substructure and cryptic relatedness. 
This fact motivated development of matched case-control 
designs in epidemiology generally and family-based designs 
for genetic epidemiology. When a set of SNP is evaluated for 
cases and controls, however, it is possible to simultaneously 
estimate the variance inflation and adjust the test for 
association of each locus with the disorder. 

In the ideal case, the inflation factor A would be a constant 
for all markers. For the model of cryptic relatedness, the 
variance inflation is due to correlations or kinship coefficients 
unrelated to properties of individual loci, and thus it is the 
same for all markers throughout the genome. For the variance 
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inflation due to locus-specific attributes, the results are not as 
transparent, but under certain conditions, the inflation factor 
is roughly constant. Several conditions must be met: (a) the 
loci under study must not have very different mutation rates 
(Chakraborty and Jin, 1992); (b) they cannot be under strong 
and subpopulation-specific selection (Crow and Kimura, 
1970); and (c) with respect to population substructure, F 
should not vary greatly across loci. The advantage of SNP for 
our analyses is that they are assumed to have a minuscule 
mutation rate, thus meeting condition (a). Little is known 
about selection on the human genome, but strong, differential 
selection for extant SNP alleles seems unlikely. Thus, it is 
plausible that condition (b) is met. At issue is whether or not 
F varies greatly across loci. 

According to Lewontin and Krakauer (1973), the variance 
in F is negligible, provided the number of subpopulations 
is large and F is small. Under a more complex model 
of relationships among subpopulations, Robertson (1975) 
derived a different expression that allows for the possibility of 
considerably more variance in F across the genome. Lewontin 
and Krakauer's results are based on a model that assumes 
that all subpopulations are equally related. Robertson's 
model more nearly describes the world's subpopulations 
because subpopulations within an ethnic group/race are more 
closely related than subpopulations across ethnic groups (e.g., 
Devlin, Risch, and Roeder, 1993). 

In a well-designed case-control study, subjects are drawn 
from the same ethnic group or additional heterogeneity is 
modeled explicitly. Take, e.g., a random sample of Caucasians 
drawn from Europe. Some rough calculations based on the 
results of Cavalli-Sforza, Menozzi, and Piazza (1994) for 122 
classical genetic markers suggest an average F = 0.0006 and 
standard deviation 0.0012. Clearly, F is not constant, but, as 
Lewonton and Krakauer predicted, its variance is not large 
for such a sample. For the remainder of the methodological 
development, we will assume A is constant across loci. The 
impact of variation in A will be described in the sequel. 

2.2 Statistical Analysis 
To determine which markers are in association with the 
disorder, we first propose a Bayesian outlier model that 
automatically corrects for violations of the independence 
model. The model uses the results for a set of loci (e.g., a 
genome scan) to estimate the variance inflation, A. Formally, 
the Bayesian framework of this model is similar to the one 
proposed by Verdinelli and Wasserman (1991) for general 
outlier detection. A less flexible, but simpler, frequentist 
solution is described at the close of this section. 

2.2.1. The Bayesian approach. For marker locus i, we obtain 
a statistic Yi2 using the trend test, i = 1, . . . , n. For this 
report, we assume the statistics are independent (see Section 
4 for further discussion). When the marker is in linkage 
equilibrium with the disorder and there is no population 
substructure or cryptic relatedness, yi2 is distributed as 
X2 (0). We expand this null model to allow for extra variance 
by assuming Yi2/A , X2(0). 

To allow for outliers (i.e., markers associated with the 
disorder), the model is enhanced so that the distribution for 
y2 is a mixture of chi-square distributions, i.e., 

yV-2 /> e t Xl(Ai2) I (1-e) X1 (0), (7) 

where e is the prior probability a given observation is an 
outlier and A 2 is the noncentrality parameter associated 
with the ith outlier. It follows that Yi - EN(Ai, A) + (1 - 

E)N(O, A). To simplify computations, an auxiliary variable 5i 
is introduced, 6i - Bernoulli(e). Given 5i, Yi - N(65Ai, A). 

We observe Xi = lYil, not Yi. The latter would be 
observable only if we knew a priori which allele was 
potentially associated with the disorder. When 5i = 0, 
knowing Xi is sufficient for inferential purposes. When 5i = 1, 
we assume Yi = Xi. If Ai/A'/2 > 2, then Pr(Yi > 0) is high. 
When Ai/A1/2 is substantially less than two, it is not possible 
to distinguish this observation from the null model. Thus 6i is 
taken to be zero with high probability, and we incur little error 
with our approximation. Finally, because the vast majority of 
the markers are not associated with the disorder of interest, 
this approximation has little effect on our inferences. 

To complete our Bayesian probability model, we require 
a prior specification for A, Ai, and e. Let A - 
inverted chi-square(v, (). A choice of parameters that imposes 
almost no effect on the likelihood is v = 0, ( = 1000; this 
is essentially the reference prior (Lee, 1989). Let Ai be a 
set of independent random variables, each with a normal 
distribution N(K, T2). A prior could also be placed on e 

(Verdinelli and Wasserman, 1991), but we obtained better 
results with a fixed value of e. The best choice of values for 
(i, T2, ) depends on whether the markers under study are 
part of a genome scan or a candidate gene study (see below). 

This model is quite convenient for making Bayesian 
inferences via Gibbs sampling (Carlin and Louis, 1996), 
with simple conditional distributions required to compute 
the Gibbs updates. Conditional on the data and the other 
parameters, the following distributions result. If 5i = 1, Ai is 
N(c, d) with d-' (1/T2 + 1/A) and c = (Xi/A + KIT2) X 

d-1. If instead, 5i 0, then Ai has the prior density N(,, T2). 

Each 6i is independent and is distributed as a Bernoulli with 
success probability 

q {(Xi -Ai)/A'/2} e 
Pi 

{(Xi -Ai)/Al/21 e + 0 (Xi/Al/2) (1 -e) ' '8 

where q(.) represents the standard normal density. A 
has an inverted chi-square distribution. More precisely, 
E (Xi - 5iAi)2 + vA/ 2 

Determining if 5i is one or zero is a binary Bayesian 
hypothesis testing problem (Berger, 1985). When the loss is 
zero or one, then the rule is to choose 5i - 1 if 

f (Xi 1 6= ) (l -)(g 

f(X-i i= e0) 

where f(Xi l 5i) is the marginal distribution of Xi, given 
5i. The rule above is equivalent to declaring Xi an outlier 
whenever (1/M) ziLm lpi) (1/M) YJ-1 i > 0.5, where 
j 1, ... , M indexes the cycles of the Gibbs sampler. For 
e-0.01 (0.0001), the test requires the likelihood of the data 
under the alternative to be 99 (9999) times greater than under 
the null model. In this sense, e can be viewed as a tuning 
parameter the smaller E, the higher the hurdle for declaring 
an observation as an outlier. 

Genome scan. Risch and Merikangas (1996) proposed a 
genome-wide association scan using SNP as a means of 
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determining the genetic basis of complex disease. While 
the number of SNP required to perform an effective scan 
is unknown, a reasonable estimate is between 50,000 and 
100,000 SNP. A frequentist approach might use Bonferroni 
correction to account for such a large number of hypothesis 
tests. In Bayesian decision theory, the multiple comparison 
problem must be handled via choice of prior distributions. To 
avoid incurring an excess of false positives for such large n, 
a relatively small value of e is required. For a genome scan 
in which no prior information is available for E, we suggest e 
equal to 10/n. In addition to adjusting E, a data-dependent 
prior for K helps to account for the larger number of tests 
performed by moving the prior for the outlier distribution to 
the right of the expected size of the largest order statistic 
obtained in n independent tests. We suggest data-dependent 
values for both r, and T2, with es = A1/2 x E[X(n) + 1] and 

T2 = >, where A = {median(X1,X2,... ,X.,)/0.675}2 is a 
robust measure of A and E[X(n)] is the expected value of 
the largest order statistic from a sample of size n from a 
standard normal distribution. The largest order statistic is of 
order {log(n)}1/2, or about 1.6{log(n)}1/2 - 1, in the range 
of interest. 

Candidate genes. A slightly different approach, consisting 
of two stages, better utilizes the potential of a Bayesian 
analysis in a candidate gene study. Here we assume that the 
n loci consist of c biallelic polymorphisms in candidate genes 
and (n - c) SNP dispersed throughout the genome. The SNP 
markers are examined for other purposes, such as a linkage 
study. Because the SNP markers are widely spaced, perhaps 
throughout the genome, we assume that they are not likely to 
be near enough to a susceptibility gene to exhibit a detectable 
level of association. Consequently, only the candidate gene 
markers will be tested for association. 

In stage 1, the outlier test is performed. Because a small 
number of tests are to be performed (c versus n) and because 
there is prior information implicating the markers under 
study, a candidate gene study has the potential of yielding 
much more powerful inferences. The key tuning parameter is 
e. We suggest using e = 0.10 and/or 0.05 for a preliminary 
screening test. According to Jeffrey's criterion (Kass and 
Raftery, 1995), loci that are declared outliers with e = 0.05 
provide strong evidence of association and those that are 
outliers with the less stringent e = 0.10 provide substantial 
evidence of association. The remaining tuning parameters 
(ii, T2) are of less importance, and we suggest setting them at 

(4A1/2, A). With these choices, the test should have acceptable 
Type I error rates. 

Those candidate genes with the highest posterior probabili- 
ty of association and strongest associations with the disorder 
are the most promising ones to pursue further. At stage 
2, these quantities are computed for each candidate gene 
determined to be an outlier in stage 1. To complete the 
computations, we require a subjective declaration of E, which 
is interpreted as the prior probability a given candidate gene 
is associated with the disorder. For instance, if the candidate 
gene was strongly implicated in one or more prior studies, 
e might be set at 0.20 or even greater. Alternatively, if the 
candidate gene was weakly implicated based on a single poorly 
designed study, e 0.05 might be appropriate. For any 
prespecified prior probability ~, the posterior probability of 

association is computed as given by (1/M) EZ p($. If there 
is cause to vary e by marker, then this analysis should 
be performed on a locus-by-locus basis. The posterior 
distribution of the strength of the association, Ai - N(c,d), 
can be computed simultaneously. 

2.2.2. Frequentist approach. The idea of genomic control 
can also be implemented without resorting to Bayesian 
techniques. Numerous frequentist outlier tests are applicable 
to this situation (see Barnett and Lewis, 1995, chapter 6). 
Many of these tests, however, are sensitive to swamping and 
masking effects. For this reason, we favor the simple, robust 
technique described below. 

Testing. A frequentist outlier test can be derived based on 
the fact that Xi = lYil is approximately distributed as the 
absolute value of an N(O, A) random variable under the null 
hypothesis. Although A is unknown, with large n, it can be 
estimated with high precision using a robust estimator such 
as A (defined in the previous section). When n, R, and S are 
large, y2/A is approximately distributed X2 under the null 
hypothesis. A Bonferroni correction provides a conservative 
critical value for the test, x21(a/n). When A is constant 
across the genome, this simple adjustment will result in a 
test statistic with Type I error rate close to the nominal 
level. When A follows a distribution across the genome with 
standard deviation of the same order as the mean, this 
adjustment will result in a test statistic with Type I error 
rate roughly equivalent to the nominal level. 

Power. An advantage of the genomic-control methodology 
is that levels of heterogeneity and cryptic relatedness need 
not be prespecified. However, without knowledge of A, it is 
difficult to design a study that attains a prespecified level of 
power. Because the greatest impact on the test statistic arises 
due to cryptic relatedness, we recommend using a fixed level of 
cryptic relatedness to obtain a conservative estimate of power. 
From (6), A can be computed. Then N can be determined 
based on a test that rejects for values greater than AX2 

3. Simulation Results 
In real populations, clusters of individuals are related to 
varying degrees and population heterogeneity varies some- 
what over loci. Even if it were practical to simulate reality, it 
would be difficult to summarize the simulations in a compact 
form. Fortunately, because F can be interpreted both in 
terms of the correlation due to relatedness and correlation 
due to population substructure, there is a simple way of 
generating data to evaluate the methods. As noted previously, 
the most extreme population heterogeneity occurs when cases 
and controls are sampled from distinct subpopulations. When 
this occurs, cases (and controls) are related to each other by 
a fixed degree. 

To model outliers, we produce data from a multiplicative 
model for genotype relative risk (Risch and Merikangas, 
1996) with approximate risk parameter -y (see Sasieni, 1997, 
Theorem 1). For risk to individuals carrying zero, one, and 
two alleles at a liability locus being 7ro, 7TI, and 7r2, -y equals 
rTI/7T( and _,2 equals ir2/7rO. 

By standard techniques for beta-binomials, we simulate 
data with the desired correlation structure: Within the 
population as a whole, the cases possess a fixed allelic 
correlation both within and across genotypes equal to F1, 
but the genotypes of the cases are uncorrelated with the 
genotypes of the controls. Similarly, the controls are generated 
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Table 3 
Comparison of power and Type I error rates for the genomic-control test and the standard procedure (trend tests 

with Bonferroni correction). For each configuration, 100 data sets with 400 (100,000) loci were generated, each with 
10 loci actually in association with the disorder [relative risk equal to -y, e = 0.01, (0.0001) and , = 4A (5A)]. The 
columns labeled Outliers give the average number of observations correctly declared as being in association with the 

disorder by the two statistical procedures; this column divided by 10 gives the power to detect an outlier with this 
level of relative risk. The columns labeled Errors give the average number of observations incorrectly declared as 

outliers by the two statistical procedures; this column divided by 390 (99,990) gives the Type I error rate per locus. 

Genomic-control Standard 

R S -y F1 F2 Outliers Errors Outliers Errors 

n 400 
1000 1.25 0.00001 0.00001 5.45 0.39 4.44 0.14 

1.50 0.001 0.00001 9.59 0.29 10.00 3.71 
2.25 0.01 0.00001 8.51 0.40 10.00 106.21 
1.50 0.001 0.001 6.51 0.34 9.72 13.41 
2.50 0.01 0.001 9.38 0.31 10.00 114.83 
3.00 0.01 0.01 5.39 0.21 10.00 166.50 

500 1.50 0.00001 0.00001 8.86 0.34 8.09 0.11 
1.75 0.001 0.00001 9.89 0.42 9.94 0.92 
2.50 0.01 0.00001 9.26 0.33 10.00 53.64 
1.75 0.001 0.001 8.84 0.40 9.83 3.76 
2.75 0.01 0.001 9.54 0.36 10.00 59.46 
3.25 0.01 0.01 6.39 0.26 10.00 107.60 

100 2.00 0.00001 0.00001 5.18 0.25 3.63 0.25 
2.25 0.001 0.00001 6.62 0.32 5.99 0.12 
3.00 0.01 0.00001 6.16 0.23 9.20 3.48 
2.25 0.001 0.001 5.79 0.23 9.20 3.48 
3.50 0.01 0.001 7.80 0.24 9.81 4.16 
4.50 0.01 0.01 7.09 0.28 9.92 12.70 

n 100,000 

1000 1.40 0.00001 0.00001 7.96 0.96 6.40 0.08 
2.75 0.01 0.00001 5.28 0.32 10.00 14,125.47 
1.75 0.001 0.001 8.12 0.68 10.00 465.12 

100 3.00 0.00001 0.00001 7.48 0.72 5.84 0.04 
4.50 0.01 0.00001 5.56 0.28 9.64 36.92 
3.00 0.001 0.001 5.60 0.56 5.52 0.48 

with a fixed allelic correlation equal to F2 but unrelated to 
the cases. Data for cases and controls are generated indepen- 
dently with each population in Hardy-Weinberg equilibrium. 
For cases, p = Pr(Ai) is sampled from a beta distribution with 
parameters az = 1 = (1 - F)/(2F); then a binomial sample of 
2R alleles is drawn using this value of p; these alleles are ran- 
domly paired to form genotypes. For controls, a new value of p 
is sampled and then a sample of 2S alleles is drawn using this 
value of p. A new value of p is generated for each locus in both 
the cases and controls. In each draw, the expected value of p 
is 1/2 except for the loci designated as outliers. For the out- 
liers, the alleles are sampled from a binomial{2R, -y/(1 + y)} 
distribution and are randomly paired to form genotypes. 

We simulate from values of F ranging from 0.01 to 0.00001. 
Within a randomly mating population, these values represent 
a range of cryptic relatedness spanning approximately second 
to seventh cousins. F = 2-2(k+1) for k-cousins. We choose 

fairly large values of F to account for the possibility that the 
cases and controls are from slightly different subpopulations. 

From Table 3, it is apparent that the Type I error rate is 
small and quite stable for the Bayesian genomic-control test. 
A single false positive is obtained with probability roughly 
0.33 for n = 400 and 0.60 for n = 100,000. Contrast this sta- 
bility with the standard test (trend tests with a Bonferroni 
correction a = 0.10/n), which yields wildly unstable num- 
bers of false positives ranging from 0 to over 14,000 errors per 
genome scan. In general, a larger number of false positives 
occurs when F is larger. As expected, correlation among sub- 
jects has a strong effect on the distribution of the test statistic 
and this effect is most acute when the sample size is larger 
(i.e., the effect increases as R increases). 

Another feature illustrated by the simulations is that the 
power of the tests decreases as n increases. This is not surpris- 
ing because a good test must be more conservative to prevent 
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a large number of false positives when a dense genome-wide 
scan is performed. 

F1 = F2 = 0.00001 represents the ideal model because 
alleles are essentially uncorrelated and the test statistics are 
very nearly asymptotically chi-square distributed under the 
null hypothesis. Not surprisingly, the standard test results in 
very few false positives both for n = 400 and n = 100,000. For 
n = 400, the power of the standard test is about 10% lower 
than that of the genomic-control test. For n = 100,000, the 
loss of power is more substantial, i.e., approximately 16%. 

4. Discussion 

Our genomic-control methods target the detection of popula- 
tion-level association between marker and disease from a case- 
control sample. They are designed to exploit advancing tech- 
nology for the detection of genes underlying human diseases, 
such as single nucleotide polymorphisms detected using a gene 
chip, a glass wafer to which is bound high-density arrays of 
prepooled primers for multiplex polymerase chain reaction as- 
says. The first generation of gene chips is due in 1999 (see 
http://www.affymetrix.com/), and up to 100,000 SNP scat- 
tered throughout the genome are anticipated to be available 
within a few years (Collins et al., 1998). 

For a case-control sample, population substructure and 
cryptic relatedness among subjects leads to overdispersion of 
the chi-square test statistic for association and causes spuri- 
ous rejections of the null hypothesis. Under reasonable pop- 
ulation genetic assumptions, however, this overdispersion is 
roughly constant across the genome, allowing for a natural 
correction to the case-control test statistic. Plainly, this cor- 
rection comes at a cost: Case-control studies analyzed using 
the genomic-control approach incur a reduction in power if 
the sample is not independent. The larger the overdispersion 
parameter, the smaller is the power. Consequently, although 
the genomic-control method allows for the analysis of case- 
control samples that do not meet the independence assump- 
tion, a carefully collected sample from a homogeneous popu- 
lation of unrelated individuals will yield a more powerful test 
statistic. 

In fact, the genomic-control method produces control in 
many ways comparable to genetic epidemiology's family-based 
designs (Spielman et al., 1993; Curtis, 1997). These family- 
based designs, which are matched case-control designs with 
appropriate test statistics (e.g., Laird, Blacker, and Wilcox, 
1998), circumvent spurious association due to population het- 
erogeneity. As we have demonstrated here, the genomic-con- 
trol method also eliminates spurious associations due to pop- 
ulation heterogeneity. There are other favorable features of 
case-control methods, which, when teamed with genomic- 
control methodology, make case-control a very compelling 
method for the genetic analysis of complex diseases. For in- 
stance, family-based designs generally are not efficient rela- 
tive to case-control designs for genetic analysis of complex 
diseases (Risch and Teng, 1998). In addition, family-based 
designs require tremendous effort during the data collection 
phase compared with case-control studies and therefore cost 
far more to implement. 

The proposed genomic-control method is built on a Bay- 
esian probability model. This model easily accommodates 
overdispersion due to heterogeneity and relatedness. With the 
help of tuning parameters, the method also scales as the size 

of the genome scan increases, alleviating concerns over multi- 
ple testing. By adjusting the tuning parameters, the test can 
be scaled to have the desired Type I error rate. We provide 
default values that result in fairly low levels of false positives; 
however, if larger numbers of false positives can be tolerated, 
then the tuning parameters (particularly e) can be adjusted 
to enhance the power of the test. (Software to implement 
genomic-control methods and select tuning parameters are 
available from the authors on request.) 

We also described a frequentist version of the genomic- 
control approach. In many cases, such as our simulations, the 
Bayesian and frequentist methods will behave similarly. As 
witnessed by our suggested treatment of candidate gene anal- 
yses, however, the Bayesian approach has the advantage of 
being readily extended to solve more complex problems. 

From the simulation study, it is clear that the genomic- 
control method performs substantially better than the stan- 
dard method for a wide spectrum of conditions. When the 
sample is approximately independent, the genomic-control has 
greater power than that obtained by the standard procedure, 
but it also has a slightly greater number of false positives due 
to the choice of tuning parameters. Of much greater impor- 
tance is the comparison of the procedures when the samples 
are not independent. Here we find that the genomic-control 
approach maintains a nearly constant low level of false posi- 
tives, while the standard procedure has a wildly unpredictable 
level of errors. The Type I error rate for the standard proce- 
dure is especially large when the sample size is large because 
of the cumulative effect of the violations of independence in 
the sample. The power of both methods naturally declines 
as n, the number of markers tested, increases. This is a pre- 
dictable result of the need to control for a greater risk of false 
positives. 

We have deferred to this point a discussion of the impact of 
the heterogeneity of F, due to population substructure, on the 
genomic-control method. Clearly, F does vary in many set- 
tings, and the degree to which it varies depends on the design 
of the case-control study. Intuitively, the effect of this varia- 
tion is to increase the variance of the test statistics, thereby in- 
creasing the value of A. The net effect on the genomic-control 
procedure is to decrease its power. From some simulation anal- 
yses, it appears that A is overestimated, and therefore the 
genomic-control method maintains a small false positive rate 
even in the presence of variation in F. Thus, because of its 
impact on the power of the test, it is important to design 
case-control studies to limit the size of F (and, implicitly, the 
variance of F). 

Currently, the genomic-control approach is limited to bial- 
lelic markers for three reasons. First, a stronger case can be 
made for nearly constant overdispersion in this setting. With- 
out this, the approach loses much of its power and appeal. 
Second, with only two alleles, it is not necessary to spec- 
ify which allele is potentially associated with the disorder. 
Third, the approach is based on the comparison of test statis- 
tics across the genome to find outliers. This comparison re- 
quires that the tests all follow the same distribution under the 
null hypothesis. With differing allele counts, the test statistics 
would have differing degrees of freedom. This simple version of 
the genomic-control approach ignores potential spatial depen- 
dence in the test statistics. A more powerful approach could 
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be designed that incorporates the spatial configuration. Such 
an approach is one focus of our current research. 
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RESUME 

Un panel dense de polymorphismes bialleliques (SNP) cou- 
vrant le genome et une methode efficace pour tester les geno- 
types SNP sont attendues dans un futur proche. Une ques- 
tion primordiale est comment utiliser efficacement ces tech- 
niques pour identifier les genes affectant la susceptibilite a 
des desordres complexes. Pour arriver a cet objectif, nous 
proposons une methode statistique qui a plusieurs proprietes 
optirmales: elle peut etre utilisee avec des donnees cas-te'moin 
ou encore, comme dans les etudes familiales, des contr6les 
pour l'heterogeneite de la population; elle est insensible aux 
violations habituelles aux hypotheses des modeles, comme 
les observations n'etant pas strictement independantes; et, 
en utilisant des methodes bayesiennes de detection de points 
eloignes, elle evite la necessite d'utiliser une methode de cor- 
rection de Bonferroni pour tests multiples, aboutissant a de 
meilleures performances dans beaucoup de situations tout 
en contr6lant le risque de faux positifs. Les performances 
de notre methode de "contr6le genomique" est plut6t sat- 
isfaisante pour des effets plausibles de genes de susceptibilite, 
ce qui est de bon presage pour les futures analyses genetiques 
de desordres complexes. 
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