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BRLMM: an Improved Genotype Calling Method for the 
GeneChip® Human Mapping 500K Array Set 

 
Introduction 
 
Highly accurate and reliable genotype calling is an essential component of any high-
throughput SNP genotyping technology.  The Dynamic Model (DM, [1]) which has been 
extensively used for the GeneChip® Human Mapping 100K Array Set and the 
GeneChip® Human Mapping 500K Array Set has proven to be very effective, however it 
is possible to do better.  Rabbee & Speed recently developed a model called the Robust 
Linear Model with Mahalanobis distance classifier (RLMM, pronounced ‘realm’) which 
provided an improvement over DM on the Mapping 100K set [2,3,4].  We present here an 
extension of the RLMM model developed for the Mapping 500K product which provides 
a significant improvement over DM in two important areas – it improves overall 
performance (call rates and accuracy) and it equalizes the performance on homozygous 
and heterozygous genotypes.  The difference between RLMM and this approach is the 
addition of a Bayesian step which provides improved estimates of cluster centers and 
variances, the new model is called BRLMM (pronounced ‘B-realm’). 
 
The performance improvement is achieved by two main advances over the DM model.  
Firstly, RLMM (and hence BRLMM) performs a multiple chip analysis, enabling the 
simultaneous estimation of probe effects and allele signals for each SNP.  Just as it has in 
the now reasonably mature field of probe-level expression analysis, accounting for probe 
specific effects results in lower variance on allele signal estimates.  The second main 
source of improvement is the estimation of genotypes by a multiple-sample classification, 
borrowing information as necessary from other SNPs to better predict the properties of 
the underlying clusters corresponding to the {AA,AB,BB} genotypes.  By contrast, the 
DM approach calls genotypes by analyzing the probe-level intensities one SNP and one 
chip at a time, using strong assumptions about what the underlying probe intensity 
patterns should look like in the context of each of the genotypes.  RLMM and BRLMM 
make weaker assumptions about the behavior of probe intensities than does DM, making 
them far more robust in the presence of real-world data. 
 
Figure 1 presents an overview of the BRLMM approach.  The first step is to normalize 
the probe intensities and estimate allele signal estimates for each SNP in each 
experiment.  The allele signal estimates are then transformed to a 2-dimensional space in 
which the underlying genotype clusters are ‘well behaved’ in terms of having similar 
variance for each of the clusters.  In parallel we derive an initial guess for each SNP’s 
genotype using the DM approach (with confidence threshold set to 0.17 for high 
stringency). We then look across SNPs to identify cases where there are at least a certain 
minimum number of examples of each of the 3 genotypes according to the initial guesses.  
This subset of SNPs is used to estimate a prior distribution on the typical cluster centers 
and variance-covariance matrices.  Each SNP is then visited in turn and the cluster 
centers and variances implied by the initial genotype guesses are combined with the prior 
information in an ad-hoc Bayesian procedure to derive a posterior estimate of cluster 
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centers and variances (it is principally this step that distinguishes BRLMM from 
RLMM).  Finally, a genotype and confidence score is assigned for each observation 
according to its Mahalanobis distance from the three cluster centers. 
 
The remainder of this manuscript steps through each of the above steps in detail and then 
presents a detailed assessment comparing various aspects of BRLMM and DM 
performance. 
 

 
 

Figure 1:  BRLMM  algorithm workflow 
 

Normalization and Allele Summarization 
 
The normalization and allele summarization steps of the BRLMM algorithm consist of 
producing a summary value for each allele of a SNP in each experiment.  The “A” allele 
summary value increases and decreases with the quantity of the “A” allele in the target 
genome, and similarly the “B” allele summary value increases and decreases with the 
quantity of the “B” allele in the target genome.  These summary values are calculated to 
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remove extraneous effects – chip-chip variation, background, and the relative brightness 
of different probes on the array.   This section explains the technical details of this 
summarization process, which is similar to that used on expression arrays. 
 
For each SNP of interest, the array contains multiple probes designed to hybridize to each 
allele of the SNP.  The intensities of these features typically vary together in systematic 
ways for each genotype of the SNP.   We therefore summarize these intensities in a single 
value for the features corresponding to each allele, the “signal” for that allele.  (Note: due 
to cross-hybridization with the alternate allele, this signal does not directly correspond to 
the concentration of the perfectly matched allele.)  The intensities of the probes matched 
to the “A” allele are expected to decrease with decreasing quantities of the “A” allele, and 
similarly for the “B” allele probes.  Since these change in opposite directions, we 
summarize the probes for each allele as independent signals.  Therefore, for each SNP in 
each experiment, we obtain two values – an “A” signal and a “B” signal, which 
summarize the probes.   
 
From the field of expression analysis on arrays, we know how to summarize several 
probes to a single signal value effectively.  We need to account for extraneous effects on 
the probe intensity that vary from experiment to experiment (normalization), account for 
potential differences in background from chip to chip (background adjustment), and 
account for the systematic differences in feature intensity due to probe composition 
(feature effects).  While there are many options available for each of these effects, we 
have chosen to use off-the-shelf options:  quantile normalization at the feature level, no 
background adjustment, a log-scale transformation for the perfect match intensities, and a 
median polish to fit feature effects to the data obtaining a signal.   This is exactly the 
same methodology that can be applied to summarize an expression array and produce a 
signal for a probe-set. 
 
Quantile normalization is performed as in the literature – the intensities on each chip are 
ranked, and then the average intensity across experiments for each rank of intensity is 
substituted within each experiment for the given rank.  [If R(I) is the rank of intensity 
within a chip, and Q(R) is the average intensity for a given rank, the quantile normalized 
intensity within a chip is Q(R(I))].  Because the quantile function is slowly varying and 
smooth, we approximate the Q(R) function for each chip with a linear interpolation for 
processing speed [“sketch” normalization].  This allows us to normalize millions of data 
points per chip rapidly with compact summaries of the data. 
 
Several background adjustments were explored during development, and we settled on 
using no adjustment for background.  Unlike expression arrays, the target concentrations 
are well above background for the majority of the fragments containing SNPs.  For this 
assay, background adjustment was not useful for downstream genotyping, and therefore 
the (normalized) perfect match intensities are used without adjustment for background. 
 
To account for systematic differences in relative brightness between features, we fit the 
standard log-scale additive model to the probes for each allele separately:  log(Ii,j) = fi + tj 
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+εi,j, where fi is the effect due to feature i across experiments, tj is the effect with 
experiment j responding to the genotype of the SNP and the relative quantity of the 
fragment on which it is located (because of cross-hybridization to the other allele it 
cannot be interpreted as simply the effect due to the concentration of target for allele A), 
and εi,j is the multiplicative error for the observation.   We fit this model using the 
standard median polish procedure for f and t, and for each experiment output the fitted 
value for t as the signal for that allele.  For identifiability, we require sum(f) = 0.  The 
output signal value is retransformed to lie on the original linear intensity scale: signal = 
exp(t). 
 
These stages constitute the normalization and allele summarization portion of the 
algorithm.  At the end of these steps, we have for each SNP in each experiment two 
signal values: one for the “A” allele probe set, and one for the “B” allele probe set.  Each 
SNP therefore has a 2xN matrix of values output – 2 signals for each of N experiments.  
This output matrix is then used to evaluate each SNP for the genotype present in each 
experiment. 
 

Clustering Space Transformation 
    
Now that we have signals for the two alleles of the SNP across all experiments, we will 
be evaluating distances between a prototype (cluster center) for a given genotype (AA, 
AB, BB) and the actual data seen in any one experiment.  However, raw “signal” value, 
while very useful for expression analysis, is not perfectly suited for genotype cluster 
analysis (figure 2a).  We transform each pair of signals for each experiment into a space 
with properties more suitable for evaluating genotypes.  
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Figure 2: Clustering Space Transformations.  For each of a variety of clustering space 
transformations the cluster centers (as estimated using DM with a stringent 0.17 threshold) are 
determined.  Each plotted point corresponds to an estimate of the cluster center for one genotype in 
one SNP, with color indicating genotype (AA is red, AB is blue, BB is green).  The black x’s denote 
the grand mean of cluster centers for each genotype, and the black ellipses are derived by taking the 
average within-cluster variance and covariance – thus the ellipses are to be interpreted as 
representative of the ‘typical’ variance of a cluster.  Sub-plot (a) plots the untransformed allele signal 
estimates on log2 scale.  Sub-plot (b) is motivated by the MvA or MA plots from expression and plots 
(log2(SA)+log2(SB))/2  on the y-axis against the log2 ratio on the x-axis.  Sub-plot (c) plots the signal 
strength log2(SA + SB) against the allele contrast (SA - SB)/ (SA + SB).  Sub-plot (d) is similar to (c) but 
the contrast is transformed by the Cluster-Center-Stretch (CCS) transformation (see figure 3). 
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The desirable qualities for such a space include approximate independence of the 
difference between genotypes and the magnitude of signal, and controlling the variation 
within the various clusters to be comparable.  For example, the standard “MvA” or “MA” 
transformation used to plot expression analysis could be applied to the two signals, 
resulting in M = log(SA)-log(SB) and A = (log(SA)+log(SB))/2.  This isolates most of the 
difference between genotypes into the M axis, leaving a mostly irrelevant “brightness” 
component in the A axis. 
 
However, this MvA transformation space is sub optimal, because it increases the 
variation asymmetrically for homozygous and heterozygous genotypes – in the presence 
of an AA genotype SB will be near zero and hence highly variable on the log scale, and 
conversely for SA in the presence of BB.  The result is that the MvA transformation 
artificially makes the homozygous clusters more broadly variable than the heterozygous 
cluster (figure 2b).  This causes points to be more often miscalled homozygous than 
heterozygous because the distance to the homozygous cluster tends to be under-
estimated, as it is scaled by the observed standard deviation, leading to heterozygote 
dropout. 
 
We therefore wish to use a space in which the spread of homozygous clusters can be 
controlled, even when a signal estimate is near zero, and where the typical variation can 
be adjusted to be similar between heterozygous and homozygous genotype clusters.  Let 
us define two axes:  Contrast = (SA-SB)/(SA+SB) and Strength = log(SA+SB).  Strength of 
course measures the overall brightness, which is mostly independent of genotype, and 
Contrast is a quantity that will depend most strongly on genotype ranging from -1 for the 
ideal BB genotype to +1 for the ideal AA genotype.  As seen in figure 2c this 
transformation still has the property that the homozygous clusters tend to display more 
variability than the heterozygous, and so we further generalize the Contrast axis to define 
a Transformed Contrast = asinh(K(SA-SB)/(SA+SB))/asinh(K), where K is a tuning 
constant.   Figure 3 shows the functional form of this transformation for different values 
of K.  The effect of varying K is to change the amount of “stretch” of the difference 
between A and B signals when the difference is small (i.e. likely to be heterozygous), vs. 
the difference between A and B signals when the difference is large (i.e. likely to be 
homozygous), thus K can be used to balance the variability in homozygous and 
heterozygous genotypes and remove any heterozygous dropout.  By experimentation 
across several data sets, we ascertained that the value K=4 worked well to balance the 
variation of genotype clusters (figure 2d). 
 
While many other transformations of the data could be used, this space worked well for 
clustering genotypes while avoiding heterozygous dropout.  We therefore implemented 
this as “Contrast Center Stretch” (CCS) option within the software, and cluster in this 
transformed signal space. 
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Figure 3: Examples of the Cluster Center Stretch (CCS) transformation.  The CCS transformation is 
defined as asinh(K*Contrast)/asinh(K) where Contrast is defined as (SA-SB)/(SA+SB).  The effect of 
the transformation is to stretch contrast values near zero (corresponding to heterozygous genotypes) 
and to compress contrast values near -1 and +1 (corresponding to homozygous genotypes).  Higher 
values of K apply a more extreme transformation, setting K to 1 yields effectively an identity 
transformation.  The value of K can thus be tuned to alter the balance between performance on 
homozygotes and heterozygotes, with higher K values making het calls more likely. 
 

Calling Genotypes 
    
We call genotypes by a template-matching procedure comparing the transformed allele 
signal values observed in an experiment to the typical values (prototype) we expect for 
each genotype.   The genotype that is closest in typical value is the one that is assigned (a 
minimum distance classifier).  The approximate confidence we have in that call is based 
on the ratio of the nearest prototype to the second nearest prototype.  This allows us to 
rank the genotype assignments by quality, and hence make the decision not to call in 
cases of ambiguity. 
 
Every SNP is expected to have three genotypes, “AA”, “AB”, and “BB”.  For each 
genotype for a given SNP, we expect to have a prototype (typical observed values for that 
genotype, or cluster center), with some scatter of values around the prototype.   We 
approximate the scatter by a multidimensional normal distribution (and the careful choice 
of the CCS transformation ensures this is a good approximation).  For clusters of this 
type, the standard method of evaluating the distance from the cluster center (prototype) to 
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a test point is to use the Mahalanobis distance.  The Mahalanobis distance takes into 
account the variation (and covariation) in the cluster along each axis, and is defined by 
sqrt[(x-µ)t Σ-1(x-µ)]  where µ is the cluster center, x is the test value, and Σ is the 
variance-covariance matrix describing the multidimensional normal of the cluster. 
 
So, within any experiment, we derive transformed values x for a SNP and compare to the 
three cluster centers µAA, µAB, and µBB with covariance matrices ΣAA, ΣAB and ΣBB, 
obtaining distances dAA, dAB and dBB.  We call the genotype of the SNP as the genotype 
with the smallest such distance.  In our clustering space, each prototype consists of two 
components – a center and a variance.  The center component consists of a mean Contrast 
and Strength for the cluster, µG= (ContrastG,StrengthG) where G denotes the genotype.  
The variance component is a 2x2 variance-covariance matrix ΣG = (σ1,1, σ1,2, σ2,1, σ2,2), 
and is symmetric with σ1,2 = σ2,1.  The distance dG is computed as defined above. 
 
The confidence we assign to this call is d1/d2, where d1 is the smallest distance of the 
three and d2 is the second-smallest distance.  This confidence is always between zero and 
1.  It is a rough measure of the quality of the call (but is not a “p-value”).  We set a 
threshold for quality of 0.5 for a call/no-call decision, based on the performance on 
several test data sets.  This can be adjusted by the user to tune the tradeoff between call 
rate and accuracy – see the results section for a comparison of performance at various 
thresholds. 
 
The next section describes how we learn the prototypes and their variation for each SNP 
from the data. 
 
 
Estimating Cluster Centers and Variances 
 
The above section dealt with how to call genotypes and ascribe confidence values to 
those calls given an appropriate prototype.  This section deals with how to derive these 
prototypes. 
 
This is achieved in an ad-hoc Bayesian procedure, where we start by deriving a generic 
prior describing genotype clusters and centers for the ‘typical’ SNP, and then visit each 
SNP in turn, combining the generic SNP prior with initial genotype estimates for the 
specific SNP to derive a posterior estimate of cluster centers and variances.  This 
posterior estimate is what is then used in the manner described in the previous section to 
call genotypes.  Figure 4 provides a couple of examples of SNPs to which this procedure 
has been applied. 
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Figure 4: Examples of SNP clustering in action.  The samples and SNPs here are part of HapMap 
and so we have an independent estimate of the genotype for each case, indicated by the color of each 
point (red=AA, blue=AB, green=BB).  In each plot the prior estimates of cluster centers and variance 
are indicated in the light gray x’s and ellipses.  Note that because we are using here a generic prior 
for all SNPs the prior is the same for both examples.  The cluster centers and variances from the 
observed data as estimated by using DM with a stringent 0.17 threshold for seeding are indicated by 
the black x’s and the black ellipses.  The posterior estimates of cluster centers and variances are 
indicated by the magenta x’s and ellipses.  In all cases the ellipses extend to a Mahalanobis distance 
of 2 from the cluster center.  One thing to note is that in both SNPs the heterozygote and major 
homozygote clusters the posterior estimate is essentially the same as the estimate provided by the 
data, which is what we would want – there is sufficient data available for these clusters that the prior 
is overridden.  For the minor homozygotes the posterior estimate is more strongly influenced by the 
prior as there are few data available for this rare genotype.  A second thing to note is that this 
clustering approach is comfortably handling the phenomenon of unequal allele signals for A and B 
alleles – particularly in the case of the SNP on the left which is quite shifted from the ideal 
heterozygotes contrast value of zero. 
 
To start the process we need to seed with some initial genotype estimates from which to 
build the generic prior.  We have an excellent candidate in the existing DM approach 
which we use with a highly-stringent confidence threshold of 0.17 to determine initial 
genotype calls.  Note that in this use of DM calls for a starting point there is still an 
indirect reliance on the MM probes, however we have demonstrated that it is possible to 
get sufficiently good initial estimates without requiring MM probes so it is feasible to 
make new chip designs with at least half the number of probes.  With these initial calls in 
hand we then take a random sample of 10,000 SNPs and scan through them to identify 
SNPs which each have at least 2 initial DM calls (the minimum requirement to have a 
variance estimate for each genotype).  Note this places a requirement of an absolute 
minimum of 6 samples to run together, though in practice it is generally better to have 
more (discussed in more detail below).  The use of a random sample of SNPs allows for 
faster and more memory efficient processing – only a small subset of the probe intensities 
needs to be loaded and analyzed.  The random sampling is formally a simple random 
sample from all SNPs on the chip and is implemented in a deterministic fashion so that 
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re-analyzing the same data at a different time or on a different operating system will yield 
the same results.  This result of this step is typically ~5,000 SNPs (depending on sample 
size and genetic diversity) which are then used to derive the generic SNP prior.   
 
What we loosely term the generic prior consists of a 4 components: 

m The 6-dimensional vector of the average cluster center coordinates across 
SNPs (6 free parameters) 

M The 6x6 variance-covariance matrix of cluster center coordinates across 
SNPs with entries mi,j (21 free parameters) 

S The block-diagonal 6-dimensional variance-covariance matrix of within-
genotype transformed allele signal estimates with entries si,j (9 free 
parameters: 3 genotypes each with a variance term in each of the two 
transformed allele signal dimensions and one variance-covariance term) 

p The ‘effective number of observations’ or ‘pseudo-count’ associated with 
the variance estimate S.  We supply this as a predetermined value (default 
is 40) rather than estimating it from the data.  Results are quite insensitive 
to the setting of this parameter. 

 
In total, the generic prior consists of 36 parameters estimated from thousands of SNPs, 
and one parameter p, which is set up-front.  This generic prior can be derived on-the-fly 
within the dataset being analyzed or can be derived up-front from a previous dataset and 
applied to a new one.  We have tried out both ways and found that there is generally little 
difference between either approach, provided the dataset used to generate the prior is 
similar in terms of overall call rates to the dataset to which it is applied, however if the 
datasets have overall very different levels of performance applying the prior generated 
from one dataset to the other can lead to sub-optimal (though still very good) 
performance.  The recommended default is to estimate the generic prior on-the-fly, 
though it is quite likely that future work will find improved modes of running which 
involve a workflow where parameters are estimated in a large training dataset up-front. 
 
Having estimated the generic prior, the next step is to visit each SNP in turn to combine 
the prior with whatever DM initial estimates may be available for the particular SNP to 
come up with a posterior estimate for cluster centers and variances.  To set up some 
notation, we have the following SNP-specific quantities: 
 

Observed data for the given SNP 
v The 6-dimensional vector of the cluster center coordinates, estimated as 

the average transformed intensity value within each genotype.  Some or all 
of these entries may be null if there are no DM initial estimates of one or 
more of the 3 genotypes. 

W The 6x6 block-diagonal variance-covariance matrix of within-genotpe 
variances and covariances.  The entries of the matrix are wi,j with wi,j = 0 
for |i-j| > 1.  Some or all of these entries may be null if there are not at 
least 2 DM initial estimates of one or more of the 3 genotypes. 
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N A 6x6 diagonal matrix with entries (nAA, nAA, nAB, nAB, nBB, nBB), the 
number of DM initial estimates for each of the 3 genotypes. 

SNP-specific posterior estimates 
µ The 6-dimensional posterior estimate of cluster center coordinates to be 

used in the prototype for calling genotype estimates. 
Σ The 6x6 block-diagonal estimate of within-genotype variances of 

transformed allele signal estimates.  The entries of the matrix are σi,j with 
σi,j = 0 for |i-j| > 1. 

 
Having set up this notation, the posterior estimates are derived as a two-step process.  
Firstly we obtain a posterior estimate of the 9 non-zero parameters in S by doing point-
wise shrinkage towards the prior estimate, using an effective number of observations p 
which is chosen up-front: 
 
 σi,j =  ((ni,j-1) wi,j + p si,j) / ((ni,j-1) + p) 
 
This Bayesian update has the intuitively sensible property that when there is little or no 
data available for a genotype within a SNP (ni,j small) the variance-covariance matrix to 
be used for the genotype will be predominantly driven by the typical variance-covariance 
that we see across most SNPs.  Conversely, if there is abundant information for a 
particular genotype of a SNP (ni,j large) there will be little reliance on the prior and the 
estimate will be primarily based on data specific to the SNP.  The point of transition 
between the reliance on prior and observed is tuned by the number of pseudo-
observations, p.  We have found that overall performance is insensitive to the setting of p, 
though it is possible that it may have a larger effect on certain genotypes, such as rare 
genotypes.  The recommended default value for p is 40. 
  
The final step is to come up with a posterior estimate of the cluster centers, µ.  We make 
the assumption that cluster variances are independent of the centers.  The update rule is 
 

 µ = (M-1 + (NS)-1)-1 (M-1m + (NS)-1v) 
 
Again, this has the intuitively sensible property that when there is little or no labeled data 
available the estimate of cluster centers will be driven mainly by the prior estimate m, 
and when there is a lot of data available for a given genotype the estimate will be driven 
by v.  Loosely speaking, this update rule has the form of a weighted average of the prior 
and observed data, with the prior having weight inversely proportional to M, the 
variance-covariance matrix of cluster centers in the SNPs used to build the prior, and the 
observed data for the particular SNP having weight inversely proportional to NS, a 
product of the number of observations and the variance in the observed data. 
 
With these posterior estimates of center and spread for each cluster, genotypes and 
confidences are then determined as outlined in the previous section. 
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Special Cases 
 
The preceding algorithm assumes that the observations for each SNP are well described 
by prototypes for each genotype.  However, for SNPs on the X chromosome, there are 
distinct clusters for each gender due to males having one fewer copy of the X 
chromosome.  This not only changes the location of the cluster centers for XY 
individuals, but the SNPs located on chrX may end up being called as heterozygote.   We 
therefore treat the chrX SNPs differently for XX individuals than for XY individuals.  
Note that the special treatment of chrX SNPs described here is only applied to SNPs on 
chrX in the nono-pseudo-autosomal region, and for the rest of this section when we talk 
about chrX it is to be interpreted as chrX excluding the pseudo-autosomal region 
 
We detect the difference between XY and XX individuals by the seed calls from DM.  
XY individuals are estimated as those having heterozygosity less than 7.5% on chrX.  
The remaining individuals are classified as XX.   For each chrX SNP, we treat XX 
individuals and XY individuals as separate data sets. 
 
XX individuals are handled using the standard BRLMM methodology for all chrX SNPs, 
that is, three cluster centers are learned from the data along with covariance matrices and 
used to classify observations.  However, no data from XY individuals is used in this 
calculation. 
 
XY individuals are handled using a modification of the BRLMM methodology for all 
chrX SNPs.  Only two cluster centers can be learned from the data (AA and BB), and 
only the data for the XY individuals are used.  Therefore the following modifications are 
performed.  First, only DM homozygous calls are used to seed the learning procedure that 
estimates cluster centers.   This provides approximate locations for the homozygous 
prototypes for the SNP-specific clustering.   
 
Second, we modify the heterozygous cluster for the generic prior to remove it from the 
range of typical data (this is to avoid having special-purpose code for two or three 
prototypes).  This surgery removes any reasonable possibility of making a heterozygous 
call in an XY individual.   The modification moves the heterozygous prototype to 
(Contrast=0, Size = -Infinity), and modifies the heterozygous prototype covariance 
matrix to be (0.01, 0, 0, 0.01).  The covariance with the other cluster prototypes in the 
prior is set to be zero.  This removes any influence the heterozygous cluster has on the 
homozygous clusters, and vice versa.   Thus, for XY individuals, only “AA” and “BB” 
genotypes are fit, and for any real observed data, “AB” will never be called. 
 
Fitting of XX and XY individuals separately improves the genotyping performance 
within each group.  Modifying the prior for XY individuals to avoid heterozygous calls 
improves the genotyping performance for XY individuals.  This is the justification for 
having a special purpose modification for chrX SNPs within BRLMM.   
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Results 
 
The ideal way to assess performance would be to evaluate the tradeoff between accuracy 
and call rate in data generated from a collection of samples for which the true reference 
genotypes are available for all SNPs on the Mapping 500K set.  Fortunately something 
closely approximating this has been made possible by the International HapMap 
Consortium – the phase 2 release provides reference calls on a collection of 270 samples 
for approximately 70% of the SNPs on the Mapping 500K set.  This constitutes an 
excellent resource for the performance evaluation; though it is important to bear in mind 
the caveat that the genotype calls in HapMap themselves do have some small but non-
zero error rate.  Additionally, the HapMap samples consist of some trios, enabling the 
evaluation of Mendelian inheritance error rates.  Finally, we also look at reproducibility 
of genotype calls on sample replicates. 
 
For evaluation of call rates, accuracy and Mendelian inheritance error rate we use a 
collection of HapMap samples generated by a customer of the Mapping 500K product.  
This dataset consists of 66 HapMap samples – 33 CEPH Caucasian samples and 33 
African (Yoruban) samples.  All 66 of the samples meet the Mapping 500K product 
specification of 93% call rate with DM at a confidence threshold of 0.33.  We use as the 
gold standard calls from HapMap release 20 after excluding any calls submitted to 
HapMap by Affymetrix (to reduce risk of positive bias in performance estimates).  We 
also swapped the A↔B naming convention for 70 HapMap SNPs for which the allele 
names were clearly swapped (SNPs for which the per-SNP accuracy jumped from below 
10% to above 90% when alleles were swapped).  To account for the fact that one can 
adjust the confidence threshold to trade off between call rate and accuracy we look at 
performance at all possible thresholds and plot the relationship between HapMap 
concordance and no-call rate, as shown in Figure 5.  The figure demonstrates the 
significant improvement in both call rate and accuracy comparing BRLMM with DM.  
Moreover, looking at the performance curves broken out by the type of the reference call 
(homozygous or heterozygous) we also see that BRLMM makes a large reduction in the 
performance differential between the two classes.  Table 1 presents performance for DM 
and BRLMM at various thresholds combining performance across the Nsp and Sty chips.  
We have set the default BRLMM threshold to 0.5, it can be tuned for higher call rates or 
higher accuracy according to what will better suit the requirements of downstream 
analysis. 
 
 
The performance improvement seen on the dataset as a whole is also seen consistently 
across all samples, as can be seen in figure 6.   
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Figure 5: Performance of BRLMM and DM on HapMap samples for Nsp (left) and Sty (right) chips.  
Concordance with HapMap is assessed for all possible confidence thresholds for each genotype 
calling method and the resulting concordance with HapMap reference calls is plotted against the no-
call rate.  The ideal method and data would consist of a curve that reaches the top-left of each plot, 
corresponding to 100% accuracy at 100% call rate.  Results for BRLMM and DM are presented in 
solid and dashed lines respectively.  The dot on each curve indicates the performance at the default 
confidence threshold (0.5 for BRLMM, 0.33 for DM).  There are two main points to make about the 
results – firstly, BRLMM provides a significant improvement in overall call rate and overall 
accuracy compared to DM (red curves).  Secondly, BRLMM has markedly more even performance 
on homozygote (green curve) and heterozygote (blue curve) genotypes than DM, which has notably 
lower performance on heterozygotes.. 
 
 

Figure 6: Comparison of per-sample call rates between BRLMM (at 0.5) and DM (at 0.33).  Results 
on the left are for Nsp and on the right are for Sty.  BRLMM improves call rates in all cases.  In 
absolute terms the performance improvement is larger for lower call rate samples though when 
viewed as a fold-reduction in no-call rate we see a fairly consistent 2/3 reduction in no-call rate 
relative to DM at 0.33.  The call rates are very correlated whichever method is used, which indicates 
that while BRLMM improves performance overall there is an intrinsic ranking to the samples 
whereby the results for some samples are better than others regardless of how they are analyzed. 
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Performance with respect to HapMap reference samples has been evaluated in this 
manner on other datasets of varying degrees of quality and we find that the call rate 
improvement can be characterized as a consistent 2/3 reduction in no-call rate going from 
DM at a threshold of 0.33 to BRLMM at a threshold of 0.5.  At the same time we 
consistently find about a 0.1% increase in HapMap concordance going from DM at its 
more stringent threshold of 0.26 to BRLMM at a threshold of 0.5. 
 
 
 

 
Table 1: Performance on HapMap dataset for DM and BRLMM at various fixed thresholds.  Results 
are based on combining the Nsp and Sty chips.  At the default confidence of 0.5, BRLMM achieves 
approximately a 2/3 reduction in no-call rate over DM at a threshold at 0.33, a finding that has been 
consistently observed on a variety of datasets.  At the same time it achieves an improvement of about 
0.1 % in HapMap concordance compared to DM at a more stringent threshold of 0.26, or about 
0.2% compared with DM with threshold at 0.33.  The other big improvement of BRLMM is the large 
reduction in call rate and accuracy differences between homozygotes and heterozygotes.  In the 
evaluation of concordance on homozygotes we found on the order of 25 SNP which exhibited what 
appeared to be ‘allele swap’ where the concordance with HapMap genotypes was extremely low (on 
the order of 20% or less) but which jumped to very high (90% or more) when the A and B alleles 
were swapped – we attribute such SNPs to errors in HapMap and swap the alleles before reporting 
final accuracy. 
 
 
One caveat about evaluating concordance with HapMap is that to some extent it provides 
only a lower bound estimate for accuracy, since HapMap itself does have a certain error 
rate.  With this in mind, it is useful to look at alternative measures of performance.  The 
dataset used here contains (father,mother,child) trios of samples which can be assessed 
for Mendelian consistency.  The Mendelian accuracy is estimated looking only at 
informative trios (those in which we have a call for all three samples where the parents 
are not both called heterozygous), call this number T.  If the number of such trios which 
exhibit a Mendelian inconsistency is E then the Mendelian accuracy is estimated as (T-
E)/3T, which is based on the assumption that when there is an inconsistency in a trio that 
it is only one of the three calls which is in error the vast majority of the time.  Measured 
in this manner we find that the Mendelian accuracy using DM at a confidence threshold 
of 0.33 is 99.83%, increasing to 99.93% using BRLMM at a confidence threshold of 0.5 
(approximately a 2-fold reduction in Mendelian error rate). 
 

Method Confidence 
Threshold 

Overall 
Call 
Rate 

Hom 
Call 
Rate 

Het Call 
Rate 

Overall 
Concordance 

Hom 
Concordance 

Het 
Concordance 

DM 0.26 94.16% 97.24% 86.32% 99.15% 99.39% 98.38% 
DM 0.33 95.96% 98.24% 90.16% 98.94% 99.27% 97.93% 

BRLMM 0.3 97.40% 97.40% 97.75% 99.40% 99.34% 99.55% 
BRLMM 0.4 98.27% 98.30% 98.48% 99.31% 99.25% 99.47% 
BRLMM 0.5 98.79% 98.82% 98.93% 99.26% 99.20% 99.40% 
BRLMM 0.6 99.15% 99.18% 99.25% 99.17% 99.11% 99.33% 
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The final metric of performance we evaluate is reproducibility on sample replicates.  
Arguably this metric is less useful than those above since it only reports on the 
consistency of calls made but not on whether or not those calls are actually correct.  
Nevertheless, other things being equal a reproducible method will generally be preferable 
to one that isn’t.  We evaluate reproducibility on a different set of HapMap samples 
which includes 7 samples each replicated twice.  Within this dataset we find that the 
reproducibility of DM calls at a threshold of 0.33 is 99.77%, which improves to 99.85% 
when calls are made with BRLMM at the default threshold of 0.5. 
 
 
Discussion 
 
BRLMM provides a significant improvement over DM method, raising call rates, 
accuracy and just as importantly, establishing balanced performance between 
homozygotes and heterozygotes.  As a multiple-chip method it has some extra 
considerations which need to be taken into account in practice. 
 
One matter to consider is the batch size in which to apply BRLMM.  While more samples 
will generally lead to better performance, we have found that for good datasets 
performance reaches a plateau with as few as 50 samples, whereas for lower-quality 
datasets it can take as many as 100.  The working definition of ‘good’ used here is a 
dataset with an average call rate of 95% using DM at a threshold of 0.33, and for ‘lower-
quality’ we mean a dataset with an average call rate of 93% using DM at a threshold of 
0.33 (of course these call rates increase when called with BRLMM).  When we talk about 
numbers of samples we really mean number of distinct DNAs analyzed – a dataset 
consisting of many replicates of the same sample may not have sufficient genetic 
diversity to build the prior.  Note that with the default settings BRLMM requires at least 
two observations of each genotype to build the prior, so the absolute minimum number of 
samples required is 6, though running with this small a number is not advised. 
 
Another consideration is the extent to which datasets can be combined.  On the one hand 
this should help in terms of increasing the number of observations, particularly for rare 
genotypes, thereby improving the performance on rarer genotypes.  On the other hand, 
the validity of combination of datasets will depend on the degree to which the combined 
datasets have the same underlying probe intensity distribution, probe effects, cluster 
centers and cluster variances.  We have found that combination of datasets from different 
labs can change performance slightly in either direction, and understanding the criteria 
under which it will and won’t succeed remains an area of future work. 
 
The main differences between BRLMM and the previously-developed RLMM [2,3,4] 
method lie in the clustering space transformation and in the estimation of cluster centers 
and variances.  There are a number of other potential improvements which have been or 
are in the process of being evaluated.  Though some of them are enabled in the software 
implementing the BRLMM method these features are not part of the default 
recommended workflow as they have not been as thoroughly tested, but it is conceivable 



BRLMM: an Improved Genotype Calling Method for the GeneChip® Human Mapping 500K Array Set 
Revision Date: 2006-04-14 
Revision Version: 1.0 

  

 
Page 17 of 18 

that these approaches or some modification of them may lead to further improvement in 
future.  These are: 
 

Robustness in estimation of cluster properties: The presence of an outlier value 
can have a large effect on the center and variance estimated for a given 
genotype cluster and it is possible that introduction of robust estimates of 
center and spread may improve performance in such circumstances, 
however we have so far found that robust estimates have little effect on 
overall performance and can have a large effect on the balance of 
performance between homozygotes and heterozygotes. 

SNP fragment normalization:  It has been shown for the Mapping 100K product 
that there can be notable biases in fragment amplification in the WGSA 
assay and that they can be successfully normalized, leading to a large 
reduction in noise [5,6].  We have found that similar approaches can 
benefit in the evolution of the WGSA assay used for the Mapping 500K 
product and it is possible that this will tighten the clusters for some 
datasets. 

Alternative metrics of quality: We have found that a genotype call threshold 
based on a method suggested in [7] can lead to a slightly better tradeoff 
between call rate and accuracy – the idea is that instead of using the ratio 
of smallest to second-smallest Mahalanobis distances one uses 
(Mahalanobis distance)2 + log(|Σ|) + log(prior probability of being in 
cluster).  Given more testing this metric may turn out to do even better. 

Analysis of a single sample at a time: It would be a great practical convenience 
to be able to attain the same performance improvement running only a 
single sample at a time.  Single-sample analysis is typically logistically 
and computationally more convenient, especially when used in a high-
throughput environment.  This is possible if one can safely make 
assumptions about the applicability of previously-computed quantities to 
each newly-generated chip: the probe intensity distribution to which 
intensities should be normalized, the estimated probe effects, and the SNP-
specific cluster centers and variances.  We have found that these 
assumptions do hold approximately and some of this functionality is 
enabled in the software implementing BRLMM but the area needs more 
work. 

Treatment of strand information:  The current approach ignores the available 
information about the strand from which each probe is selected, relying on 
the assumption that beyond the usual probe-specific effects there is no 
overall difference between the two strands.  The majority of the time this 
appears to be a reasonable assumption but there are some cases where it is 
clear that the probes for one of the strands are providing limited or even 
conflicting information.  It is likely that an approach that allows for 
different treatment of the two strands may extract a little more 
performance out of such SNPs. 
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Adaptive homozygous/heterozygous balancing.  We have chosen a default 
value of K, the tuning parameter in the allele signal transformation, which 
achieves an optimal hom/het performance balance in various datasets used 
for training but have found that in test datasets although it always yields a 
large reduction in the hom/het discrepancy as compared to DM, it isn’t 
always optimal.  An area for future work is to adaptively estimate K or to 
use some suitably parameterized alternative transformation to further 
minimize any hom/het discrepancy. 

 
Finally, though the BRLMM method on the Mapping 500K set provides a very 
significant performance improvement, the existing DM method is still an important part 
of the workflow.  BRLMM can only be run in multiple-chip mode (at least for now), and 
in a typical high-throughput environment one needs the instant performance metric 
provided by the DM call rate that can be applied to each chip in turn to decide in real-
time if a sample needs to be re-hybridized or re-done. 
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