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Abstract

We use high-density single nucleotide polymorphism (SNP) genotyping microarrays to demonstrate the ability to accurately
and robustly determine whether individuals are in a complex genomic DNA mixture. We first develop a theoretical
framework for detecting an individual’s presence within a mixture, then show, through simulations, the limits associated
with our method, and finally demonstrate experimentally the identification of the presence of genomic DNA of specific
individuals within a series of highly complex genomic mixtures, including mixtures where an individual contributes less than
0.1% of the total genomic DNA. These findings shift the perceived utility of SNPs for identifying individual trace contributors
within a forensics mixture, and suggest future research efforts into assessing the viability of previously sub-optimal DNA
sources due to sample contamination. These findings also suggest that composite statistics across cohorts, such as allele
frequency or genotype counts, do not mask identity within genome-wide association studies. The implications of these
findings are discussed.

Citation: Homer N, Szelinger S, Redman M, Duggan D, Tembe W, et al. (2008) Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex
Mixtures Using High-Density SNP Genotyping Microarrays. PLoS Genet 4(8): e1000167. doi:10.1371/journal.pgen.1000167

Editor: Peter M. Visscher, Queensland Institute of Medical Research, Australia

Received December 7, 2007; Accepted July 15, 2008; Published August 29, 2008

Copyright: ! 2008 Homer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding:We wish to provide acknowledgement of funding from NIH (U01 HL086528 DWC, DAS, JVP, and NH), the Stardust foundation (DWC), and the University
of California Systemwide Biotechnology Research & Education Program GREAT Training Grant 2007–10 (NH), and support of the NIH Neuroscience Microarray
Consortium. This study makes use of data generated by the Wellcome Trust Case Control Consortium. A full list of the investigators who contributed to the
generation of the data is available from www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 076113. We wish to provide
acknowledgement for the computing resources for our simulations provided by James Lowey and the Translational Genomics Research Institute (TGen) High
Performance Bio Computing (HPBC) Center.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dcraig@tgen.org

Introduction

Resolving whether an individual’s genomic DNA is present at
trace amounts within a complex mixture containing DNA from
numerous individuals is of interest to multiple fields. Within
forensics, determining whether a person contributed their DNA to
a mixture is typically a manual process that requires extensive
experience and careful training. Furthermore, different laborato-
ries can often come to different conclusions due to differences in
methodology or lab intervariability. In large part, forensically
identifying whether a person is contributing less than 10% of the
total genomic DNA to a mixture is not easily done, is difficult to
automate, and is highly confounded with the inclusion of more
individuals. Within the field of forensics, as well as the field of
human genetics, there is a base assumption that it is not possible to
identify individuals using pooled data (e.g. allele frequency) from
SNP data. In this paper we investigate the accuracy of such
assumptions.
Numerous methods examining DNA mixtures currently exist,

most of these addressing mixtures with smaller numbers of
individuals within forensics studies [1–3]. Using short tandem
repeats (STR) is a common method to generate DNA genotyping
profiles and allows for identification of the various alleles and their

relative quantity within the mixture [4–7]. Frequently, STRs on
the Y chromosome are useful when resolving the male
components of the mixture [8]. Nevertheless, these methods based
on STRs expectedly suffer from limited power when using severely
degraded DNA [8,9]. Mitochondrial DNA (mtDNA) based on
hypervariable region sequencing is useful when analyzing
degraded DNA due to its high copy number and improved
stability. Profiles for mtDNA can also be combined with STR
analysis for better identification [10]. Nonetheless, mtDNA has
weaknesses, including the uniparental mode of inheritance and
lower discrimination power that can be moderately mediated by
using the whole mitochondrial genome or known surrounding
single nucleotide polymorphisms (SNPs) [11,12]. Informative
SNPs have been used to help resolve problems with using mtDNA
[11,13,14] but have not been used wholly or separately as the
discriminatory factor, or on the same scale as we propose.
In this study, we assess the feasibility of using hundreds of

thousands of SNPs assayed on a high-density microarray as a
means to resolve trace contributions of DNA to a complex
mixture. High-density SNP genotyping arrays have predominately
been developed as tools for geneticists to identify common genetic
variants that predispose an individual to disease. In the context of
forensic mixtures, SNPs are traditionally analyzed by genotype
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(e.g. AA, AT, or TT) and thought to be non-ideal for resolving
mixtures. In fact, it is argued that their poor performance in the
analysis of mixed DNA samples is one of the primary reasons SNP
genotyping arrays have not become adopted by the forensics
community [8,15]. However, most SNP assays are inherently
quantitative at one or both alleles, requiring a genotype calling
algorithm to digitize the inherently analog information of a SNP
assay [16]. Within this paper, we specifically exploit raw allele
intensity measures for analysis of DNA with mixed samples.
We demonstrate an approach for rapidly and sensitively

determining whether a trace amount (,1%) of genomic DNA
from an individual is present within a complex DNA mixture. We
focus on solving the problem forensically, whereby the problem is
much more difficult due to the multiple sources of experimental
noise that would further mask identification. Our method can be
interpreted as a cumulative analysis of shifts in allele probe
intensities in the direction of the individual’s genotype. Similarly,

we can also interpret our method as measuring the difference of
two distances: the distance of the individual from a reference
population and the distance of an individual from the mixture.
Our method does not require knowledge of the number of
individuals in the mixture and we demonstrate robustness for
discriminating mixtures composed of over a thousand individuals.
We first give a theoretical justification for our method with
modifications for known factors including homogeneity of the
mixture and accuracy of our reference populations. We then
proceed to simulate the effects of three combinations of variables
when using SNP microarrays, including probe measurement noise,
fraction of the person of interest’s DNA in the mixture, and the
number of SNPs probed. Finally in a series of proof-of-principle
experiments using both Affymetrix and Illumina microarrays, we
demonstrate resolving whether an individual is within a series of
complex mixtures (2 to 200 individuals) when the individual
contributes trace levels (at and below 1%) of the total genomic
DNA. We finally discuss the implications of these results in the
context of forensics and population genetics.

Methods

Complex Mixture Constructions
A total of 8 complex mixtures were constructed (See Table 1).

All DNA samples were checked for concentration in triplicates
using the Quant-iT PicoGreen dsDNA Assay Kit by Invitrogen
(Carlsbad, CA). For accuracy, an eight point standard curve was
prepared using Human Genomic DNA from Roche Diagnostics
(Cat#: 11691112001, Indianapolis, IN). The median concentra-
tions were calculated for each individual DNA sample.

Mixtures A1, A2, B1, and B2: Equimolar Mixtures of
HapMap Individuals
Shown in Table 1, two main mixtures (mixtures A and B) were

composed in duplicates resulting in a total of 4 mixtures. Mixture
A was composed of 41 HapMap CEU individuals (14 trios minus
one individual) and mixture B was composed of 47 HapMap CEU
individuals (16 trios minus one individual).

Mixture C1: 90% NA12752 and 10% NA07048
Two CEU males were combined in a single mixture so that one

individual (NA12752) contributed 90% (675 ng) of the DNA in the
mixture, while the other individual (NA07048) contributed only
10% (75 ng) DNA into the mixture by concentration.

Table 1. Mixtures are composed partially of HapMap individuals empirically evaluated on the Illumina 550 K v3, Illumina 450S
Duo, and Affymetrix 5.0 microarrays.

Name Description Illumina Affymetrix

550 K 450S 5.0

Mixture A Equimolar pool. Equimolar mixture of 41 CEU individuals (14 Trios minus one individual) Yes No Yes

Mixture B Equimolar pool. Equimolar mixture of 47 CEU individuals (16 Trios minus one individual) Yes No Yes

Mixture C 2-person mixture. 90% one CEU individual, 10% a second CEU individual Yes No Yes

Mixture D 2-person mixture. 99% one CEU individual, 1% a second CEU individual Yes No Yes

Mixture E Complex mixture. Mixture with 184 individuals at ,0.2% each, and 41 individuals from Mixture A at ,1% each. Yes No No

Mixture F Complex mixture. Mixture with 184 individuals at ,0.2% each, and 47 individuals from Mixture B at ,1% each. Yes No Yes

Mixture G Complex mixture. Mixture with 184 individuals at ,0.2% each, and 41 individuals from Mixture B at ,0.1% each. No Yes No

Mixture H Complex mixture. Mixture with 184 individuals at ,0.5% each, and 47 individuals from Mixture B at ,0.1% each. No Yes No

doi:10.1371/journal.pgen.1000167.t001

Author Summary

In this report we describe a framework for accurately and
robustly resolving whether individuals are in a complex
genomic DNA mixture using high-density single nucleo-
tide polymorphism (SNP) genotyping microarrays. We
develop a theoretical framework for detecting an individ-
ual’s presence within a mixture, show its limits through
simulation, and finally demonstrate experimentally the
identification of the presence of genomic DNA of
individuals within a series of highly complex genomic
mixtures. Our approaches demonstrate straightforward
identification of trace amounts (,1%) of DNA from an
individual contributor within a complex mixture. We show
how probe-intensity analysis of high-density SNP data can
be used, even given the experimental noise of a
microarray. We discuss the implications of these findings
in two fields: forensics and genome-wide association
(GWA) genetic studies. Within forensics, resolving whether
an individual is contributing trace amounts of genomic
DNA to a complex mixture is a tremendous challenge.
Within GWA studies, there is a considerable push to make
experimental data publicly available so that the data can
be combined with other studies. Our findings show that
such an approach does not completely conceal identity,
since it is straightforward to assess the probability that a
person or relative participated in a GWA study.

Resolving Complex Mixtures
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Mixture C2: 90% NA10839 and 10% NA07048
Two CEU individuals, a female and a male, were combined in a

single mixture so that one individual (NA10839) contributed 90%
(675 ng) of the DNA in the mixture, while the other individual
(NA07048) contributed only 10% (75 ng) DNA into the mixture
by concentration.

Mixture D1: 99% NA12752 and 1% NA07048
Two CEU males were combined in a single mixture so that one

individual (NA12752) contributed 99% (742.5 ng) of the DNA in
the mixture, while the other individual (NA07048) contributed
only 1% (7.5 ng) DNA into the mixture by concentration.

Mixture D2: 99% NA10839 and 1% NA7048
Two CEU individuals, a female and a male, were combined in a

single mixture so that one individual (NA10839) contributed 99%
(742.5 ng) of the DNA in the mixture, while the other individual
(NA07048) contributed only 1% (7.5 ng) DNA into the mixture by
concentration.

Mixture E: 50% Mixture A1 and 50% Mixture of 184
Equimolar Caucasians
Two mixtures were combined into a single mixture so that each

of the original mixtures contributed the same amount of genomic
DNA by volume into the final mixture. CAU2 mixture contained
184 Caucasian control individuals obtained from the Coriell Cell
Repository. Mixture A1 was constructed as above and contained
41 CEU individuals.

Mixture F: 50% Mixture B2 and 50% Mixture of 184
Equimolar Caucasians
Two mixtures were combined into a single mixture so that each

mixture contributed the same amount of genomic DNA by volume
into the final mixture. CAU3 mixture contained 184 Caucasian
control individuals obtained from the Coriell Cell Repository.
Mixture B2 was constructed as above.

Mixture G: 5% Mixture A2 and 95% Mixture of 184
Equimolar Caucasians
Two mixtures were combined into a single mixture with

Mixture A2 comprising of 5% of the mixture and the CAU3
comprising of 95% of the mixture. CAU3 mixture contained 184
Caucasian control individuals obtained from the Coriell Cell
Repository. Mixture A2 was constructed as above.

Mixture H: 5% Mixture B1 and 95% Mixture of 184
Equimolar Caucasians
Two mixtures were combined into a single mixture with

Mixture B1 comprising of 5% of the mixture and the CAU2
comprising of 95% of the mixture. CAU2 mixture contained 184
Caucasian control individuals obtained from the Coriell Cell
Repository. Mixture B1 was constructed as above.

Genotyping
Four cohorts were assayed on the Illumina (San Diego, CA)

HumanHap550 Genotyping BeadChip v3, one cohort was assayed
on the Illumina (San Diego) HumanHap450S Duo, and three
cohorts were assayed on the Affymetrix (Emeryville, CA) Genome-
Wide Human SNP 5.0 array, with each cohort being assayed on a
single chip. Probe intensity values were extracted for analysis from
the file folders generated by the BeadScan software for the

Illumina platform, and from Affymetrix GTYPE 4.008 software
for the Affymetrix data, as described in previous studies [6].

Theoretical Derivation of Test-Statistic
We recognize there are multiple approaches to derive a test-

statistic to evaluate the hypotheses that a person is within a
mixture, and these are discussed further in later sections. In this
primary approach we take a frequentist rather than a Bayesian
approach, recognizing that both are possible and each has unique
advantages.
An overview of our approach is described in Figure 1, and this

method can be summarized as the cumulative sum of allele shifts
over all available SNPs, where the shift’s sign is defined by whether
the individual of interest is closer to a reference sample or closer to
the given mixture. We first introduce our method in terms of
genotyping a given SNP for a single person, which addresses the
original design of SNP genotyping microarrays for the field of
human genetics. We then proceed to adapt our method for
mixtures and pooled data.
Current genotyping microarray technology can assay millions of

SNPs. Genotypes are expected to result from an assay and data is
categorical in nature, e.g. AA, AB, BB, or NoCall where A and B
symbolically represent the two alleles for a biallelic SNP. However,
as evident from copy number, calling algorithm, and pooling-
based GWA studies [6,17], raw preprocessed data from SNP
genotyping arrays is typically in the form of allele intensity
measurements that are proportional to the quantity of the ‘‘A’’ and
‘‘B’’ alleles hybridized to a specific probe (or termed features) on a
microarray [16]. Individual probe intensity measurements are
derived from the fluorescence measurement of a single bead (e.g.
Illumina) or 5 micron square on a flat surface (e.g. Affymetrix). On
a genotyping array, multiple probes are present per SNP at either
a fixed number of copies (Affymetrix) or a variable number of
copies (Illumina). For example, recent generation Affymetrix
arrays typically have 3 to 4 probes for the A allele and B allele
respectively, whereas Illumina arrays have a random number of
probes averaging approximately 18 probes per allele. With
500,000+ SNPs, there are millions of probes (or features) on a
SNP genotyping array. One should note that there are
considerably different sample preparation chemistries prior to
hybridization between SNP genotyping platforms and thus probes
behave differently on the respective platforms.
Before we discuss resolving mixtures, we summarize ‘genotype

calling’ in the context of data from a single individual at a single
SNP. SNP genotyping algorithms typically begin by transforming
normalized data into a ratio or polar coordinates. For simplicity,
we will utilize a ratio transformation Yi=Ai/(Ai+kiBi), where Ai is
the probe intensity for the A allele and B is the probe intensity for
the B allele for the jth SNP. Multiple papers have shown that Yj
transformation approximates allele frequency, where kj is the SNP
specific correction factor accounting for experimental bias and is
easily calculated from individual genotyping data [6,17]. Thus
with this transformation, Yi is an estimate of allele frequency
(termed pA) for each SNP. Since most individuals contain two
copies of the genome for autosomal SNPs, values for the A allele
frequency (pA) in a single individual may be 0%, 50%, or 100% for
the A allele at AA, AB, or BB, respectively. Equivocally Yi will be
approximately 0, 0.5, or 1, varying from these values due to
measurement noise. By example and assuming kj=1, probe
intensity measurements of Aj=450 and Bj=550 yield Yj=0.45 and
this SNP would be likely called AB. For a single individual, we thus
expect to see a trimodal distribution for Y across all SNPs since
only AA, AB, or BB genotype calls are expected. However, in a
mixture of multiple individuals, the assumptions of the genotype-
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calling algorithm are invalid, since only AA, AB, BB, or NoCall
are given regardless of the number of pooled chromosomes.
However, this does not prevent us from extracting information

and meaning from the relative probe intensity data. In our
approach, we compare allele frequency estimates from our
mixture (termed M, where Mi=Ai/(Ai+kiBi)) to estimates of the
mean allele frequencies of a reference population. The selection of
the reference population is important and will be discussed later.
For now, we assume that the reference population has a similar
ancestral make-up as that of the mixture. We refer to having
similar population substructure, ethnicity, or ancestral components
interchangeably, and define similar ancestral components for an
individual or mixture as having similar allele frequencies across all
SNPs. We let Yi,j be the allele frequency estimate for the individual
i and SNP j, where Yi,jM{0,0.5,1}, from a SNP genotyping array.
We then compare absolute values for two differences. The first
difference |Yi,j2Mj| measures how the allele frequency of the
mixture Mj at SNP j differs from the allele frequency of the
individual Yi,j for SNP j. The second difference |Yi,j2Popj|
measures how the reference population’s allele frequency Popj
differs from the allele frequency of the individual Yi,j for each SNP
j. The values for Popj can be determined from an array of
equimolar pooled samples or from databases containing genotype
data of various populations. Taking the difference between these
two differences, we obtain the distance measure used for individual
Yi:

D Yi,j

! "
~ Yi,j{Popj
## ##{ Yi,j{Mj

## ## ð1Þ

Under the null hypothesis that the individual is not in the
mixture, D(Yi,j) approaches zero since the mixture and reference
population are assumed to have similar allele frequencies due to
having similar ancestral components. Under the alternative
hypothesis, D(Yi,j).0 since we expect that the Mj is shifted away
from the reference population by Yi’s contribution to the mixture.
In the case of D(Yi,j),0, Yi is more ancestrally similar to the
reference population than to the mixture, and thus less likely to be

in the mixture. Consistent with the explanation of Figure 1, D(Yi,j)
is positive when Yi,j is closer toMj and D(Yi,j) is negative when Yi,j is
closer to Popj. By sampling 500 K+ SNPs, one would generally
expect D(Yi,j) to follow a normal distribution due to the central
limit theorem. In our analysis, we take a one-sample t-test for this
individual, sampled across all SNPs, and thus obtain the test
statistic:

T Yið Þ~ E D Yið Þð Þ{m0
SD D Yið Þð Þ=

ffiffi
s

p ð2Þ

In equation (2) we assume m0 is the mean of D(Yk) over
individuals Yk not in the mixture, SD(D(Yi)) is the standard
deviation of D(Yi,j) for all SNPs j and individual Yi, and s is the
number of SNPs. We assume m0 is zero since a random individual
Yk should be equally distant from the mixture and the mixture’s
reference population and so T Yið Þ~ E D Yið Þð Þ

SD D Yið Þð Þ=
ffiffi
s

p . Under the null
hypothesis T(Yi) is zero and under the alternative hypothesis
T(Yi).0. In order to account for subtle differences in ancestry
between the individual, mixture, and reference populations among
other biases we normalize our allele frequency estimates to a
reference population.

Ancestry and Reference Populations
Different populations will have different mean SNP allele

frequencies based on ancestry, admixture, and population
bottlenecks. An obvious assumption of this type of analysis is that
the reference population must be either (a.) accurately matched in
terms of ancestral composition to the mixture and person of
interest or (b.) limited to analysis of SNPs with minimal (or known)
bias towards ancestry. It is first important to recognize that any
single SNP will have only a small effect on the overall test-statistic.
Moreover, it is realistic that ancestry of the reference population
could be determined by analysis of a small subset of SNPs,
followed by analysis of a person’s contribution to the mixture with
a separate set of SNPs (recognizing that nearly 500,000 SNPs are
assayed). In the absence of SNP-specific ancestral information

Figure 1. To give insight into the intuition behind our method, we present for a given SNP three different scenarios for the possible
allele frequency of the person of interest corresponding to the genotypes AA, AB, and BB. The allele frequencies of the reference
population, person of interest, and the mixture are described as Mi, Yi, and Popi respectively. We see that the distance measure is greater (and
positive) when the Yi of the person of interest is closer to the Mi of the mixture than to the Popi of the reference population. Similarly, the distance
measure is smaller (and negative) when the Yi of the person of interest is closer to the Popi of the reference population than to Mi of the mixture. Our
test statistic is then the z-score using this distance measure.
doi:10.1371/journal.pgen.1000167.g001
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towards allele frequency as was assumed in our study, we can also
use normalization methods that leverage the fact that we have
assayed hundreds of thousands of SNPs and consequentially have
largely sampled the distribution of the test-statistic. In essence, we
fit the test-statistic to a second reference population matched to the
individual of interest to account for ancestry differences that do not
effect the overall distribution of allele frequencies. Thus under the
assumption of similar test-statistic distributions, normalizing SNP
data from the mixture to a reference population reduces the effect
of systematic biases on allele frequency from the microarray or, to
an extent, towards ancestry at a cost of power.
While not necessary in this study, the effect of ancestry on allele

frequency could be more directly managed by SNP selection
combined with extensive allele frequency data across multiple
ancestrally diverse populations. Ideally, one would use a subset of
SNPs to identify ancestry of the individual and then match them to
a reference population. Moreover, SNPs that are stable for allele
frequency across populations (low Fst) or at have a common
distribution of allele frequencies would be preferable. Identifying
such a set of SNPs and more appropriately considering ancestral
biases are reserved for future database studies whereby genotype
data of an ancestrally diverse set of individuals is available.

Software
Pre-compiled UNIX binaries are available for a software

implementation of our method and can be found at http://
public.tgen.org/dcraig/deciphia. Our software is able to run
analysis using raw data from either Affymetrix or Illumina or by
using genotype calls. The software is also able to normalize our test
statistic using the reference population and/or adjust the mean test
statistic using a specified individual. Additionally, the user can
restrict the SNPs considered to a subset of the total available SNPs.
For raw input data we are able to match the distribution of signal
intensities for each raw data file to that of the mixture input file
(see platform specific analysis). Finally, multiple test statistics and
distance calculations are implemented including our original test
statistic, Pearson correlation, Spearman rank correlation and
Wilcoxon sign test.

Platform Specific Analysis
With the Affymetrix platform we were able to use genotypes for

each individual and found similar results with the Illumina
platform. Additionally, we were able to use the raw CEL files from
the HapMap dataset [18] found at http://www.HapMap.org. To
overcome the differences in distribution of signal intensity between
CEL files, we matched the distribution of the signal intensities to
the distribution of the mixture’s CEL file. This was achieved by
ordering allele frequencies on a given chip (and allele frequencies
in the mixture). We then substituted the ith allele frequencies from
the mixture of interest for the ith allele frequencies for the given
chip. Without this adjustment, there was difficulty resolving any
individual in any mixture due to the fact that we did not account
for off-target cross-hybridization. This type of adjustment is the
preferred type of normalization method when raw data is available
for the mixture, person of interest, and reference population.
For the Illumina platform we used the genotypes from the

HapMap dataset [18] for both the person of interest and the
reference populations instead of raw intensity values as we had for
the Affymetrix platform. For the mixture we used raw intensity
values. This set of data mimics the case where raw data may not be
available but genotype calls are available. We use a simple method
to reduce errors between different microarrays, where we
normalize each microarray by dividing by the mean channel
intensity for each respective channel. This was performed on the

raw data for the mixture only. We note that this platform specific
adjustment is not needed when the raw data for a person’s
genotype is present on the same platform. In the Illumina specific
example, we utilized only the calls from the HapMap without
having platform specific genotype data. Theoretically, it should be
possible to use a library of Yi means for AA, AB, and BB to map
genotype calls to expected Yi values to each SNP for individually
genotyped samples, but this was not necessary for our analysis.

Simulation
Simulation was used to test the efficacy of using high-density

SNP genotyping data for resolving mixtures. The key variables of
the simulation are: the number of SNPs s, the fraction f of the total
DNA mixture contributed by our person of interest Yi, and the
variance or noise inherent to assay probes vp. In the simulations,
theoretical mixtures were composed by randomly sampling
individuals from the 58C Wellcome Trust Case-Control Consor-
tium (WTCCC) dataset [19]. After removing duplicates, relatives
and other data anomalies, a total of 1423 individuals remained for
sampling. The genotype calls for these individuals were provided
from the WTCCC and were previously genotyped on the
Affymetrix 500 K platform. Within each simulation, we randomly
chose N individuals to be equally represented in our mixture and
then computed the mean allele frequency (Yi) of our mixture for
each SNP. SNPs j with an observed Yij below 0.05 or above 0.95 in
the reference population were removed due to their potential for
having false positives and low inherent information content.
We then simulated a microarray that would contain a mean of

16 probes for simplicity, approximating the mean number of
probes found on the Illumina 550 K, Illumina 450S Duo and
Affymetrix 5.0 platforms (18.5, 14.5 and 4 respectively). For each
SNP j we added to the Yij of each probe a Gaussian noise based off
the previously measured probe variance. When fixed, we set probe
variance to 0.006 when simulating Affymetrix 5.0 arrays, and to
0.001 for both Illumina 550 K and Illumina 450S Duo arrays.
The allele frequency of the mixture was then calculated to be the
mean of these probe values. A mixture size of N is equivalent to
saying that an individual’s DNA represents f= 1/Nth of the total
DNA in the mixture. We tested equimolar mixtures ranging from
10 individuals to 1,000 individuals. Using this design, we tested
each individual for their presence where they contributed between
10% and 0.1% genomic DNA to the total mixture. To obtain
significance levels (p-values) for testing the null hypothesis, we
sampled from the normal distribution. We note that we do not
have enough samples to test the tail of our distribution and
therefore our p-values are not completely accurate (e.g. below
1026). Nonetheless, p-values are expected to be sufficiently
accurate to qualitatively assess the limits of our method.

Experimental Validation
To examine empirically the efficacy of our method we formed

various known mixtures of DNA from HapMap individuals and
genotyped the mixtures on three different platforms. Listed in
Table 1 and detailed in the methods are the compositions of the
different mixtures formed and the platforms they were assayed
across. The use of mixtures of HapMap individuals has several
advantages. First, we can be confident of the genotype calls
because in most cases more than one platform has been used to
identify the consensus genotype. Second, trios are available, which
allow for evaluation of identifying an individual using a relative’s
genotype data. Third, by using mixtures of multiple HapMap
individuals we can evaluate our ability to resolve each individual
within the mixture. Therefore we have constructed simple two-
person mixtures as well as complex mixtures containing contribu-
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tions from 40+ individuals. For each mixture, we used the
HapMap CEU individuals not present in the mixture as our
reference population for the mixture.

Results

Using the theoretical framework established in the methods, we
evaluated the feasibility of using high-density SNP genotyping data
to resolve complex mixtures. First, we constructed a series of
simulations to evaluate the theoretical limits of resolving an
individual within a mixture using the described analytical
framework and given characteristics of current generation SNP
genotyping microarrays. Second, we experimentally tested the
feasibility of detecting if an individual is contributing trace
amounts of DNA to highly complex mixtures. Within these
simulations and experimental tests, particular focus was given on
complex mixtures–those containing hundreds or thousands of
individuals. While these mixtures are more complex than those of
previous studies, they can be used to evaluate the theoretical
bounds of current technology and to justify the use of reduced
platforms for practical application. Conceptually, such approaches
may have utility in resolving a mixture of DNA from common
surfaces where many individuals have left DNA.

Simulation
We performed simulations to examine the trade-off between the

number of SNPs considered, the fraction of the DNA mixture
belonging to our person of interest, and the probe variance or
noise of the microarray.

Joint Adjustment of Mixture Fraction (f) and Number of
SNPs (s). We first examined the trade-off between the numbers
of SNPs considered versus the fraction of the DNA mixture
belonging to our person of interest. Clearly, we expect greater
ability to resolve individuals from a mixture when more SNPs are
used in the calculation, though the absolute limits of detection are
ultimately determined by the genetic variation of the population.
We assumed a variance (vp) for the estimated allele frequency of
each probe of 0.001, which follows closely our observed variance
(0.00158) of the Illumina 550 K platform across multiple arrays in
other genotyping studies. Figure 2a shows 10,000 simulations
ranging from s= 10 to s= 500,000 and f= 0.1 to f= 0.001, where
the Z-axis is the p-value. We see that with only 10,000 to 25,000
SNPs we were able to resolve mixtures where the person of interest
was less than 1% of the total mixture at a p-value of less than 1026.
To resolve mixtures where the person of interest is less than 1% of
the total mixture, conservatively 25,000 SNPs are required to
achieve a p-value of less than 1026. At the extreme, if we use all
the available SNPs, we can easily resolve mixtures where our
person of interest is less than 0.1% of the total mixture to achieve a
p-value of less than 1026.

Joint Adjustment of Probe Variance (vp) and Mixture
Fraction (f). In these simulations, we assume that we have
50,000 SNPs on each microarray (s=50,000). While conceivably
we could use a much greater number of SNPs, the lower number
of SNPs would be more realistic in a setting where preference has
been given to SNPs whose allele frequencies minimally vary across
different populations. Figure 2b shows 10,000 simulations from
vp= 0.0001 to vp= 0.01 and f= 0.1 to f= 0.001. We see that within
a small amount of probe variance we are able resolve an individual
who comprises of one-thousandth of a mixture. If the probe
variance is below 0.001 we are able to easily resolve an individual
whose DNA comprises 10% to 0.1% of the mixture. Even with
increasing noise, we are still able to resolve mixtures where the
person of interest contributes less than 2.5% with a p-value of less

Figure 2. Simulation Results. Using 1423 Wellcome Trust 58C
individuals, we give log scaled p-values for simulations based on three
variables: the number of SNPs (s), the fraction of the individual in the
mixture (f), and the probe variance (vp). The graphs plot the
relationships between the three variables with a different variable
fixed in each graph. The log scaled p-values are represented by the
color of each point in the graph, as well as the z-axis on the right
graphs. These simulations suggest that we should be able to resolve
mixtures where a given individual is 0.1% of the mixture (f), probe
variance is at most 0.01 (vp) and the number of SNPs probed is 50,000
(s).
doi:10.1371/journal.pgen.1000167.g002
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than 1026. We also observe that the probe variance does not have
a large impact on the p-value, and in this case the fraction of the
mixture is the important factor when the number of SNPs is fixed.

Joint Adjustment of Number of SNPs (s) and Probe
Variance (vp). Finally we examined the trade-off between the
number of SNPs and the probe variance. We assume that our
person of interest contributes 1% to the mixture (f= 0.01).
Figure 2c shows 10,000 simulations from s= 10 to s= 500,000
and vp= 0.0001 to vp= 0.01. The probe variance has little effect on
the significance of the test. Consequently, it would be sufficient to
use 50,000 SNPs, even with very high levels of noise to resolve
mixtures of sizes up to 100. We note that within simulations the
number of probes is fixed to be 16, and thus the noise does not
affect the allele frequency estimate, as would be the case with
arrays using 4 probes.

Equimolar Mixtures versus Two-Person Mixtures. We
performed the same three simulation designs for mixtures that
only included two individuals. Instead of N= 1/f individuals
contributing equally to the mixture, we create mixtures where
individual one would make up (N21)/N of the mixture and
individual two would make up 1/N of the mixture. When the three
simulations were performed we observed an increase in
significance (smaller p-values). This gives further utility to the
method when there are a small number of total contributors with
the person of interest making up only a small fraction of the
mixture.

Conclusions from Simulations. Our simulations
demonstrate that 10,000 to 50,000 SNPs can resolve mixtures
where the genomic DNA of the person of interest composes 10%
to 0.1% of the DNA within the total mixture. Noise plays an
important but secondary role since microarray technologies such
as the Illumina 550 K and Illumina 450S Duo platforms have a
sufficiently large number of replicate probes compared to
population sampling variance. Another consideration is that the
choice of SNPs was not made with any specific intent and
therefore we could potentially reduce the number of SNPs
significantly if we choose the most informative SNPs, for
example by choosing a set of SNPs that do not vary across
differing populations.

Experimental Validation
To examine empirically the efficacy of our method we formed

various known mixtures of DNA from HapMap individuals and
genotyped the mixtures on three different platforms.

Resolving an Individual within Mixtures of 40+
Individuals. Figure 3 shows the test-statistic for each individual
within each mixture. Both individuals in the mixture and not in the
mixture were tested for presence within the mixture. On each
graph, the left y-axis represents the 2log p-value, the right y-axis
represents the normalized test-statistic S(Yi,j), and the bottom axis
represents each individual. We performed each experiment more
than once and thus we have multiples of 86 individuals indexed on
the bottom axis. For mixtures A, B, E, F, G and H, those in the
mixture are colored green and those not in the mixture are colored
red. All individuals in the mixtures composed of more than 40
individuals were identified with zero false positives.

Resolving Members within 2 Person Mixtures (f = 1% and
f= 10%). For mixtures C and D, those individuals who are not
in the mixtures are colored red, those individuals who are related
to a person in the mixture are colored orange, and those people in
the mixture are colored green. We were able to correctly identify
individuals within the mixture with zero false-positives except, as
expected, for relatives of individuals in the mixture, which appear
at a midpoint between those in and those not in the mixture.

Resolving an Individual from a Mixture using a Relative’s
Genotypes. It is interesting to observe that we have no false-
positives in the Mixture A, B, E, F, G or H but we do have false-
positives when considering Mixture C and D. This is not
unexpected since the HapMap CEU population is composed of
trios and we are in fact resolving that the mother or father of the
individual (a son or daughter) is in the mixture; the yellow and
orange marked individuals being observed as significant in
Figures 3a and 3c. Thus, we can easily resolve an individual
(son or daughter) even when using their mother’s or father’s
genotypes.

Resolving an Individual from a Mixture with 50,000
SNPs. In Figure 3a, we see that all the mixtures are able to be
resolved with no false-negatives when we use all 504,605 SNPs
present on the Illumina 550 K platform. We performed the same
analysis considering only 50,000 SNPs (see Figure 3b) and found
that the samples had the same degree of separation. Thus, even if
only a small fraction of the intended genotypes are generated (such
as in a degraded sample), identification of an individual in a
complex mixture is possible.

Resolving an Individual when Contributing Less than
1%. In Figure 3d, we consider mixtures G and H where the
fraction of DNA of each individual is between 0.15% and 0.25%
of the total mixture. We see that using all the SNPs available we
are able to resolve all the mixtures with no false-negatives on the
Illumina 450S Duo platform. We can therefore resolve an
individual even when the fraction of their DNA in the mixture
is less than 1%.

Discussion

Within this study, we develop a theoretical framework for
resolving mixtures using high-density SNP array data, use
simulation to test the limitations of these approaches, and
experimentally demonstrate rapid and robust determination of
whether individuals are within an assayed mixture. Our results
show a remarkable ability to identify trace amounts of an
individual’s DNA within highly complex mixtures. These results
further suggest novel forensic applications where the existence of
DNA from numerous other individuals currently hampers the
ability to identify the presence of any single individual.
Whereas few conclusions can be drawn by a SNP measurement

that is slightly biased (less than 1%) towards an individual’s
genotype, considerable confidence is gained by statistical analysis
of the cumulative aggregate of all measurements across millions of
SNPs. While in hindsight this conclusion seems obvious, it
represents a fundamental paradigm shift in thinking about the
utility of SNPs at resolving mixtures. The approach described here
uses the ratio of intensity measures from common biallelic SNPs.
As a result, one expects more robust scaling in DNA quantity or
quality at any given SNP. We assume neither a known number of
individuals present in the mixture nor the presence of equal
amounts of DNA from each individual within the mixture.
Described in simplistic terms, we determine whether a person is in
a mixture by comparing a statistically describable distance
measure between the individual and the mixture versus the
individual and the reference population.
The analytical framework presented within this study builds

upon pioneering approaches for assessing and quantifiably
calculating whether a person is within a mixture. These methods
have frequently employed match probability estimation after
inferring genotypes using STRs, where the probability of two
unrelated individuals sharing a combination of markers is
calculated [8]. Exclusion probabilities give a calculation based
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on the probability of excluding a random individual [20].
Nevertheless, many of these methods rely on assuming the
number of individuals in the mixture [1] (which is not necessary
in our analysis) and have been applied only to STR markers.
One can also consider using other statistical approaches. For

example, likelihood ratios are also commonly used when testing

which hypothesis is favored by DNA evidence [21]. Adapting to
the overall framework presented in this study, one might compute
the likelihood ratio of two hypotheses: the individual contributes to
the mixture and the individual does not contribute to the mixture.
The proper prior odds ratio can then be given based on the
current situation or context, and then would be combined with the

Figure 3. Experimental validation using a series of mixtures (see Methods A–F) assayed on the Affymetrix GeneChip 5.0, Illumina
BeadArray 550 and the Illumina 450S Duo Human BeadChip. The x-axis shows each individual in the CEU HapMap population, the left y-axis
shows the p-value (log scaled), and the right y-axis shows the value of the test statistic. For mixtures A, B, E and F those in the mixture are colored
green and those not in the mixture are colored red. For mixtures C and D those individuals who are not in the mixtures are colored red, those
individuals who are related to the 1% or 10% individuals in the mixtures are colored orange, those individuals who are related to the 90% or 99% are
colored yellow, and those people in the mixture are colored green. In all mixtures, the identification of the presence of a person’s genomic DNA was
possible.
doi:10.1371/journal.pgen.1000167.g003
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likelihood ratio to give a posterior odds ratio. In this approach,
using SNP microarrays for allele frequencies or allele counts could
be used to calculate the probability of the observed mixture’s allele
frequency or individual of interest’s genotype. This Bayesian
approach could build from the methods presented here and,
depending on the scenario, has attractive strengths including
creation of explicit hypotheses (e.g. that a person and/or related
individuals are within the mixture) and inclusion of specific priors
(e.g. informativeness towards ancestry SNPs). Overall, it is clear
there are multiple analytical methods for resolving complex
mixtures and depending on the objective, other methods may be
more suitable. Regardless of method, it is clear that the perception
that SNPs cannot be easily used to resolve mixtures is no longer
valid.
Given the results of this study, it is possible to speculate on

future research assessing the viability of using commonly handled
surfaces as a forensics source. In the context of degraded samples,
further research will be needed to choose which SNPs (of millions
assayed SNPs) provide sufficient amplifiable DNA or show less
allelic bias at low concentrations. Further, the theoretical
principles described here will apply to mitochondrial variants.
Regardless of the artifacts encountered, the large number of
assayed SNPs may allow for partitioning sets of SNPs for different
analyses, such that a small subset of SNPs becomes reserved for
detecting specific artifacts, such as biases in allele amplification or
ancestry. Additional areas of future research include conversion
tables using haplotype or imputation frameworks to convert
between SNPs and microsatellite markers.
Finally, it is important to consider these findings in light of

GWA studies. Indeed, the push to develop high-density SNP

genotyping arrays is largely driven by the desire to identify
common variants predisposing to a disease. For many GWA
studies, the overall cost of genotyping thousands of individuals is
substantial. However since genotype data is transferable and can
be combined with data from other studies, there is a considerable
effort to make experimental data publicly available. As part of this
effort, many studies provide pooled allele frequency data in the
form of summary statistics (e.g. allele frequencies or genotype
counts), in part to mask individual-level genotype data. Though
counter-intuitive, our findings show a clear path for identifying
whether specific individuals are within a study based on summary-
level statistics. Such approaches may have specific utility for
identifying redundant individuals when new individual-level
genotype data is combined with previous studies sharing only
summary statistics.
Considering privacy issues with genetic data, it is now clear that

further research is needed to determine how to best share data
while fully masking identity of individual participants. However,
since sharing only summary data does not completely mask
identity, greater emphasis is needed for providing mechanisms to
confidentially share and combine individual genotype data across
studies, allowing for more robust meta-analysis such as for gene-
environment and gene-gene interactions.
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