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Genome-wide association aims to comprehen-
sively survey genetic variation for the purposes
of disease and trait mapping. We provide a brief
history of the development of genetic technology
necessary to realize genome-wide association.
From there we identify and review the publicly
available resources for conducting such work
including the molecular technologies, genomic
databases, and analytic tools. Following on from
the analytic tools, we highlight common analytic
considerations, ranging from study design, qual-
ity control, and data cleaning to association
analysis and replication. We conclude with a look
toward future developments such as the analysis
of copy number variation and integration of
expression and epigenetic phenomenon into gen-
ome-wide association. � 2008 Wiley-Liss, Inc.
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INTRODUCTION

Genome-wide association studies, now applied to a large
range of human diseases and traits, are designed to compre-
hensively survey common genetic variation. The goal is to
detect phenotypic associations of modest effect that would have
eluded previous linkage and candidate gene approaches.
Utilizing new genotyping technologies and genomic resources
such as the HapMap [International Hapmap Consortium,
2005], a number of whole genome association studies have
identified convincing and replicable disease loci for common
diseases [Rioux et al., 2007; Saxena et al., 2007]. The approach
looks set to accelerate gene discovery across a range of fields,
including neuropsychiatric genetics.

A modern whole genome study typically involves genotyping
hundreds of thousands of single nucleotide polymorphisms

(SNPs) in thousands of individuals. Although genotyping at
this density (on the order of a SNP per 5–10 kb) represents only
a small proportion of the total number of known SNPs, it
captures the majority of all common genetic variation, as we
describe below, due to the extensive correlation between SNPs
(linkage disequilibrium, LD). In a sufficiently large sample,
this whole genome association study design promises the most
extensive look at the genome for uncovering common variation
predisposing to disease.

In this article, we briefly describe the history of genome-wide
association studies (GWAS, also termed whole genome associ-
ation studies, WGAS), followed by a review of some currently
available resources, including molecular technologies,
genomic databases, and analytic tools. We outline some key
analytic considerations, such as study design, quality control
and data cleaning, analysis and replication. Finally, we look to
future developments such as copy number variation (CNV),
total coverage and sequencing.

DEVELOPMENTS LEADING TO
WHOLE GENOME STUDIES

Large-scale genomic projects paved the way for the shift from
candidate gene association to GWAS by cataloguing and
understanding genetic variation. Three main projects were
critical: the Human Genome Project (HGP), the SNP Con-
sortium and the International HapMap Project (HapMap)
[Lander et al., 2001; Sachidanandam et al., 2001; International
HapMap Consortium, 2005]. The HGP provides a consensus
sequence, which dramatically enhanced the efforts of the SNP
Consortium for SNP discovery. With the vast database of
identified SNPs, the HapMap project embarked on identifying
LD information enabling further development of cost effective
genotyping platforms.

The proportion of human variation that needs to be captured
for a study to classified as a GWAS is open for debate [Barrett
and Cardon, 2006]. For the purposes of this article, a GWAS
is required to have genotyped at least 80,000 SNPs or the
majority of known non-synonymous variation. The earliest
attempts at GWAS were not SNP chip based, but rather high-
throughput genotyping of approximately 80,000 gene-centric
variants from Yusuke Nakamura’s lab [Ohnishi et al., 2001].
This group has published GWAS on myocardial infarction,
nephropathy and Crohn’s disease [Ozaki et al., 2002; Ohtsubo
et al., 2005; Yamazaki et al., 2005]. However, the setup
required to execute such a system is extensive and expensive.
The subsequent development of comparatively cheap genotyp-
ing technologies with little to no overhead required made
GWAS readily available, particularly if the investigator is
willing to outsource genotyping.

The first major success story of 100K SNP chip GWAS is age-
related macular degeneration (AMD), with the identification of
variation in the complement factor H gene [Klein et al., 2005].
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Aside from AMD, the use of 100K SNP chips identified
variation in NOS1AP (a.k.a. CAPON) influencing QT interval
on an electrocardiogram [Arking et al., 2006]. Both of these
findings showed significant replication from a number of
additional studies, and are almost certainly true associations
[Edwards et al., 2005; Hageman et al., 2005; Haines et al., 2005;
Arking et al., 2006; Maller et al., 2006; Post et al., 2007]. The
rapid success of mapping a significant percentage (�25%) of
the risk factors for AMD has not been borne out by other
diseases. However, a much smaller fraction of the risk factors
for many other diseases have been identified (e.g., types I and II
Diabetes, Crohn’s disease, prostate and breast cancer).

Since these initial studies, a number of other groups have
proceeded with GWAS. Efforts on obesity [Herbert et al., 2006],
Parkinson’s disease [Maraganore et al., 2005], type 2 diabetes
[Saxena et al., 2007; Scott et al., 2007; Sladek et al., 2007;
Steinthorsdottir et al., 2007], prostate cancer [Gudmundsson
et al., 2007; Yeager et al., 2007], Crohn’s disease [Rioux et al.,
2007], and breast cancer [Easton et al., 2007] have been
published.

Two major initiatives are generating genome-wide associa-
tion data: the Wellcome Trust Case Control Consortium
(WTCCC) and the Genetic Association Information Network
(GAIN). The WTCCC is a UK study comprised of 2,000 case
sample cohorts for each of the following diseases: tuberculosis,
coronary heart disease, type 1 diabetes, type 2 diabetes,
rheumatoid arthritis, Crohn’s disease, bipolar disorder and
hypertension, along with a 3,000 individual shared control
sample. The control genotypes are already available at
www.wtccc.org.uk and the case genotypes will be made
publicly available. Initial results for these scans have recently
been published, showing promising results for many, though
not all of the disease phenotypes examined [Easton et al., 2007;
Frayling et al., 2007; Parkes et al., 2007; Samani et al., 2007;
Todd et al., 2007; Wellcome Trust Case Control Consortium,
2007; Zeggini et al., 2007]. In particular, the bipolar scan has
shown little in the way of true association, indicating that
psychiatric disease may prove more difficult than metabolic
disorders. Similarly, a recent genome-wide association scan
of bipolar disorder by Sklar and colleagues did not show
consistent results with the WTCCC study, indicating that the
effect size for risk variation for bipolar is likely to be modest
[2008]. GAIN is a United States’ National Institutes for Health
initiative, generating genotypes on approximately 600K
markers for schizophrenia, bipolar disorder, diabetic nephro-
pathy, ADHD, major depression and psoriasis. More informa-
tion about GAIN can be found at http://www.fnih.org/gain2/
home_new.shtml.

RESOURCES

Numerous resources are available to aid whole genome
studies, many of which were initially developed for linkage
mapping, or have arisen from the HGP and HapMap.
Here we present a brief list of some of these resources: further
information is available at the websites noted.

SNP Chips

The commercial, technological development of SNP chips
has been critical in the development of GWAS. These
technologies allow for hundreds of thousands of genotypes
per individual to be rapidly and affordably measured. Cur-
rently, Affymetrix and Illumina produce genome-wide arrays;
Perlegen also provides genotyping, notably for GAIN. Both
Affymetrix and Illumina have developed chips to genotype
approximately one million SNPs; these products also provide
CNV information (see Future Directions Section). More
information about these products can be found at www.

affymetrix.com and www.illumina.com. The true genomic
coverage of these products is considerably greater than merely
the number of SNPs because of the LD patterns. Briefly, LD is
the non-random assortment of alleles within the population.
One consequence of LD is that typing all variation in the
genome is unnecessary as SNPs provide information for other
loci. Already, the patterns from the HapMap are being used to
test SNPs in a multi-marker framework [de Bakker et al., 2005;
Pe’er et al., 2006] or to impute unknown SNPs [Marchini et al.,
2007]. Generally, Illumina coverage tends to be slightly deeper
because of the utilization of HapMap LD information.

Other studies have employed DNA pooling methodologies
to reduce costs, estimating allele frequencies in cases and
controls rather than individual genotyping. Examples of this
approach have been published for nicotine dependence [Bierut
et al., 2007; Uhl et al., 2007], bipolar disorder [Baum et al.,
2008], osteoarthritis [Abel et al., 2006], supranuclear palsy
[Melquist et al., 2007], and lung cancer [Spinola et al., 2007].
Other studies have focused only on non-synonymous variation
at a genome-wide level: for example, Crohn’s disease [Hampe
et al., 2007], type 1 diabetes [Smyth et al., 2006], and
Alzheimer’s [Grupe et al., 2007].

Online Resources

A number of internet resources provide information for
accessing and understanding the results of GWAS. The
National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/) hosts a number of relevant resources,
such as dbGAP, which hosts GWAS genotypes and results
including GAIN. Such online databases, particularly when
linked to existing resources such as PubMed (a searchable
index of publications), GenBank (a genetic sequence database)
and Entrez (a search engine for nucleotide, protein, structure,
taxonomy, genome, expression, and chemical databases) will
provide a powerful means to store, share, and mine GWAS
data. The University of California at Santa Cruz hosts a
genome browser at http://genome.ucsc.edu/cgi-bin/hggateway
tailored more for comparative genomics. HapMap also pro-
vides a genome browser, annotated with LD information,
useful for the identification of tagging SNPs and correlation
across associated regions (www.hapmap.org).

A number of shared controls sets are available on the
internet. The WTCCC provides their control dataset (pending
an application process). All of the GAIN controls will be made
available (but with use in publication delayed until after a
nine month proprietary period as well as an application
process). The Coriell Institute (https://queue.coriell.org/q)
provides a case/control study of amyotrophic lateral sclerosis
[Schymick et al., 2007].

Collaboration and Consortia

Essential for the success of GWAS is increasing sample size
to detect variants of small effect. The WTCCC is an excellent
example of collaboration with this aim. Benefits of such
collaboration include the pooling of case samples from across
the UK as well as drawing from the experience of analysts,
genetics, and clinicians on major collections [Wellcome Trust
Case Control Consortium, 2007]. Additionally, ongoing collab-
oration between the major Type II Diabetes projects (DGI,
FUSION, and Novartis samples) [Saxena et al., 2007] has
dramatically improved the detection of risk alleles. Similarly,
the GAIN initiative is also comprised of collaborative efforts
such as the International Multi-centre ADHD Genetics
(IMAGE) project [Brookes et al., 2006; Kuntsi et al., 2006],
the Major Depression Disorder project, and the Bipolar and
Schizophrenia work.
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Software

One difficult and important aspect of GWAS is managing the
data. Given a sample size of five thousand individuals, with a
million SNPs, such datasets contain five billion genotype
datapoints. This presents a computational as well as a
statistical burden of multiple testing. Adding multiple pheno-
types, covariates and modifiers to the basic analysis adds
further burden.

One approach is to use general statistical packages such as
R, Stata, and SAS, which offer extensive statistical tests and
models, but more limited genetic analyses (e.g., support for
family-based studies, or haplotype analysis, for example). An
R package, snpMatrix, is available to handle GWAS data
and perform basic tests [Clayton and Leung, 2007]. A number
of computational tools have been developed specifically
for large-scale or whole-genome association studies: PLINK
(www.pngu.mgh.harvard.edu/�purcell/plink) [Purcell et al.,
2007]; PBAT (http://www.biostat.harvard.edu/�clange/default.
htm) [Lange et al., 2004; Van Steen and Lange, 2005]; snptest
(http://www.stats.ox.ac.uk/�marchini/software/gwas/snptest.
html) [Marchini et al., 2007; Wellcome Trust Case Control
Consortium, 2007]; and EIGENSTRAT/EIGENSOFT (http://
genepath.med.harvard.edu/�reich/eigenstrat.htm) [Patterson
et al., 2006; Price et al., 2006]. Haploview 4.0 (http://www.
broad.mit.edu/mpg/haploview/) [Barrett et al., 2005] has been
extended to provide a browser for GWAS results integrated
with PLINK; it also will download the HapMap data to
generate LD and tagging information for a specific region of
the genome.

ANALYTIC CONSIDERATIONS

Study Design

Many aspects of WGAS study design are similar to candidate
gene association analysis. Both case–control and family-based
association study designs can be employed. Thus far, most
WGAS are case–control, primarily because of the increased
power per genotype compared to family-based designs [Mc-
Ginnis et al., 2002]. Good experimental procedure such as
randomization of case and controls across plates are important
to protect against bias. Matching of controls to the cases, with a
particular focus on ancestry is recommended. The magnitude
of WGAS datasets brings some other study design issues into
play, however. One is the utility of multi-stage designs, which
have been suggested as an approach to control costs [Van den
Oord, 1999; Skol et al., 2006], although the relative costs of
different genotyping platforms are constantly changing.
Because these datasets are expensive to collect and a fixed
marker set is employed (for a given genotyping platform), the
idea of using shared control datasets is both desirable and
feasible. This factor also brings some difficult challenges
however: the ability to ensure consistency across different
samples, genotype calling algorithms and/or laboratory proce-
dures; the trade-off in terms of power and false positives
between adding increasingly less well-matched controls; the
interpretation of replication if two studies use different case
samples but the same control sample [Hamer and Sirota,
2000].

Quality Control

Ensuring the quality of the genotype data from GWAS is
essential for drawing accurate conclusions from association
analysis. Considering a dataset of a million SNPs, if only 0.5%
of the SNPs are systematically biased assays, this still
corresponds to 5,000 biased tests, potentially yielding an
unacceptable false positive rate. To control for such pitfalls,
data quality thresholds are applied. In general, the key

motivation behind quality control is that as the prior
probability of a SNP showing true significance is low,
discarding SNPs for reasons such as missingness, minor allele
frequency, mendelization errors, and Hardy–Weinberg dis-
equilibrium, is unlikely to remove true associations. Many of
the cleaning quality metrics described below are consistent
with previous WGAS [Saxena et al., 2007; Wellcome Trust
Case Control Consortium, 2007] and review of good exper-
imental procedure for such studies [Manolio et al., 2007]. A
tension between genotype information and controlling for bias
still exists, but with procedures such as imputation, such
concerns are assuaged [Marchini et al., 2007].

A good indicator of genotype probe performance for SNP
chips is the call rate across the sample. We recommend
examining the distribution of missingness across the sample
to identify problematic SNPs. In addition to a global missing
threshold, comparing missingness between cases and controls,
via a Chi square, is suggested. Similar considerations for the
level of genotyping of each individual are also recommended, as
low genotyping rate is a marker for poor DNA quality. As an
example of problem of missingness, the second highest SNP
from the AMD GWAS, rs10272438, was a false positive due to
missingness [Klein et al., 2005]. Approximately 15% of the
genotypes failed which when genotyped using another tech-
nology showed no association. In fact, differential missing
rates between cases and controls can induce false positive
association [Clayton et al., 2005].

Another key measure of the quality of the genotypes is
reproducibility, as assessed through intentional sample dupli-
cation. For example, HapMap samples can be used to generate
quality control metrics based on sample concordance with the
existing genotyping. Additionally, HapMap individuals are
uniquely identifiable, and so can act as positive controls for
potential laboratory mishandling (e.g., plate orientation). If a
family-based design is adopted, then Mendelian checks also
provide a first pass at sample integrity. As some random errors
are generally expected, the thresholds for Mendelian incon-
sistencies and sample duplication mismatch tend to be less
conservative, such that the probability of observing the
number of errors is unlikely to be due to chance.

Potential batch effects are also important to examine.
Often times, all samples are not done with the same product
at the same time suggesting the possibility of batch effects.
Considering the availability of shared control sets, such
phenomena are commonplace for WGAS. Other lines of
enquiry for batch effects include: different DNA sources (e.g.,
blood vs. buccal vs. saliva), different extraction techniques,
different centers contributing DNA, different technical proce-
dures, or plate effects. A look at the data in chronological
genotyping order may also yield insight into potential sources
of error, as stock changes in the lab may prove important.

Minor allele frequency (MAF) thresholds are also recom-
mended as many studies do not have the power to detect
significant association for very rare variation. Of course, the
MAF threshold is dependent on the sample size, but a decent
rule of thumb is observing at least 20–30 copies of the minor
allele in the total sample. Current genotyping calling algo-
rithms rely on clustering points on an intensity scale, and
so rare genotypes are also more prone to error (e.g., it is difficult
to define a cluster with only one observation). Comparing
observed genotype frequencies in controls against the HapMap
allele frequency can also provide evidence for bias.

Testing for deviation from Hardy–Weinberg equilibrium
(HWE) may provide further information about the validity of
the genotypes from a SNP. However, such endeavors are
confounded by both population stratification and true associ-
ation signal. Therefore, markers passing all criteria except for
HWE ought to be considered carefully rather than discarded
out of hand. Another approach is to define a more stringent
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threshold, such as 0.000001 for deviation from HWE. HWE
tests can be calculated on only the controls or in the entire
sample. The justification for considering only the controls for
HWE is that positive association may confound the HWE test
[Sham, 1997].

Beyond these initial cleaning techniques, further checks for
family structure are suggested in the case of family-based data.
Non-paternity is a potential problem for trio and sibship
designs, which can be easily detected by looking at identity-by-
state (IBS). For case–control designs, the same IBS informa-
tion can be used to determine identity-by-descent (IBD)
information across the sample (see Purcell et al. [2007] for
more details on the relationship between IBS and IBD at a
population level). Examining both IBS and IBD information
can identify sample mix-up (via different IBD patterns),
cryptic relatedness (high IBD sharing), and sample contami-
nation (excess heterozygosity and IBD).

For case–control and population-based quantitative analy-
sis, population stratification is a key potential confounding
factor. With whole-genome association data, however, the
ability to identify population structure is dramatically
improved. PLINK includes routines to cluster individuals
based on IBS sharing for population classification. Aside from
assigning individuals to clusters, a correction to the inflation of
the association statistic can be applied by principal compo-
nents analysis [Price et al., 2006].

For a given associated SNP, it is worthwhile to see whether
nearby SNPs or haplotypes that are correlated with the variant
also show association with disease; if the associated SNP is rare
or has a high missing rate, confirming that the association is
also seen with haplotypes formed by common, high genotyping
SNPs is, whenever possible, desirable. A SNP that shows a
strong association but for which all the correlated, neighboring
variants are not associated, is more likely to represent an
artifact.

As a final check, the distribution of association test statistics
is a useful indicator for sources of bias. Gross enrichment of the
distribution of the association evidence is a hallmark sign of
bias. Furthermore, extremely significant P-values, such at
10�60 are more likely than not due to batch effects, non-random
missingness or data-handling errors. For further information
about data cleaning considerations, we recommend a recent
feature in Nature from NCI-NHGRI [Chanock et al., 2007] and
the WTCCC manuscript [Wellcome Trust Case Control Con-
sortium, 2007].

ANALYSIS

Three most common analytic techniques for case–control
analysis are the w2 test of allele counts, trend tests (where a
multiplicative model is assumed for the regression based on
genotype category, coded as 0, 1, and 2), and a 2 degree of
freedom genotypic model (where one genotype category is
assumed as baseline and the effects of the other two categories
are modeled). For family-based analysis, the TDT [Spielman
et al., 1993] for trios and the sib-TDT [Spielman and Ewens,
1998] (using siblings discordant for disease) are obvious
choices. Quantitative methods include regression models for
population-data, following the similar parameterization as the
case–control, while quantitative approaches have been devel-
oped for families [Rabinowitz, 1997; Fulker et al., 1999; Lange
et al., 2004].

As well as testing directly genotyped SNPs, consideration of
haplotype structure enables one to test ungenotyped variation.
One approach would be to specify haplotypes based on sliding
windows of SNPs, or on haplotype blocks based on the LD
structure of the observed data. An alternate approach is to
use information from the HapMap to specify more precise
haplotype tests specifically for the HapMap SNPs that were

not directly genotyped in the study. For example, for a fixed
genotyping platform, Pe’er et al. [2006] compiled lists of single
SNPs and two and three SNP haplotypes that are in strong LD
with ungenotyped HapMap SNPs.

Beyond these initial tests, a number of other techniques are
frequently employed. Based on the tagging information from
HapMap, tests of two and three marker haplotypes which are
proxies for known variants can be conducted. Furthermore,
different imputation methods are being developed to generate
genotypes at untyped loci jointly with information from a
reference panel based on LD patterns in the HapMap and
further untyped variation based on ancestral recombination
graphs [Marchini et al., 2007]. The benefit of imputation is still
to be fully evaluated: with increasing chip densities, the
majority of common variation may well be directly captured.
Perhaps one particularly useful application of imputation will
be to reconcile results and merge data for WGAS studies that
have used different genotyping platforms. Finally, multi-
marker tests that consider whole pathways and genes simulta-
neously, instead of single variants, are another area of promise.

All of the above methods fall broadly under traditional
association analyses and are targeted at the common diseases/
common variant hypothesis (CDCV), that variation predispos-
ing to disease within the population will be common within the
population and of modest effect. In contrast, the multiple rare
variant (MRV) hypothesis states that variation predisposing to
disease is rare and of small to modest effect (with the extreme
example being that every case for a given disease has a set of
private mutations). In all likelihood, both the CDCV and the
MRV are likely to be true for the etiology of common disease
within the population. How WGAS studies of common SNPs
will fare when the MRV is true for a substantial proportion of
the genetic variation for a particular disease is unclear. New
methods and models are being developed that might partially
address this problem. For example, comparing LD information
between cases and controls may shed insight on rare variation
[Zaykin et al., 2006]. Alternatively, using WGAS data, one
might look for regions of increased ancestral sharing between
cases, as individuals sharing the same rare variant are also
likely to share an extended, surrounding region [Purcell et al.,
2007]. Homozygosity and admixture analyses are additional
lines of enquiry for the mapping of risk-conferring variation
[Lander and Green, 1987; Reich and Patterson, 2005].
Ultimately, sequence data will likely become routinely avail-
able, to complement common polymorphism data and drive the
investigation of rare variation.

Multiple Testing

The number of association tests for WGAS is staggering.
Standard approaches for multiple testing including Bonferroni
and False Discovery Rate (FDR) can be used to control the error
rate of the study. For family-based association, one potential
analytic possibility is to condition on the between family
information to select SNPs for the within family test, to reduce
the necessary multiple testing burden [Lange et al., 2004]. By
selecting, the necessary number of SNPs for genome-wide
significance under Bonferroni is reduced to the number of
SNPs analyzed in the within test. However, as the between and
within information are independent, it may be more efficient to
combine the evidence for association [Skol et al., 2006]. Risch
and Merikangas [1996] proposed a threshold of 10�6 based on
the number of known SNPs at the time, though a more realistic
threshold is perhaps on the order of 10�7 or even 10�8 assuming
approximately a million testable variants using the Šidák
Correction [Šidák, 1967]. Permutation analysis is also an
avenue for generating an appropriate experiment-wide
P-values, but such efforts may not appropriately control for
all SNPs potentially tested.
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Replication and follow-up studies are essential for determin-
ing whether identified variants are true or false positives
(although it is worth remembering that if hundreds or even
thousands of SNPs are followed up, then a predictable
proportion will replicate purely by chance also). With repli-
cation and follow-up come the difficulties of meta-analysis.
Ideally, data sharing is encouraged to provide maximal
information about the association evidence. If this is not
possible, then combining evidence based on the direction and
magnitude of the effect is encouraged. As a last resort, Fisher’s
combination of P-values can be utilized.

FUTURE DIRECTIONS

Recently, a coalition of clinicians, geneticists, and analysts
have formed the Psychiatric GWAS Consortium (PGC) [The
Psychiatric GWAS Consortium, submitted], which aims to
encourage data-sharing and perform a comprehensive meta-
analysis of genome-wide association studies of psychiatric
disease. The current focus is on ADHD, autism, bipolar, major
depression, and schizophrenia, looking both within and across
disorders. In total, there will be in excess of 25 billion genotypes
for meta-analysis, representing the largest genetic study in
psychiatry ever conducted.

Genetics as a field continues to develop technologies for
studying the human genome at finer and finer scales. The most
recent SNP Chip technologies provide some insight into CNVs.
CNVs are looselydefinedas approximately 1 kbor longer regions
of the genome which show variation in the number of copies as
compared to a given reference sequence [Feuk et al., 2006].
Already a handful of studies have been published on the effects
of CNVs on gene expression and phenotypes [McCarroll et al.,
2006; Sebat et al., 2007; Stranger et al., 2007; Wong et al., 2007].

Complete coverage of the genome with respect to LD and
eventually full sequence information will be available for
analysis. Such extensive information will require even more
careful data management. However, many of the existing tools
for analysis can be applied to such data. Sequencing enables
examination of rarer variation as a potential cause of disease.
The analysis of such variation will likely require the develop-
ment of new statistical models. In addition to identifying the
genetic code, expression and epigenetic information will also
reduce in cost. For an excellent review of global gene expression
see Rockman and Kruglyak [2006], encompassing the genetics
of global gene expression thus far, features of regulatory
sequence variation, and genomic effects such as cis-acting,
trans-acting, cis-regulatory, and protein-coding on gene
expression. Epigenetics examines DNA structure (e.g., histone
placement) and methylation patterns; for a review see van
Vliet et al. [2007].

CONCLUSIONS

WGAS promise the most extensive look at the genome for
uncovering variation predisposing to disease. Technology will
continue to develop yielding a wealth of data for identifying the
etiology of disease. While WGAS will not identify all of the
genetic factors, new biochemical pathways will be identified for
investigation. For many diseases, which are known to be
strongly heritable, finding even one or two true disease genes
could potentially transform the research in that disease area,
even if the majority of genetic determinants elude detection in
that particular study. Given the difficulty of mapping genetic
variation for neuropsychiatric disease, even greater care is
necessary for successful association mapping.
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