On Bridging the Theory and Measurement of Frailty

K. Bandeen-Roche¹, Ph.D., Q.-L. Xue², Ph.D., L. Ferrucci³, MD, Ph.D., J. Walston², MD, J. M. Guralnik⁴, MD, Ph.D., P. Chaves², MD, Ph.D., S. L. Zeger¹, Ph.D, L. P. Fried², MD, MPH

Depts. of Biostatistics¹ & Medicine², Johns Hopkins Medical Institutions
Intramural Research Program³ & Division of Epidemiology, Demography and Biometry⁴, National Institute on Aging
Introduction
Whither “frailty measurement”?

• “Geronmetrics”
 – a.k.a.: econometrics, psychometrics, biometrics
 – Goal: Accurate and precise measurement of complex health states or spectra

• Rigorous measurement is essential to
 – Sensitivity, specificity for genetic, other discovery
 – Theory operationalization, testing
 – Correctly targeted, evaluated interventions

• Worth measuring as stand-alone construct?
 – If not, pursuing items under the last bullet makes little sense
Geronmetric Measurement

- Proposition: Most effective when attacked “from both ends”
 - Mechanisms / basic science
 - Phenotype / validity
 - Face: Sensible?
 - Content: Captures all aspects? Excludes extraneous aspects?
 - Criterion: Predicts relevant outcomes?
 - Construct: Captures assessment target?
This poster aims to...

- Present theory identifying frailty
- Propose a frailty validation methodology
- Present measurement validation findings
- Highlight areas of promise for future work
Theory: Frailty...

- Is recognizable to (some?) geriatricians
- Has adverse geriatric consequences
- An *outcome of dysregulation* in multiple physiological systems
 - Inflammatory? Hormonal? Nutritional? Etc.?
- Is a *syndrome* of decreased resiliency and reserves manifesting in multiple domains
 - e.g., see next slide
- Is *distinct* from disease or disability

References 1-8
One Theory
The Frailty Construct

Fried et al., J Gerontol 56:M146-56; Bandeen-Roche et al., J Gerontol, in press
Frailty Measurement Validation Methodology

- **Criterion validity:** “Frailty” = combination of aspects which well predicts adverse outcomes, or is well predicted by hypothesized risk factors.

- **Methods:** Standard regression models; also neural nets, regression trees, logic regression, etc.

Goal: “Leaves” that are homogeneous re frailty status.
Frailty Measurement Validation Methodology

- **Content validity**: Science — Clarity in construct definition
 - Arguably: Key source of current debate

- **Construct validity**: Theory testing
 - Proposal: Latent ("underlying") variable modeling — panels to follow

- Not a focus of this poster, but worth keeping in mind: reliability of measures
Frailty Construct Validation
Latent Variable Modeling

• Views frailty as underlying; inferred through surrogates

• Then interest is in
 – Measurement: How does underlying frailty relate to measured criteria?
 – Structure: Relation of frailty to putative etiology or consequences
Frailty Construct Validation
Latent Variable Modeling

Discriminant validity

Theory informs relations (arrows)

Frailty

Determinants

Adverse outcomes

Y_1

Y_p

e_1

e_p
Frailty Construct Validation Philosophy

• Role of latent variable modeling?
 – Reveal underlying truth?
 – Operationalize and test theory
 • Convergent and discriminant
 – Sensitivity analyses
 • Do minor changes to theory greatly affect conclusions?
Validation Findings
Fried et al, 2001, Phenotype

• Measures: 5 criteria
 - Robust = none; Intermediate=1-2; Frail=3 or more

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Definition</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Weight loss</td>
<td>Either of: i) Weight at age 60–weight at exam >= 10% of age 60 weight; ii) BMI at exam < 18.5.</td>
<td>12.7</td>
</tr>
<tr>
<td>2. Exhaustion</td>
<td>Self report of any of: i) low usual energy level (<=3, range 0-10); felt unusually (ii) tired (iii) weak in last month</td>
<td>14.1</td>
</tr>
<tr>
<td>3. Low Energy Expenditure</td>
<td>90 on activity scale (6 items)</td>
<td>19.8</td>
</tr>
<tr>
<td>4. Slowness</td>
<td>walking 4m: speed <= 4.57/7 for height <= 159 cm; speed <= 4.57/6 for height > 159 cm</td>
<td>31.3</td>
</tr>
<tr>
<td>5. Weakness</td>
<td>Grip strength: <= 17 for BMI <= 23; <=17.3 for BMI 23.1 - 26; <= 18 for BMI 26.1 – 29; <= 21 for BMI > 29 As for CHS.</td>
<td>20.8</td>
</tr>
<tr>
<td>OVERALL FRAILTY STATUS</td>
<td>Robust</td>
<td>44.9</td>
</tr>
<tr>
<td></td>
<td>Intermediate</td>
<td>43.8</td>
</tr>
<tr>
<td></td>
<td>Frail</td>
<td>11.3</td>
</tr>
</tbody>
</table>
Validation Findings
Strengths

• Face validity
 – Criteria reflect geriatric impression
 – WHAS I: prevalence increases with age
 – WHAS: prevalence higher among more disabled (25.4%) than overall (11.3%)

• Cross validity
 – Prevalence similar across cohorts (11.3% in WHAS; 11.6% in age-matched CHS women)
Validation Findings
Strengths: Criterion Validity

Association of Baseline Frailty Status and Risk of Incident Adverse Events,
Combined WHAS I (rounds 1, 4, 7) and WHAS II (rounds 1, 2, 3) Cohorts (n=784)

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Adjusted Hazard Ratios (95% Confidence Intervals)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intermediate</td>
</tr>
<tr>
<td>Fall (n=560)</td>
<td>0.92 (0.63, 1.34)</td>
</tr>
<tr>
<td>Severe ADL Disability (n=612)</td>
<td>5.68 (2.41, 13.42)</td>
</tr>
<tr>
<td>Severe IADL Disability (n=698)</td>
<td>3.53 (1.20, 10.35)</td>
</tr>
<tr>
<td>Hospitalization (n=715)</td>
<td>0.99 (0.67, 1.47)</td>
</tr>
<tr>
<td>Permanent Nursing Home Entry (n=750)</td>
<td>5.16 (0.81, 32.79)</td>
</tr>
<tr>
<td>Death (n=766)</td>
<td>3.50 (1.91, 6.39)</td>
</tr>
</tbody>
</table>

- Phenotype strongly predicts adverse outcomes
- Phenotype predicted by signs of systemic dysregulation: inflammatory, immunological, hormonal, nutritional
Validation Findings
Strengths

• Internal convergent validity

• Criteria manifestation is syndromic

 “a group of signs and symptoms that occur together and characterize a particular abnormality”

- Method: Latent class analysis
Syndrome validation
Latent class analysis

• Seeks clinically homogeneous subgroups
• Features that characterize latent groups
 – Prevalence in overall population
 – Percentage manifesting each criterion
• If criteria characterize syndrome:
 – At least two groups (otherwise, no co-occurrence)
 – No subgrouping of symptoms (otherwise, more than one abnormality characterized)
Table 3
Conditional Probabilities of Meeting Criteria in Latent Frailty Classes
WHAS

<table>
<thead>
<tr>
<th>Criterion</th>
<th>2-Class Model</th>
<th>3-Class Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CL. 1 NON-FRAIL</td>
<td>CL. 2 FRAIL</td>
</tr>
<tr>
<td>Weight Loss</td>
<td>.073</td>
<td>.26</td>
</tr>
<tr>
<td>Weakness</td>
<td>.088</td>
<td>.51</td>
</tr>
<tr>
<td>Slowness</td>
<td>.15</td>
<td>.70</td>
</tr>
<tr>
<td>Low Physical Activity</td>
<td>.078</td>
<td>.51</td>
</tr>
<tr>
<td>Exhaustion</td>
<td>.061</td>
<td>.34</td>
</tr>
<tr>
<td>Class Prevalence (%)</td>
<td>73.3</td>
<td>26.7</td>
</tr>
</tbody>
</table>

Bandeen-Roche et al., 2006
Syndrome Validation
Summary

- Two class model fit is good
 - Pearson χ^2 p-value = .22; minimized Akaike & Bayesian Information Criteria

- In three-class model: mean # of criteria in “intermediate,” “frail” groups = 1.26, 3.42—in line with defined cutoffs

- Frailty criteria prevalence stepwise across classes—no subclustering

- Syndromic manifestation well indicated
Measurement of Frailty
Areas of Promise

• Content validity: All aspects covered?
 – Cognitive decline?
 – Depression / anxiety?
 – Physiotype rather than phenotype?

• Construct validity
 – Discriminant: What is frailty not?
 – External validity
 • Link to multisystemic dysregulation
 • Specificity re vulnerability to stressors
Measurement of Frailty
Areas of Promise

• Criterion validity

 - ...i.e. utility for screening, diagnosing & targeting adverse geriatric outcomes

 - Needed
 • Delineation of predictive accuracy
 • Comparison among competitors
 • Threshold relationships?
Acknowledgments

• Funding / Institutional Support
 Johns Hopkins Older Americans Independence Center,
 National Institute on Aging, Brookdale National
 Foundation

• References: Please take handout

• Basis: Forthcoming paper

PHENOTYPE OF FRAILTY:
CHARACTERIZATION IN THE WOMEN’S
HEALTH AND AGING STUDIES