Geronometrics: Leading the Next Generation of Discovery in Aging

Karen Bandeen-Roche, Ph.D.
Departments of Biostatistics, Medicine & Nursing
Johns Hopkins University

Gerontology Brown Bag
Miami University
December 8, 2005
Acknowledgments

• Hopkins Colleagues
 Linda Fried, Ron Brookmeyer, Yi Huang, Jeremy Walston, Qian-Li Xue

• Colleagues outside of Hopkins
 Luigi Ferrucci, Don Ingram, Richard Miller

• Funding / Institutional Support
 Johns Hopkins Older Americans Independence Center, National Institute on Aging, Alliance for Aging Research
Introduction
Whither “geronmetrics”?

• “Measurement of constructs in aging”
 – a.k.a.: econometrics, psychometrics, biometrics
 – e.g.: generalized inflammation; frailty; aging

• Boring, no?
 –NO!

• Rather: essential to
 – Sensitivity for genetic, other discovery
 – Theory operationalization, testing
 – Specificity for genetic, other discovery
 – Correctly targeted, evaluated interventions
Introduction
The Frailty Construct

Fried et al., J Gerontol 56:M146-56; Bandeen-Roche et al., J Gerontol, in press
Frailty: Scientific Aims

• Validate theory that frailty is:
 – More than a marker of disease
 – More than severe disability
 – A *syndrome*: more than component parts

• Specific Aims
 – Drilling down: from phenotype to etiology
 – Specificity: a measure tied explicitly to dysregulation
 – Product: a refined summary variable
Outline

• Big picture: Biological aging
 – Four measurement paradigms
 – Partner: Alliance on Aging Research

• Application: Pro-inflammation
 – Component underlying frailty
 – Data: InCHIANTTI (Ferrucci et al., JAGS, 48:1618-25)

• Etiological mechanisms: A few words
Biological Aging

• Hypothesis: Individual specificity
 – Seems manifestly true... however:
 – Identifiable? Less manifestly true?
 – Animal evidence: e.g. dog breeds

• Goal: Surrogate measurement via biomarkers
 – Alliance for Aging Research Initiative
 – Import: Research, interventions to slow aging

• Previous attempts: disappointing

• Guiding Principles
 – Multivariate validation
 – Differentiation from disease, other cofactors of aging
Identifying Biological Aging
Paradigm #1: Age-Relatedness

- Challenges
 - Age ≠ aging
 - Selection in studies: healthiest
 - Methodological: Multiple outcomes
 - Choice of measures: reliable; content-valid
Identifying Biological Aging Paradigm #2: Predictive Validity

- “Aging” = combination of aging-related variables that “best” predicts outcome(s)

- **Methods**: Neural networks, regression trees, logic regression, etc.
Identifying Biological Aging
Paradigm #2: Challenges

- Distinction between “aging-related variables” and “outcomes of aging”
- Agreement on “outcomes of aging”
- Methodological
 - Cross-validation
 - Multiple outcomes
Identifying Biological Aging
Paradigm #3: Latent Variables

Construct validity

theory

Aging

Adverse outcomes

Determinants

Y_1

Y_p

D

e_1

e_p
Identifying Biological Aging
Paradigm #3: Challenges

• Computing “measures” from model
 – Option 1: “Average” in domains (e.g. principal components)
 – Option 2: Prediction “from” model

• Impact of modeling assumptions
 – “local independence” (homogeneity)
 – “model fit” ≠ “unique discovery”
Identifying Biological Aging
Paradigm #4: Combinations

• Compromises between methods
 – Geek speak: penalization
 – Plainer: weighting for emphasis

• Example: Latent variable model with fit weighted to emphasize age-relatedness of “aging” (“D”)

• Nice science + statistics problem
Application: Pro-Inflammation

- Central role: cellular repair

- A hypothesis: dysregulation key in adverse aging
 - Muscle wasting (*Ferrucci et al., JAGS 50:1947-54; Cappola et al, J Clin Endocrinol Metab 88:2019-25*)
 - Receptor inhibition: erythropoietin production / anemia (*Ershler, JAGS 51:S18-21*)

Stimulus (e.g. muscle damage) → IL-1# → TNF → IL-6 → CRP

- Up-regulation
- Inhibition

Difficult to measure. IL-1RA = proxy
Study: In CHIANTI

• **Aim**
 – Causes of decline in walking ability

• **Brief design**
 – Random sample ≥ 65 years (n=1270)
 – Enrichment for oldest-old, younger ages
 – Participation: > 90% in the primary sample

• **Data**
 – Home interview, blood draw, physical exam
 – So far: Two evaluations
Conceptual framework

Statistical methodology: SEM with latent variables (AMOS)
Observed variables

- **Inflammation** – 5 cytokines
 - *IL-6, CRP, TNF-α, IL-1RA, IL-18*

- **Mobility functioning** – Z-score average
 - *Usual & rapid speed; muscle power; range of motion; neurological intactness*

- **Frailty**: Fried et al., 2001 criteria
 - Exhaustion; grip strength; physical activity; walking speed; weight loss
 - Continuously measured versions

- **Analyses accounting for**: *age, gender*
Results

- LV method: measured = physiology + noise
 - Multivariate normal underlying variables, errors
 - Conditional independence of errors

<table>
<thead>
<tr>
<th>Inflammation 2</th>
<th>IL-6</th>
<th>CRP</th>
<th>IL-1RA</th>
<th>IL-18</th>
<th>Inflammation 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down-reg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Up-reg.</td>
</tr>
<tr>
<td></td>
<td>-.59</td>
<td>-.40</td>
<td>-</td>
<td></td>
<td>.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.20</td>
<td>.45</td>
<td>.31</td>
<td>.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.31</td>
<td></td>
<td>.31</td>
<td></td>
</tr>
</tbody>
</table>
Is there Value Added?
In CHIANTI findings

- **YES!**

- Independent of age, sex, smoking, diseases:
 Up-regulation associated with
 - Worse mobility functioning [~ -.1 effect size]
 - Heightened frailty prevalence [by ~ 30%]

- “Up-regulation” is specific, sensitive
 - No individual cytokine adds to prediction
 - Up-regulation affords superior prediction over individual cytokines
More on Specificity

Inflammation 1
Up-reg.

Inflammation 2
Down-reg.

Age

Clinical Frailty

Exh. Str. PA Spd.

Wt

.18
.14
.58
.37
.34
.35
.80
.04

.37
.34
.35
.80
.04

e_1 e_2 e_3 e_4 e_5
Etiological Mechanisms

- Holy grail?: What causes adverse aging?
 - Experimental data on humans: hard to come by
 - Observational, longitudinal data: central

- Cohort studies on aging abound
 - EPESE; CHS; HRS/ALIVE
 - Women’s Health and Aging Study (WHAS)
 - In CHIANTI

- How to utilize existing data to most nearly address causality?
Causal Models

• Three queries *(Pearl, 2000)*
 – Predictions
 • “Probabilistic causality” *(von Suppes, 1970)*
 • Is bad function probable among the inflamed?
 – Interventions / Experiments *(Bollen, 1989)*
 • Association, temporality, isolation
 • Does bad function follow inflammation?
 – Counterfactual
 • Does one’s function change if inflamed vs. not?
 • Neyman, 1923; Stalnaker, 1968; Lewis, 1973; Rubin, 1974; Robins 1986; Holland 1988
Toward “causal” inferences?

- **Propensity scoring** *(Rosenbaum/Rubin, 1983; Imai/Van Dyk, 2004)*
- **My work**: Implementation amid latent variables
- **Whichever causal method**: Assumptions

Diagram:

1. Inflammation → Mobility
2. Age, Gender, Smoking
3. Hx: CVD, Cancer, Diabetes
Propensity Score Model

- $I_1 \sim$ age, cancer hx, CVD hx
- $I_2 \sim$ age, gender, diabetes hx, smoking hx
Inflammation Effects (Summary 2)
Recap

- Presented: Frameworks for measurement
 - of complex geriatric health states
 - that incorporating biological knowledge
 - integrating causal inference methods

- Demonstration: Inflammation and adverse outcomes in In CHIANTI
Future Goals

• Extension across biological systems

• Cross-validation across populations

• Assessment of extent to which “associations” ↔ “mechanisms”

• Translation into interventions
Research needed

• Theory elicitation, incorporation

• Methods for synthesizing inferences across multiple data sets

• Best methods for deriving measures “M” for subsequent usage

• Surrogacy: “M” strongly relates to aging (A); treatment independent of M given A
Implications

- Refined understanding of aging states and their measurement
 - Integrating systems biology
 - Increasing sensitivity, specificity

- Heightened accuracy, precision for
 - Delineating etiology
 - Developing and targeting interventions