Objective of prediction step

- To test the ability of the candidate domains, individually and in combination, to predict adverse outcomes
Testing the predictive ability

Adverse Outcomes

Mortality
ADL/IADL disability
Hospitalization
Fracture/Falls

Domains

1 2 3 4 5 6 7
Baseline independent variables

- **Predictors**
 - Fried’s 5
 - Fried’s 5 + cognition
 - Fried’s 5 + mood
 - All 7 domains

- **Confounders**
 - Demographics (age, sex, education)
 - Baseline ADL
 - Number of comorbidities (likely variability across studies)

- **Other risk factors where available**
 - Sensory
 - Social (likely variability across studies)
Outcome variables

<table>
<thead>
<tr>
<th>Outcome</th>
<th>SIPA</th>
<th>UN</th>
<th>CSHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Incident ADL disability</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Institutionalization</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Falls/Fracture</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Utilization of health care</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Utilization of home care services</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Statistical analyses (1/2)

- Test whether domains predict adverse outcomes, individually and in combination
 - Longitudinal data analyses for repeated measures, if more than one follow-up point
 - Exact model will depend on nature of outcome variable
 - Survival analysis
 - (Repeated measures) logistic regression (GEE)
 - (Repeated measures) ANOVA (for continuous outcomes)

- Test whether addition of cognition and/or mood better predicts the outcomes
 - Interested in both model prediction AND explanation
 - Prediction: Choose best prediction models, use of c-statistic, AIC, BIC
 - Explanation: Assess statistical significance of domain variables
Statistical analyses (2/2)

- Assess relative importance of each significant domain based on model coefficients

- **Major issue**: Multicollinearity among domains
 - Will need to be dealt with on a database by database basis
 - Assess correlation through
 - Regressing each domain on all others predictors
 - Rule of thumb for bivariate correlations > 0.90
 - Recommend combining domains that are too highly correlated
Other exploratory analyses of interest?

Assessing whether the whole of the 7 candidate domains of frailty is greater than the sum of its parts
Is the whole more than the sum of its parts?

Case 1: Whole = Sum of its parts
Is the whole more than the sum of its parts?

Case 2: Whole < Sum of its parts
Is the whole more than the sum of its parts?

Case 3: Whole > Sum of its parts

Worsening disability

frailty markers