Latent Class Measurement of Frailty and Dysregulation in Older Adults

Karen Bandeen-Roche, Ph.D.
Departments of Biostatistics
Johns Hopkins University

Joint Statistical Meetings
Seattle, Washington
August 9, 2006
Outline

• Frailty and dysregulation
• Latent variable paradigm for measurement; application
• A new idea
 – Aims to balancing potentially conflicting theoretical premises
 – Application
• Discussion
Introduction
The Frailty Construct

Fried et al., J Gerontol 2001; Bandeen-Roche et al., J Gerontol, 2006
Frailty: Scientific Aims

- Sensitivity and specificity: A measure tied explicitly to systemic dysregulation

- Validate theory that frailty is:
 - More than a marker of disease
 - More than severe disability
 - A syndrome: an “aggregate” of component parts
 - A result of vulnerability to stressors & loss of reserve

- Product: A target for interventions
 - Deliverable: A summary variable

- Generalization: “Geronmetrics”
Frailty Measurement
Latent Variable Paradigm

\[Y_1 \]
\[\ldots \]
\[Y_p \]

Frailty

Determinants

\[D \]

Adverse outcomes

theory
Model

Generic

Specific (Latent Class Reg.; Categorical U=j, \{1,...,J\})

Measurement assumptions: [Y_i|U_i,x_i]

- conditional independence, nondifferential measurement

> heterogeneity in criterion presentation unrelated to measured or unmeasured characteristics

> fundamentally identifying
In what sense is LCA a “measurement” model?

• Does it “discover” structure?

• It operationalizes theory
 – Science: Test if predictions borne out
 – Most frequent theory: Homogeneity

• Sensitivity: Do minor changes to theory greatly affect conclusions?
Latent Class Measurement

How to obtain “indices”?

• Via **posterior probabilities** of class membership =

\[
\hat{F}_{U|Y,x}(u \mid y, x)
\]

• Then: exactly how?
 - “Modal”: by highest probability
 - “Pseudo-classes”: Randomize (*Bandeen-Roche et al.*, 1997; *Wang et al.*, 2005)
Latent Class Measurement Syndrome Validation Application

- **Data source:** Women’s Health and Aging Studies (WHAS; Guralnik et al., 1995; Fried et al., 2000)

- This analysis:
 - baseline cohort
 - n=740, age 70-79

- **Frailty:** Fried criteria (Y: Fried et al. 2001)
 - Exhaustion; grip strength; physical activity; walking speed; weight loss
Latent Class Measurement Syndrome Validation Application

- Criteria **manifestation is syndromic**

 "a group of signs and symptoms that occur together and characterize a particular abnormality" (Webster Medical Dictionary 2003)

- If criteria characterize syndrome:
 - At least two clinically homogeneous groups (if <2, no co-occurrence)
 - No subgrouping of symptoms (otherwise, more than one abnormality characterized)
Conditional Probabilities of Meeting Criteria in Latent Frailty Classes

WHAS

<table>
<thead>
<tr>
<th>Criterion</th>
<th>2-Class Model</th>
<th>3-Class Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CL. 1 NON-FRAIL</td>
<td>CL. 2 FRAIL</td>
</tr>
<tr>
<td>Weight Loss</td>
<td>.073</td>
<td>.26</td>
</tr>
<tr>
<td>Weakness</td>
<td>.088</td>
<td>.51</td>
</tr>
<tr>
<td>Slowness</td>
<td>.15</td>
<td>.70</td>
</tr>
<tr>
<td>Low Physical Activity</td>
<td>.078</td>
<td>.51</td>
</tr>
<tr>
<td>Exhaustion</td>
<td>.061</td>
<td>.34</td>
</tr>
<tr>
<td>Class Prevalence (%)</td>
<td>73.3</td>
<td>26.7</td>
</tr>
</tbody>
</table>

Bandeen-Roche et al., J. Gerontol Med Sci, 2006
Rationale of the New Work

• Which deserves pre-eminence?
 – Internally validating assumptions
 – Externally validating assumptions?
 • e.g. close tie to systemic dysregulation
 – Some compromise?
Rationale of the New Work

• Which deserves pre-eminence?
 – Internally validating assumptions
 –Externally validating assumptions?
 – Some compromise?

• A model (LCR) including externally validating variables and fitting by ML already “is” a compromise
A representation theorem

- Consider "mixing" & "kernel" distributions: true posterior, model
A representation theorem

- Y_i is equivalent in distribution to Y^* constructed as

1) Generate V_i^* from $F_{V|x}^*(v | x_i)$

2) Given V_i^*, generate Y^* from $F_{Y|V,x}^*(y | V_i^*, x_i)$

- **Relevance:**
 - True for $\theta^* = \text{Huber (1967) limit of MLE (e.g.)}$
True vs. realized mixing models

Class 1 vs class 3

-0.5
-0.2
0.0
0.2
0.4

logit

True
MLE
Rationale of the New Work

• Which deserves pre-eminence?
 – Internally validating assumptions
 – Externally validating assumptions?
 – Some compromise?

• Proposal: Allow stronger (or weaker) compromise than ML via “penalized” fitting
Implementing penalization

- **On LCR kernel**: Houseman, Coull & Betensky, *BMCS* online early

- **On LCR mixing distribution**: Sheppard et al., Session 320

- **Key questions**
 - Form of the penalty
 - Different purpose than usual?
 - What is the objective function?
One empirical lead

Deciding the extent of penalization

- Notice the form of $F_{V|x}^*(v|x_i)$:

- Idea 1: Right penalty yields $f^* = f$
Simulation study
Three-class model

- Small: 100 reps; single $x \sim \text{Unif}(-.5,.5)$
- Multiple n: Here, $n=2000$
- Poly Log Reg: $\beta_{01} = \beta_{02} = 0; \beta_{12} = -1.4; \beta_{12} = -2.8$
- Measurement:

<table>
<thead>
<tr>
<th>Class 1</th>
<th>Class 2</th>
<th>Class 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>.15</td>
<td>.85</td>
<td>.85</td>
</tr>
<tr>
<td>.15</td>
<td>.85</td>
<td>.85</td>
</tr>
<tr>
<td>.15</td>
<td>.85</td>
<td>.85</td>
</tr>
<tr>
<td>.15</td>
<td>.13</td>
<td>.85</td>
</tr>
<tr>
<td>.15</td>
<td>.13</td>
<td>.85</td>
</tr>
</tbody>
</table>
Simulation study
Three-class model

• Two scenarios (among more)
 – Frank LCR
 – Differential measurement: last two items have increased log(odds = 1) per unit x of 1.4 within each class

• Premise: $f_{v|x}(v|\theta, x_i)$, $f_{v|x}(v|\theta, x_i)$ quite different

• Measure: Kullback-Leibler distance
KL Distance: f^*, f

Scenario 1, $n=2000$

<table>
<thead>
<tr>
<th>$\hat{\beta}_{22}$</th>
<th>-3.4</th>
<th>-3.3</th>
<th>-3.2</th>
<th>-3.1</th>
<th>-3.0</th>
<th>-2.9</th>
<th>-2.8</th>
<th>-2.7</th>
<th>-2.6</th>
<th>-2.5</th>
<th>-2.4</th>
<th>-2.3</th>
<th>-2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_{12}$</td>
<td></td>
</tr>
<tr>
<td>-1.9</td>
<td>4.58</td>
<td>4.28</td>
<td>4.40</td>
<td>4.57</td>
<td>4.19</td>
<td>4.42</td>
<td>4.62</td>
<td>5.09</td>
<td>5.15</td>
<td>5.62</td>
<td>6.03</td>
<td>6.91</td>
<td>7.31</td>
</tr>
<tr>
<td>-1.8</td>
<td>4.52</td>
<td>4.36</td>
<td>4.18</td>
<td>4.07</td>
<td>3.88</td>
<td>3.96</td>
<td>4.22</td>
<td>4.26</td>
<td>4.55</td>
<td>5.09</td>
<td>5.52</td>
<td>5.96</td>
<td>6.58</td>
</tr>
<tr>
<td>-1.7</td>
<td>4.30</td>
<td>4.05</td>
<td>3.90</td>
<td>3.64</td>
<td>3.85</td>
<td>3.71</td>
<td>3.73</td>
<td>4.05</td>
<td>4.35</td>
<td>4.46</td>
<td>4.92</td>
<td>5.33</td>
<td>5.77</td>
</tr>
<tr>
<td>-1.6</td>
<td>4.56</td>
<td>4.21</td>
<td>3.80</td>
<td>3.62</td>
<td>3.52</td>
<td>3.54</td>
<td>3.67</td>
<td>3.69</td>
<td>3.88</td>
<td>4.07</td>
<td>4.36</td>
<td>4.88</td>
<td>5.46</td>
</tr>
<tr>
<td>-1.5</td>
<td>4.67</td>
<td>4.11</td>
<td>3.88</td>
<td>3.70</td>
<td>3.56</td>
<td>3.41</td>
<td>3.46</td>
<td>3.42</td>
<td>3.75</td>
<td>3.74</td>
<td>4.28</td>
<td>4.52</td>
<td>4.85</td>
</tr>
<tr>
<td>-1.4</td>
<td>4.87</td>
<td>4.39</td>
<td>3.91</td>
<td>3.84</td>
<td>3.62</td>
<td>3.27</td>
<td>3.62</td>
<td>3.40</td>
<td>3.69</td>
<td>3.68</td>
<td>3.70</td>
<td>4.03</td>
<td>4.52</td>
</tr>
<tr>
<td>-1.3</td>
<td>5.25</td>
<td>4.73</td>
<td>4.50</td>
<td>4.16</td>
<td>3.86</td>
<td>3.54</td>
<td>3.45</td>
<td>3.46</td>
<td>3.39</td>
<td>3.52</td>
<td>3.78</td>
<td>4.12</td>
<td>4.43</td>
</tr>
<tr>
<td>-1.2</td>
<td>5.58</td>
<td>4.99</td>
<td>4.76</td>
<td>4.47</td>
<td>4.16</td>
<td>3.81</td>
<td>3.70</td>
<td>3.60</td>
<td>3.75</td>
<td>3.74</td>
<td>3.85</td>
<td>4.25</td>
<td>4.30</td>
</tr>
<tr>
<td>-1.1</td>
<td>6.25</td>
<td>6.05</td>
<td>5.26</td>
<td>4.90</td>
<td>4.55</td>
<td>4.14</td>
<td>4.20</td>
<td>4.03</td>
<td>4.01</td>
<td>3.94</td>
<td>3.91</td>
<td>4.45</td>
<td>4.28</td>
</tr>
</tbody>
</table>
KL Distance: f^*, f

Scenario 2, $n=2000$

<table>
<thead>
<tr>
<th></th>
<th>$\hat{\beta}_{22}$</th>
<th>-3.8</th>
<th>-3.7</th>
<th>-3.6</th>
<th>-3.5</th>
<th>-3.4</th>
<th>-3.3</th>
<th>-3.2</th>
<th>-3.1</th>
<th>-3.0</th>
<th>-2.9</th>
<th>-2.8</th>
<th>-2.7</th>
<th>-2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_{12}$</td>
<td>-2.4</td>
<td>4.03</td>
<td>4.37</td>
<td>4.63</td>
<td>5.05</td>
<td>5.39</td>
<td>5.93</td>
<td>6.35</td>
<td>7.17</td>
<td>8.00</td>
<td>8.76</td>
<td>9.36</td>
<td>10.40</td>
<td>11.74</td>
</tr>
<tr>
<td></td>
<td>-2.3</td>
<td>3.79</td>
<td>3.87</td>
<td>4.10</td>
<td>4.59</td>
<td>4.93</td>
<td>5.14</td>
<td>5.84</td>
<td>6.38</td>
<td>6.76</td>
<td>7.79</td>
<td>8.55</td>
<td>9.46</td>
<td>10.50</td>
</tr>
<tr>
<td></td>
<td>-2.2</td>
<td>3.48</td>
<td>3.63</td>
<td>3.90</td>
<td>3.98</td>
<td>4.27</td>
<td>4.60</td>
<td>5.20</td>
<td>5.76</td>
<td>6.17</td>
<td>7.01</td>
<td>7.78</td>
<td>8.26</td>
<td>9.65</td>
</tr>
<tr>
<td></td>
<td>-2.1</td>
<td>3.31</td>
<td>3.17</td>
<td>3.47</td>
<td>3.51</td>
<td>3.95</td>
<td>4.25</td>
<td>4.69</td>
<td>5.04</td>
<td>5.64</td>
<td>6.34</td>
<td>7.01</td>
<td>8.09</td>
<td>9.07</td>
</tr>
<tr>
<td></td>
<td>-2.0</td>
<td>3.19</td>
<td>3.29</td>
<td>3.41</td>
<td>3.33</td>
<td>3.70</td>
<td>3.94</td>
<td>4.34</td>
<td>4.60</td>
<td>5.10</td>
<td>5.62</td>
<td>6.70</td>
<td>7.24</td>
<td>8.07</td>
</tr>
<tr>
<td></td>
<td>-1.8</td>
<td>3.31</td>
<td>3.24</td>
<td>3.22</td>
<td>3.26</td>
<td>3.35</td>
<td>3.63</td>
<td>3.98</td>
<td>4.35</td>
<td>4.75</td>
<td>5.12</td>
<td>5.34</td>
<td>6.40</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td>-1.7</td>
<td>3.56</td>
<td>3.33</td>
<td>3.43</td>
<td>3.32</td>
<td>3.31</td>
<td>3.57</td>
<td>3.85</td>
<td>4.17</td>
<td>4.40</td>
<td>4.79</td>
<td>5.43</td>
<td>6.00</td>
<td>6.33</td>
</tr>
<tr>
<td></td>
<td>-1.6</td>
<td>3.83</td>
<td>3.77</td>
<td>3.60</td>
<td>3.69</td>
<td>3.68</td>
<td>3.62</td>
<td>3.80</td>
<td>4.19</td>
<td>4.65</td>
<td>4.87</td>
<td>5.38</td>
<td>6.21</td>
<td>6.62</td>
</tr>
<tr>
<td></td>
<td>-1.5</td>
<td>4.36</td>
<td>3.95</td>
<td>4.02</td>
<td>3.97</td>
<td>3.89</td>
<td>3.82</td>
<td>4.05</td>
<td>4.24</td>
<td>4.56</td>
<td>5.05</td>
<td>5.37</td>
<td>5.86</td>
<td>6.36</td>
</tr>
<tr>
<td></td>
<td>-1.4</td>
<td>4.90</td>
<td>4.69</td>
<td>4.43</td>
<td>4.28</td>
<td>4.34</td>
<td>4.46</td>
<td>4.35</td>
<td>4.65</td>
<td>4.88</td>
<td>5.11</td>
<td>5.41</td>
<td>5.99</td>
<td>6.49</td>
</tr>
<tr>
<td></td>
<td>-1.3</td>
<td>5.56</td>
<td>5.41</td>
<td>5.11</td>
<td>4.95</td>
<td>4.77</td>
<td>4.84</td>
<td>4.72</td>
<td>4.74</td>
<td>5.01</td>
<td>5.49</td>
<td>5.85</td>
<td>6.19</td>
<td>6.60</td>
</tr>
<tr>
<td></td>
<td>-1.2</td>
<td>6.41</td>
<td>5.97</td>
<td>5.87</td>
<td>5.59</td>
<td>5.37</td>
<td>5.17</td>
<td>5.33</td>
<td>5.18</td>
<td>5.52</td>
<td>5.96</td>
<td>6.08</td>
<td>6.31</td>
<td>6.99</td>
</tr>
</tbody>
</table>

ML

True
Simulation Study

Empirical support for “penalty”?

- Average conditional probability estimates amazingly stable
- Distinction: $Y|V^*,x$
Frailty analysis: Data
InCHIANTI (Ferrucci et al., JAGS, 48:1618-25)

- **Aim**: Causes of walking decline

- **Brief design**
 - Random sample ≥ 65 years (n=1270)
 - Enrichment for oldest-old, younger ages
 - Participation: > 90% in the primary sample
 - Home interview, blood draw, physical exam

- **Dysregulation: inflammation – 7 cytokines**
 - $IL-6$, CRP, $TNF-\alpha$, $IL-1RA$, $IL-18$, $IL-1B$, $TGF-\beta$
 - Here: concern = poorer inhibition

- **Frailty**: Fried criteria (as before)
Frailty analysis: Results

• Measurement model: 2 classes
 – Conditional probabilities similar to WHAS
 – Lower “frail” prevalence (15% vs. 27%)

• Regression model
 – 1 SD worse inhibition index associated with 35% reduction in non-frail odds (z ~ 3)
 – Regression coefficient on original index scale: 3.00

• Next: Vary regression coefficients in increments of +/- 0.5, up to +/- 2.0
Frailty analysis: Results
Posterior probs. from different fits
Frailty analysis: Results
Posterior probs. non-frail, different fits
Frailty analysis: Results
Age-adjusted relation to mobility

<table>
<thead>
<tr>
<th>Frailty fit: inflamm. slope</th>
<th>Mobility slope (frail vs non)</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML – 2.0</td>
<td>-1.1</td>
<td>.089</td>
</tr>
<tr>
<td>ML – 1.0</td>
<td>-1.0</td>
<td>.087</td>
</tr>
<tr>
<td>ML – 0.5</td>
<td>-1.0</td>
<td>.086</td>
</tr>
<tr>
<td>ML</td>
<td>-0.99</td>
<td>.085</td>
</tr>
<tr>
<td>ML + 0.5</td>
<td>-0.93</td>
<td>.085</td>
</tr>
<tr>
<td>ML + 1.0</td>
<td>-0.92</td>
<td>.085</td>
</tr>
<tr>
<td>ML + 2.0</td>
<td>-0.82</td>
<td>.083</td>
</tr>
</tbody>
</table>
Recap

• Presented: Frameworks for measurement
 – of complex geriatric health states
 – incorporating biological knowledge

• Demonstrations
 – Frailty in WHAS
 – Frailty and inflammatory dysregulation in In CHIANTI
Rationale for the proposal

• vs looser internal validation criteria?
 – estimability

• vs Bayesian approach
 – depends on degree of empiricism
 – if balance by “consensus”—Bayesian

• Allows some distrust of the data
Research needed

- Theory elicitation, incorporation
- Methodology freeing measurement model estimation to “move” with “penalty”
 - Rotation?
 - Penalty on conditional probabilities
- Compromise of latent variable, predictive approaches
- Best index derivation
Implications

• Refined understanding of aging states and their measurement
 – Integrating biology
 – Increasing sensitivity, specificity

• Heightened accuracy, precision for
 – Delineating etiology
 – Developing and targeting interventions
Acknowledgments

• Hopkins Colleagues
 Linda Fried, Ron Brookmeyer, Yi Huang, Jeannie-Marie Leoutsakos, Jeremy Walston, Qian-Li Xue, Scott Zeger

• Colleagues outside of Hopkins
 Luigi Ferrucci, Jack Guralnik, Don Ingram, Richard Miller

• Funding / Institutional Support
 Johns Hopkins Older Americans Independence Center, National Institute on Aging, Alliance for Aging Research