STATISTICAL METHODS FOR Next Generation SEQUENCING

http://www.biostat.jhsph.edu/~khansen/enar2012.html

Zhijin Wu
Brown University

Kasper Hansen, Rafael A Irizarry Johns Hopkins University

OUTLINE

- Introduction to NGS
- SNP calling and genotyping
- RNA-sequencing
- Hands-on exercise

INTRODUCTION TO NEXT GENERATION SEQUENCING

RAFAEL A. IRIZARRY http: / / rafalab.org

Many slides courtesy of:
Héctor Corrada Bravo and Ben Langmead

REMEMBER THIS?

Back then: millions of clones (thousand bps) in 9 months for billions of dollars
Today: billion of short reads (35-100 bps) in a week for thousands of dollars
Claim: Assemble a genome in weeks for less than $\$ 100,000$

START WITH DNA (MILLIONS OF COPIES)

BREAK IT

PUT IN SEQUENCER

SEQUENCE FIRST 35-400 BPS: CALL THEM "READS"

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC СTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

PlatForms

illumina*

Applied Biosystems

ILLUMINA/SOLEXA

- Eight lanes
- ~160M short reads (~50-70 bp) per lane

Source: Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010
© 0 @HWI-EAS146:5:1:1:961\#0/1
TCCGAGGCCAACCGAGGCTCCGCGGCGCTGNNNNNNNNNNCNNNNN
$+$
CHWI CAI-EAS146:5:1:1:1595\#0/1 TCAGGAAGCAGGAAGAGCTGGTGCAGCAGGNNNNNNNNNNGNNNNN
${ }^{+} 9 \mathrm{~B} @ \mathrm{~B}<; \mathrm{BA} \mathrm{A} \subset @ \mathrm{AB} 9=1>\% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \%$ @HWI-EAS146:5:1:1:1048\#\#/1
@HWI-EAS146:5:1:1:1048\#\#/1 $+$
 WI-EAS146:5:1:1:1607\#0/1
CTCCTCTCAAGGTCCCCAGAAGCACAGCCAANNNNANTNNCTNNNN
BBCCCCCCBBCB7CBC $=7>+<>=\mathrm{BCBCB} \% \% \% \% \% \% \% \% \% \%$ @HWI-EAS146:5:1:1:1719\#0/1 CACGATCTGGGTTTATTGTAACCTCCGCCTCNNNNGNTNAAGNNNN
${ }^{+} C C ?+\angle B=$ PBB $5=A B A$?B6BBBB4BB?B\%\%\%\%\%\%\%\%\%\%\%\%\%\% @HWI-EAS 146:5:1:2:947\#月/1

name
sequence
quality scores

Source: Whiteford et al. Swift: primary data analysis for the Illumina

x 100s of millions

Solexa sequencing platform. Bioinformatics. 2009

Ilumina/Solexa - Reversible terminators

Wash, fourcolour imaging

(4)

b

Source: Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010

NOt JUst Assembly

- Resequencing
- SNP discovery and genotyping
- Variant discovery and quantification
- TF binding sites: ChIP-Seq
- Gene expression: RNA-Seq
- Measuring methylation

NOt JUst Assembly

naturenews

Access

This article is part of Nature's premium content.
Published online 15 October 2008 | Nature 455, 847 (2008)| doi:10.1038/455847a
Avews

The death of microarrays?

High-throughput gene sequencing seems to be stealing a march on microarrays. Heidi Ledford looks at a genome technology facing intense competition.

Heidi Ledford

Faster, cheaper DNA sequencing technology is revolutionizing the burgeoning field of personal genomics. But it is having another, more subtle effect.

Tools

Send to a Friend

1000 Genomes Project

A Deep Catalog of Human Genetic Variation
Home About Partners Data Contact Wiki

Genotyping

1000 GENOMES PROJECT DATA RELEASE

SNP data downloads and genome browser representing four high coverage individuals

The first set of SNP calls representing the preliminary analysis of four genome sequences are now available to download through the EBI FTP site and the NCBI FTP site. The README file dealing with the FTP structure will help you find the data you are looking for.

The data can also be viewed directly through the 1000 Genomes browser at http://browser.1000genomes.org. Launch the browser and view a sample region here.
More information about the data release can be found in the data section of this web site.
Download the $\mathbf{1 0 0 0}$ Genomes Browser Quick Start Guide
Quick start (pdf)

Human Epigenome PROJECT

Methylation

What TO DO WITH ALL THESE SEQUENCES?

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG тСтCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

MOST APPS: START BY MATCHING TO REFERENCE

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT

 GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGTATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT
GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC
ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG
TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA
TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC

TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT
TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG
CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT
GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC
СTCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGGATACCCTCGCTTTC

Variant detection

RNA-seq differential expression

GTCGCAGTANCTGTCT 11111111111111 GTCGCAGTATCTGTCT GTCGCAGTATCTGTCT GTCGCAGTATCTGTCT GTCGCAGTATCTGTCT GTCGCAGTATCTGTCT GTCGCAGTATCTGTCT
TGTCGCAGTATCTGTC
GGATCTGCGATATACC 1111111111111 GGATCT-CGATATACC

AATCTGATCTTATTTT |l|l|l|l|l|l|l aATCTGATCTtATtTT
atatatatatatatat 111111111111111 atatatatatatatat
 ATGTCGCAGTATCTG
tatatcgcagtatctg
TATATCGCAGTATCTG
TATATCGCAGTATCTG
CCCTATATCGCAGTAT
AGCACCCTATGTCGCA AGCACCCTATATCGCA AGCACCCTATGTCGCA
GAGCACCCTATGTCGC
CCGGAGCACCCTATAT
CCGGAGCACCCTATAT
GCCGGAGCACCCTATG

Gene I
CATTTGGTATTTTCGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTIATTCCTGCCTCATCCTATTATTTATCGCACCT
TGTCGCAGTATCTGTC

 1111111111111 GTCGCAGTATCTGTCT

GGATCTGCGATATACC

 ||||||||||||| gGatct-cgatataccAATCTGATCTTATTTT

ChIP-seq

MATCHING REVISTED

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT

ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT
GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG
TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA
TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC

TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT
TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG
CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT
GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC
CTCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGGATACCCTCGCTTTC

MATCHING 10,000,000 32 BPS READS

- BLAST takes more than 6 months
- BLAT takes 2 months
- MAQ takes 1 day and half
- Bowtie takes 17 minutes

MATCHING

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT
 ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC

Bowtie

JOHNS HOPKINS
BLOOMBERG
SCHOOL \& PUBLIC HEALTH

Bowtie is an ultrafast, memory-efficient short read aligner. It aligns short DNA sequences (reads) to the human genome at a rate of over $\mathbf{2 5}$ million $35-\mathrm{bp}$ reads per hour. Bowtie indexes the genome with a Burrows-Wheeler index to keep its memory footprint small: typically about $\mathbf{2 . 2}$ GB for the human genome (2.9 GB for paired-end).

```
TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC
TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT
TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG
CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT
GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC
```

CTCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGGATACCCTCGCTTTC

Mapping

Take a read:

CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC

And a reference sequence:

>MT dna:chromosome chromosome: GRCh37:MT:1:16569:1 GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT CGTCTGGGGGGTATGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTC GCAGTATCTGTCTTTGATTCCTGCCTCATCCTATTATTTATCGCACCTACGTTCAATATT ACAGGCGAACATACTTACTAAAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATA ACAATTGAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAAATTTCCACCA AACCCCCCCTCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAAAA ACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTATCTTTTGGCGGTATGCAC TTTTAACAGTCACCCCCCAACTAACACATTATTTTCCCCTCCCACTCCCATACTACTAAT CTCATCAATACAACCCCCGCCCATCCTACCCAGCACACACACACCGCTGCTAACCCCATA CCCCGAACCAACCAAACCCCAAACACACCCCCOACACTTTATCTACCTTACCTCCTCAAA GCAATACACTGACCC ©CTCAAACTCCTGGATTTTGGATCCACCCAGCGCCTTGGCCTAA
 TCACCCTCTAAATCACCACGATCAAAAGGAACAAGCATCAAGCACGCAGCAATGCAGCTC AAAACGCTTAGCCTAGCCACACCCCCACGGGAAACAGCAGTGATTAACCTTTAGCAATAA ACGAAAGTTTAACTAAGCTATACTAACCCCAGGGTTGGTCAATTTCGTGCCAGCCACCGC GGTCACACGATTAACCCAAGTCAATAGAAGCCGGCGTAAAGAGTGTTTTAGATCACCCCC TCCCCAATAAAGCTAAAACTCACCTGAGTTGTAAAAAACTCCAGTTGACACAAAATAGAC TACGAAAGTGGCTTTAACATATCTGAACACACAATAGCTAAGACCCAAACTGGGATTAGA TACCCCACTATGCTTAGCCCTAAACCTCAACAGTTAAATCAACAAAACTGCTCGCCAGAA CACTACGAGCCACAGCTTAAAACTCAAAGGACCTGGCGGTGCTTCATATCCCTCTAGAGG AGCCTGTTCTGTAATCGATAAACCCCGATCAACCTCACCACCTCTTGCTCAGCCTATATA CCGCCATCTTCAGCAAACCCTGATGAAGGCTACAAAGTAAGCGCAAGTACCCACGTAAAG ACGTTAGGTCAAGGTGTAGCCCATGAGGTGGCAAGAAATGGGCTACATTTTCTACECCAG AAAACTACGATAGCCCTTATGAAACTTAAGGGTCGAAGGTGGATTTAGCAGTA天ACTAAG AGTAGAGTGCTTAGTTGAACAGGGCCCTGAAGCGCGTACACACCGCCCGTCA CCTCCTC AAGTATACTTCAMACOAOATTHAMCTAMANCCCCTACCOTTTATATAGAGGAGACAAGT CGTAA CTCAAACTCCTGCCTTTGGTGATCCACCCGCCTTGGCCTACOTGCATAATGAAG AAGCACEЄn GCCCCAAACCCACTCCACCTTACTACCAGACAACCTTAGCCAAACCATTTACCCAAATAA AGTATAGGCGATAGAAATTGAAACCTGGCGCAATAGATATAGTACCGCAAGGGAAAGATG AAAAATTATAACCAAGCATAATATAGCAAGGACTAACCCCTATACCTTCTGCATAATGAA TTAACTAGAAATAACTTTGCAAGGAGAGCCAAAGCTAAGACCCCCGAAACCAGACGAGCT

How do we determine the read's point of origin with respect to the reference?

Answer: sequence similarity

Hypothesis 1:

Hypothesis 2:
Read
CTCAAACTCCTGACCTTTGGTGATCCACCCGCCTNGGCCTTC $\|$ CTCAAACTCCTG-CCTTTGGTGATCCACCCGCCTTGGCCTAC

Reference

Which hypothesis is better?
Say hypothesis 2 is correct. Why are there still mismatches and gaps?

More on variants and base-calling

SNPs

GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT
GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT
ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC CTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT

GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT

CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC
ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG
TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA
TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC

TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT
TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG
CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT
GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC
CTCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGGATACCCTCGCTTTC

SNPs

TCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTA
TCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTTTG
GTACTCGTCGCTGCGTTGAGGCTTGCGTTTTTGGT TGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTA GCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTAC CGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCT

GCGTTGAGGCTTGCGTTTATGGTACGCTGGATTTT
GTTGAGGCTTGCGTTTTTGGTACGCTGGACTTTGT
GTTGAGGCTTGCGTTTATGGTACGCTGGGCTTTTT
GAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGG
СTTGCGTTTATGGTACGCTGGACTTTGTAGGATAC
TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC TTGCGTTTATGGTACGCTGGACTTTGTAGGATACC

GCGTTTATGGTACGCTGGACTTTGTAGGATACCCT
CGTTTATGGTACGCTGGACTTTGTAGGATACCCTC
GTTTATGGTACGCTGGACTTTGTAGGATACCCTCG
TATGGTACGCTGGACTTTGTAGGATACCCTCGCTT
ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
ATGGTACGCTGGACTTTGTAGGATACCCTCGCTTT
CTCTCGTGCTCGTCGCTGCGTTGAGGCTTGCGTTTATGGTACGCTGGACTTTGTAGGATACCCTCGCTTTC

All Reads

1000 Genomes Data

1000 Genomes Data

What is causing this?

Bridge amplification
Source: Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010

(0) 00

 @HWI-EAS146:5:1:1:961\#0/1TCCGAGGCCAACCGAGGCTCCGCGGCGCTGNNNNNNNNNNCNNNNN
$B B B B>A P B @$; $@ B B B B B A A=B A=A \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \%$ @HWI-EAS146:5:1:1:1595\#0/1
TCAGGAAGCAGGAAGAGCTGGTGCAGCAGGNNNNNNNNNNGNNNNN
 @HWI-EAS146:5:1:1:1048\#\#/1
@HWI-EAS146:5:1:1:1048\#\#/1 $+$
 HWI-EAS146:5:1:1:1607\#8/1 CTCCTCTCAAGGTCCCCAGAAGCACAGCCAANNNNANTNNCTNNN

BCCCCCCBBCB7CBC $=7>+<>=B C B C B \% \% \% \% \% \% 89 \% \% \% \% \%$ @HWI-EAS146:5:1:1:1719\#0/1 CACGATCTGGGTTTATTGTAACCTCCGCCTCNNNNGNTNAAGNNNN
 @HWI-EAS146:5:1:2:947\#B/1

Source: Whiteford et al. Swift: primary data analysis for the Illumina Solexa sequencing platform. Bioinformatics. 2009
name
sequence
quality scores

x 100s of millions

llumina/Solexa - Reversible terminators

Wash, fourcolour imaging

(E) ABCA
b

Source: Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010
(slide courtesy of Ben Langmead)

Before Reads There were Intensities

>	ints[1:10,1:4]			
	A.1	C.1	G.1	T.1
1	154.8	122.1	119.3	13001.9
2	1093.5	6186.6	-798.4	208.3
3	892.3	4028.2	-367.9	-463.9
4	590.5	2607.9	-81.6	188.7
5	979.4	6411.0	943.5	454.9
6	945.5	4943.1	19.7	-1170.8
7	2555.0	213.3	15.5	4358.8
8	1085.2	5834.5	-384.7	-94.1
9	267.6	340.3	6866.2	5788.6
10	1162.6	6424.4	-497.6	-149.2

We Want to See This

Four-channel fluorescence intensity, cycle 1

Color coded by call made: A, C, G, T

But See This

Color coded by call made: A, C, G, T

Four-channel fluorescence intensity, cycle 1

Gets Worse for higher cycles

Four-channel fluorescence intensity

Error Rate and Reported Quality

Remember This?

Bias Explained

Base Calling

1) Rougemont et al. Probabilistic base calling of Solexa sequencing data. BMC Bioinformatics (2008)
2) Erlich et al. Alta-Cyclic: a self-optimizing base caller for next-generation sequencing. Nat Methods (2008)
3) Kao et al. BayesCall: A model-based base-calling algorithm for high-throughput short-read sequencing. Genome Res (2009)
4) Corrada Bravo and Irizarry. Model-Based Quality Assessment and Base-Calling for Second-Generation Sequencing Data. Biometrics (2009)
5) Cokus et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature (2009)

Intensity Model

cycle

Intensity Model

\log intensity read i, cycle j, channel c

$$
u_{i j c}=\frac{\Delta_{i j c}\left(\mu_{c j \alpha}+x_{j}^{T} \alpha_{i}+\epsilon_{i j c}^{\alpha}\right)+}{\underline{\left(1-\Delta_{i j c}\right)}\left(\mu_{c j \beta}+x_{j}^{T} \beta_{i}+\epsilon_{i j c}^{\beta}\right)}
$$

indicators of nucleotide identity, read i, pos. j

$$
\Delta_{i j c}= \begin{cases}1 & \text { if } c \text { is the nucleotide in read } i \text { position } j \\ 0 & \text { otherwise }\end{cases}
$$

Intensity Model

log intensity read i, cycle j, channel c

$$
\begin{aligned}
u_{i j c}= & \Delta_{i j c}\left(\mu_{c j \alpha}+\underline{x_{j}^{T} \alpha_{i}}+\epsilon_{i j c}^{\alpha}\right)+ \\
& \left(1-\Delta_{i j c}\right)\left(\mu_{c j \beta}+\underline{x_{j}^{T} \beta_{i}}+\epsilon_{i j c}^{\beta}\right)
\end{aligned}
$$

read-specific linear models

Intensity Model

\log intensity read i, cycle j, channel c

$$
\begin{aligned}
u_{i j c}= & \Delta_{i j c}\left(\mu_{c j \alpha}+x_{j}^{T} \alpha_{i}+\underline{\epsilon_{i j c}^{\alpha}}\right)+ \\
& \left(1-\Delta_{i j c}\right)\left(\mu_{c j \beta}+x_{j}^{T} \beta_{i}+\underline{\epsilon_{i j c}^{\beta}}\right)
\end{aligned}
$$

measurement error

$$
\epsilon_{i j c}^{\alpha} \sim N\left(0, \sigma_{\alpha i}^{2}\right) \quad \epsilon_{i j c}^{\beta} \sim N\left(0, \sigma_{\beta i}^{2}\right)
$$

Read \& Cycle Effects

Base Identity Probability Profiles

Before And After

Solexa (Default)

The End

