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and the assay



RNAs
poly-adenylated (coding) RNAs, “genes”

short non-coding RNAs (ncRNA), “microRNA”

long non-coding RNAs

ribosomal RNA

} Total RNA



RNAs
poly-adenylated (coding) RNAs, “genes”

short non-coding RNAs (ncRNA), “microRNA”

long non-coding RNAs

ribosomal RNA

Most of the RNA in the cell

} Total RNA

{ polyA capture
ribominus

Enrichment



RNAs
poly-adenylated (coding) RNAs, “genes”

short non-coding RNAs (ncRNA), “microRNA”

long non-coding RNAs

ribosomal RNA

Most of the RNA in the cell

intron exon

AAAAAAAAAAAAAAAAAAA

pre-mRNA

mature mRNA

splicing

poly-A tail

} Total RNA

{ polyA capture
ribominus

Enrichment



Yeast

877,000 878,000 879,000 880,000 881,000 882,000 883,000 884,000 885,000 886,000 887,000 888,000

HIP1 > 
protein coding 

SGD

< CRH1 
protein coding 

< tW(CCA)G2 
tRNA 

< YGR190C 
protein coding 

< TDH3 
protein coding 

< PDX1 
protein coding 

< XKS1 
protein coding 

SGD

877,000 878,000 879,000 880,000 881,000 882,000 883,000 884,000 885,000 886,000 887,000 888,000

 protein coding  RNA geneGene Legend
There are currently 28 tracks turned off.
Ensembl Saccharomyces cerevisiae version 66.4 (EF4) Chromosome VII: 876,932 - 888,787

11.86 Kb Forward strand

Reverse strand 11.86 Kb

Only one transcript per gene
No (little) splicing
Overlapping genes
Little space between genes



TP53 (human gene)
7.57 Mb 7.58 Mb 7.58 Mb 7.58 Mb 7.59 Mb

p13.1Chromosome bands

WRAP53-009 > 
protein coding 

WRAP53-001 > 
protein coding 

WRAP53-008 > 
protein coding 

Ensembl/Havana gene

< TP53-203 
protein coding 

< TP53-201 
protein coding 

< TP53-006 
retained intron 

< TP53-007 
retained intron 

< TP53-008 
retained intron 

< TP53-001 
protein coding 

< TP53-004 
protein coding 

< TP53-005 
protein coding 

< TP53-002 
protein coding 

< TP53-202 
protein coding 

< TP53-206 
protein coding 

< TP53-205 
protein coding 

< TP53-015 
protein coding 

< TP53-013 
protein coding 

< TP53-009 
retained intron 

< TP53-204 
protein coding 

< TP53-014 
protein coding 

< TP53-003 
protein coding 

Ensembl/Havana gene

7.57 Mb 7.58 Mb 7.58 Mb 7.58 Mb 7.59 Mb

 protein coding  processed transcript
 merged Ensembl/Havana

Gene Legend

There are currently 423 tracks turned off.
Ensembl Homo sapiens version 66.37 (GRCh37) Chromosome 17: 7,565,097 - 7,590,856

25.76 Kb Forward strand

Reverse strand 25.76 Kb



TP53 (human gene)

7.57 Mb 7.58 Mb 7.58 Mb 7.58 Mb 7.59 Mb
p13.1Chromosome bands

WRAP53-009 > 
protein coding 

WRAP53-001 > 
protein coding 

WRAP53-008 > 
protein coding 

Ensembl/Havana gene

< TP53-203 
protein coding 

< TP53-201 
protein coding 

< TP53-006 
retained intron 

< TP53-007 
retained intron 

< TP53-008 
retained intron 

< TP53-001 
protein coding 

< TP53-004 
protein coding 

< TP53-005 
protein coding 

< TP53-002 
protein coding 

< TP53-202 
protein coding 

< TP53-206 
protein coding 

< TP53-205 
protein coding 

< TP53-015 
protein coding 

< TP53-013 
protein coding 

< TP53-009 
retained intron 

< TP53-204 
protein coding 

< TP53-014 
protein coding 

< TP53-003 
protein coding 

Ensembl/Havana gene

7.57 Mb 7.58 Mb 7.58 Mb 7.58 Mb 7.59 Mb

 protein coding  processed transcript
 merged Ensembl/Havana

Gene Legend

There are currently 423 tracks turned off.
Ensembl Homo sapiens version 66.37 (GRCh37) Chromosome 17: 7,565,097 - 7,590,856

25.76 Kb Forward strand

Reverse strand 25.76 Kb



Questions
What is the structure of known and unknown transcripts

Changes in splicing

Gene expression

Transcript expression

Allele speci!c expression



Technical variation (broad overview)
Take tissue sample from individual

Extract RNA from tissue sample

Convert RNA to DNA

Sequence DNA



Technical variation (broad overview)
Take tissue sample from individual

Extract RNA from tissue sample

Convert RNA to DNA

Sequence DNA

All of the above induces technical variation.

Several steps are independent of technology.

Also: day-to-day, laboratory, experimenter, machine



Standard protocol
The current standard protocol for RNA-Seq is

      Extraction of RNA, polyA puri!cation
      Fragmentation of RNA
      Reverse transcription of RNA to cDNA (using random hex.)
      Ligation of adapters
      Size selection ~ 200bp (perhaps ~300bp)
      PCR ampli!cation (15 rounds or so)
      Injection into "owcell

This produces reads from polyadenylated RNA without strand 
information.
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      Extraction of RNA, polyA puri!cation
      Fragmentation of RNA
      Reverse transcription of RNA to cDNA (using random hex.)
      Ligation of adapters
      Size selection ~ 200bp (perhaps ~300bp)
      PCR ampli!cation (15 rounds or so)
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ribominus instead of polyA puri!cation
strand speci!city
small RNA sequencing (direct ligation of adaptors to RNA)
[  oligo(dT) priming instead of random hexamer priming  ]

Variants



Overview
peaks in a portion or all of the control data. The FDR in this case is 
given as the ratio of the number of peaks called in the control to the 
number of peaks called for the ChIP data.

Specialized software to analyze histone modification ChIP-seq 
data that start to address higher-level analyses include ChIPDiff21 
and ChromaSig22. ChIPDiff uses a hidden Markov model to assess 
the differences in the histone modifications from the ChIP-seq sig-
nal between two libraries, for example, from different cell types. 
ChromaSig performs unsupervised learning on ChIP-seq signals 
across multiple experiments to determine significant patterns of 
chromatin modifications.

Other subtleties in the ChIP-seq signal present challenges for 
both computation and interpretation of downstream results. Some 
ChIP-seq peak regions are spatial or temporal convolutions of mul-
tiple biologically true sources. In such cases, the highest density of 
reads does not always correspond to a source point (Fig. 4b). This 
complexity can be magnified as one moves from relatively large 
mammalian genomes with long stretches of intervening DNA iso-
lating regulatory modules from each other, to smaller genomes with 
potentially higher densities of binding sites compressed in compli-
cated modules. Computationally, this turns the problem from one 
of peak identification to peak deconvolution. In regions where this 
occurs the signal-to-noise characteristics usually determine whether 
it is feasible to discriminate occupancy among the different indi-
vidual sites. In the temporal case, a transcription factor binding site 
that is bound in an undifferentiated cell type, for instance, and not 
bound in a differentiated cell type, will be diluted relative to sites 
that are bound in both states whenever the starting cell population 
is a mixture of the two cell types. In an embryo or whole organism, 
a given factor may bind partly or entirely nonoverlapping regulatory 
modules, thus mixing signals that would otherwise be spatially and/
or temporally distinct in defined cell subpopulations.

Last but not least, the stochastic sampling of the DNA fragments 
means that as more sequencing is done on a given sample addi-
tional weak but potentially significant signals will continue to be 
discovered. How many of these are functionally important is not 
a priori clear, without explicit testing. This uncertainty will affect 
how these weaker features are used (or eliminated) for input into 
higher-level integrative analysis. Although weak-signal sites can be 
confirmed using related techniques such as ChIP–quantitative PCR 
and ChIP-chip, supported by in vitro binding to the sequence and 
by computational presence of binding motifs in the DNA, utterly 
independent evidence of occupancy, such as that provided by in 
vivo footprinting or site mutation in transfection assays, has yet to 
be marshaled for a convincingly large sample of such peaks with 
weak signal. What is certain, however, is that the complexity of the 
ChIP library (how many different founder DNA fragments are cap-
tured for sequencing) and the depth of sequencing must be properly 
adjusted to match the experimental goal and the underlying biology. 
Thus chromatin marks that cover large areas of the genome call for 
deeper sequencing or for additional algorithmic inferences to define 
large signal domains, compared with point source binding.

Transcriptome analysis of RNA-seq data
Transcriptome analysis has multiple functions, broadly divided 
between transcript discovery and mapping on one hand and RNA 
quantification on the other. The software subtasks needed for 
analysis depend on which of those two aspects are paramount in 
a given study. The first generation of RNA-seq studies published 

strands (directionality) and single-site duplicates. Directionality cri-
teria include: fraction of plus and minus tags, fraction of plus (minus) 
tags occurring to the left (right) of the putative peak, and the presence 
of a partnered plus (minus) peak for each minus (plus) peak. Note 
that default values for the directionality filtering may be too strin-
gent if data are noisier than in the first generation of experiments 
used to develop the algorithms. Also, this filter may incorrectly reject 
complex peak regions, that is, those that contain more than one sum-
mit. QuEST, FindPeaks and PeakSeq attempt to subdivide regions 
into more than one summit call (multiple overlapping sources), but 
this remains an active area of research. Duplicate filters are relatively 
straightforward and eliminate tags at single sites that exhibit counts 
much greater than that expected by chance.

Significance ranking. Called peak regions encompass a wide range 
of quantitative enrichments; thus an assessment of the relative confi-
dence one should place in a given set of peaks or, if possible, each indi-
vidual peak is informative. Most of the algorithms currently compute 
P values either after the fact or as part of the peak calling procedure 
and these are provided with the output peak list. The packages that 
provide P and/or q values are: CisGenome, ERANGE, GLITR, MACS, 
PeakSeq, QuEST SICER, SiSSrs spp and USeq (Table 1). A few callers 
do not provide P values, in which case the use of the peak height or 
fold enrichment may be used to provide a peak ranking, though not 
statistical significance. From an end user perspective, the false discov-
ery rate is often of paramount interest and one can compute a P value 
from a false discovery rate or vice versa for a known distribution. 
Generally, however, it is not known a priori whether the distribution 
assumption made in calculating the P value is appropriate, thus the 
correct false discovery rate may be far different from the one based on 
the P value threshold. Therefore some programs (ERANGE, MACS, 
QuEST, spp and USeq) instead compute an empirical FDR by calling 
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Figure 5 | Overview of RNA-seq. A RNA fraction of interest is selected, 
fragmented and reverse transcribed. The resulting cDNA can then be 
sequenced using any of the current ultra-high-throughput technologies to 
obtain ten to a hundred million reads, which are then mapped back onto the 
genome. The reads are then analyzed to calculate expression levels. 
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Gene by Sample
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Gene level data
Gene model + overlap rule = gene x sample matrix

(like microarrays)

Much work by statisticians re. inferring changes between 
conditions (differential expression).

Count data (many zeroes, very large range)

how do we model biological variability



RPKM
We need to control for
  sequencing depth
  gene length

Mortazavi (2008) Nat. Methods introduced “RPKM”.

RPKM(g, i) =
X(g, i)

L(g)N(i)



The big deal

and phage lambda templates (Fig. 2c). These standards comprised 
long (~10,000 nt), intermediate (~1,500 nt) and short (~300 nt) 
transcripts, and they were designed to span the range of abundance 
(~0.5–50,000 transcripts per cell) typically observed in natural 
transcriptomes. RNA-Seq data for the standards were linear across 
a dynamic range of five orders of magnitude in RNA concentra-
tion. Sequence coverage over test transcripts was highly reproducible 
and quite uniform (Supplementary Fig. 1c). At current practical 
sequencing capacity and cost (~40 M mapped reads), transcript 
detection was robust at 1.0 RPKM and above for a typical 2-kilo-
base (kb) mRNA (~80 individual sequence reads resulting in a P 
value <10 16). Beyond simple detection confidence, we analyzed the 
impact of different amounts of sequencing on our ability to measure 
the concentration of a given transcript class (defined on the basis of 
RPKM) within ±5% (Fig. 2d). When these RNA standards are used 
in conjunction with information on cellular RNA content, abso-
lute transcript levels per cell can also be calculated. For example, on 
the basis of literature values for the mRNA content of a liver cell19 
and the RNA standards, we estimated that 3 RPKM corresponds to 
about one transcript per liver cell. For C2C12 tissue culture cells, for 

High read number is relevant for RNA-Seq because our ability to 
reliably detect and measure rare, yet physiologically relevant, RNA 
species (those with abundances of 1–10 RNAs per cell) depends on 
the number of independent pieces of evidence (sequence reads) 
obtained for transcripts from each gene. This constraint influenced 
our sequencing strategy, choice of instrument and choice of the 
25-bp read length.

The sensitivity of RNA-Seq will be a function of both molar con-
centration and transcript length. We therefore quantified transcript 
levels in reads per kilobase of exon model per million mapped reads 
(RPKM) (Fig. 1a,c). The RPKM measure of read density reflects 
the molar concentration of a transcript in the starting sample by 
normalizing for RNA length and for the total read number in the 
measurement. This facilitates transparent comparison of transcript 
levels both within and between samples.

Examination of a well-characterized locus
Data from a 21-million-read transcriptome measurement of adult 
mouse skeletal muscle (Fig. 1b,c) illustrate some key characteris-
tics of our results. Myf6 (also known as Mrf4) is a much-studied 
myogenic transcription factor gene that is 
expressed specifically and modestly in mus-
cle, as expected, but silent in liver and brain. 
Evidence for Myf6 expression in skeletal 
muscle (Fig. 1b) consisted of 1,295 sequence 
reads 25 bp in length that map uniquely to 
Myf6 exons, and 30 reads that cross splice 
junctions; another four reads fell within the 
introns. Brain and liver measurements of 
similar total read number had 1 and 0 reads 
on Myf6 exons, illustrating favorable signal-
to-noise characteristics, absolute signal and 
specificity (Fig. 1c).

RNA-Seq global data properties
Technical replicate determinations of 
transcript abundance were reproducible  
(R2 = 0.96, Fig. 2a). Summing the replicates 
over an entire transcriptome (Fig. 2b, liver; 
Supplementary Table 2 online) showed that 
the vast majority of reads (93%) mapped to 
known and predicted exons, even though 
the exons comprise <2% of the entire 
genome; 4% of reads were within introns; 
and only 3% fell in the large intergenic terri-
tory. We expected to observe some intronic 
reads in total poly(A)+ RNA because such 
preparations are known to include partially 
processed nuclear RNAs and because some 
genes might have internal exons that have 
not yet been added to the gene models. The 
3% intergenic fraction places a rough upper 
bound on possible noise reads.

To assess the dynamic range of RNA-Seq 
and to test for possible effects of starting 
transcript length on the observed transcript 
abundance, we introduced into each exper-
imental sample a set of known RNA stan-
dards transcribed in vitro from Arabidopsis 
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Figure 2 | Reproducibility, linearity and sensitivity. (a) Comparison of two brain technical replicate 
RNA-Seq determinations for all mouse gene models (from the UCSC genome database), measured in 
reads per kilobase of exon per million mapped sequence reads (RPKM), which is a normalized measure 
of exonic read density; R2 = 0.96. (b) Distribution of uniquely mappable reads onto gene parts in 
the liver sample. Although 93% of the reads fall onto exons or the RNAFAR-enriched regions (see 
Fig. 3 and text), another 4% of the reads falls onto introns and 3% in intergenic regions. (c) Six in 
vitro–synthesized reference transcripts of lengths 0.3–10 kb were added to the liver RNA sample (1.2 
 104 to 1.2  109 transcripts per sample; R2 > 0.99). (d) Robustness of RPKM measurement as a 

function of RPKM expression level and depth of sequencing. Subsets of the entire liver dataset (with 
41 million mapped unique + splice + multireads) were used to calculate the expression level of genes 
in four different expression classes to their final expression level. Although the measured expression 
level of the 211 most highly expressed genes (black and cyan) was effectively unchanged after 8 
million mappable reads, the measured expression levels of the other two classes (purple and red) 
converged more slowly. The fraction of genes for which the measured expression level was within 5% 
of the final value is reported. 3 RPKM corresponds to approximately one transcript per cell in liver. The 
corresponding number of spliced reads in each subset is shown on the top x axis.
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Poisson
Marioni (2008) Genome Res. showed that technical replicates 
are poisson.

Bullard (2010) BMC Bioinformatics con!rmed and extended to 
library preparation.

None of these papers looked at biological replicates or RNA 
extraction.  Only the technical variation introduced by the 
sequencing machine.

X(g, i) ∼ Poisson(λgN(i))



Negative Binomial
Several papers have considered more complicated count 
models, especially the negative binomial.

We have tricks for borrowing strength across genes.

Key papers are
   Anders (2010) Genome Biology  [“DESeq”]
   Hardcastle (2010) BMC Bioinformatics  [“baySeq”]
   McCarthy (2012) Nucleic Acids Res  [“edgeR”]

Implementations in Bioconductor.  Things change fast.

X(g, i) ∼ F
�
θ(g), N(i)

�



The size factor
We need values of N(i) (“sequencing depth”) or (“size factor”)

Naive estimates:
  Number of reads
  Number of mapped reads

Several (scale) normalization methods exist.
  Bullard (2010) BMC Bioinformatics (“upper quartile”)
  Robinson (2010) Genome Biology (“TMM”)
  Anders (2010) Genome Biology

This is especially an issue when comparing very different 
samples.  For example, between tissue types.

Langmead (2010) Genome Biology shows that it may be a good 
idea to use a gene-speci!c normalization factor.



Biological variability

NATURE BIOTECHNOLOGY   VOLUME 29   NUMBER 7   JULY 2011 573

each gene in a study. Supplementary Table 1 
summarizes a large number of published 
RNA-sequencing studies over the past three 
years. In every case, except for the two studies 
we analyzed here, conclusions were based on 
a small number (n  2) of biological replicates. 
One goal of RNA-sequencing studies may 
be simply to identify and catalog expression 
of new or alternative transcripts. However, 
all of these studies make broader biological 
statements on the basis of a very small set of 
biological replicates.

Our analysis has two important 
implications for studies performed with a 
small number of biological replicates. First, 
significant results in these studies may be 
due to biological variation and may not be 
reproducible; and second, it is impossible 
to know whether expression patterns are 
specific to the individuals in the study or 
are a characteristic of the study populations. 
These ideas are now widely accepted for 
DNA microarray experiments, where a large 
number of biological replicates are now 
required to justify scientific conclusions. Our 
analysis suggests that as biological variability 
is a fundamental characteristic of gene 
expression, sequencing experiments should be 
subject to similar requirements.

Note: Supplementary information is available on the 
Nature Biotechnology website.
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this result, we estimated the proportion 
of the total variability for each gene that is 
attributable to biology by applying a mixed 
effects model to data from the sequencing (11 
samples) and DNA microarray (14 samples) 
experiments for which we had two technical 
replicates. In general, most of the observed 
variation was biological, rather than technical 
(Supplementary Fig. 2b).

Biological variability has important 
implications for the design, analysis 
and interpretation of RNA-sequencing 
experiments. For example, a large observed 
difference in expression of COX4NB between 
two groups is likely important because the 
expression of this gene varies little across 
individuals. Meanwhile, that same difference in 
expression for RASGRP1 may be meaningless 
because the expression for that gene is highly 
variable. If only a few biological replicates are 
available, it will be impossible to estimate the 
level of biological variability in expression for 

individuals as measured with microarrays 
and sequencing (Supplementary Methods). 
We found that variability in expression for 
each gene was similar in microarray and 
sequencing technologies (Fig. 1a,b). The 
same trend existed for different choices 
of variability measures (Supplementary 
Fig. 1a,b) and for different methods of 
calculating expression from sequencing 
(Supplementary Fig. 1c,d). We also found that 
transcripts showed substantial differences in 
biological variability. For example, COX4NB 
was not strongly variable in either population, 
whereas RASGRP1 was highly variable 
for both populations, again regardless of 
technology (Fig. 1c). The technical variability 
for both genes was substantially smaller 
than the total variability (Supplementary 
Fig. 2a). These results are consistent with 
biological variability being a property of gene 
expression itself, rather than the technology 
used to measure expression. To confirm 
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Figure 1  Biological variability measured with sequencing and microarrays. (a) A plot of the s.d. of 
expression values as measured with microarrays in the Stranger et al. study15 (x axis) and sequencing 
in the Montgomery et al. study13 (y axis). The estimates of expression variability from sequencing are 
similar to the estimates from microarrays. (b) A plot of the s.d. of expression values as measured with 
microarrays in the Choy et al. study16 (x axis) and the Pickrell et al. study14 (y axis). The estimates 
of expression variability from sequencing are again almost the same as estimates from microarrays. 
In eah plot, the black line is the best linear fit and the red line is the line y = x. (c) A plot of the 
expression for two genes COX4NB (left column, pink) and RASGRP1 (right column, blue) as measured 
with sequencing (top row) and microarrays (bottom row) versus biological sample. Mean-centered 
measurements from the two studies are plotted as circles and triangles, respectively. The s.d. for the 
two genes are highlighted in a,b. The plot shows that regardless of the measurement technology or 
study, COX4NB expression is much less variable than RASGRP1 expression.
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Problems: length bias
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transcript. The two fitted curves show the mean-variance
relationship for one third of the data with the longest
transcripts and with the shortest transcripts. It is easy to
see that for genes normalized by length shorter transcripts
have larger variance for the same expression level com-
pared to longer transcripts.

The consequences of transcript length bias in RNA-seq
data becomes most problematic when comparing
between genes or sets of genes with different lengths. This
is most likely to occur when doing gene set testing in sys-
tems biology, where specific gene sets have a length bias
compared to other sets of genes. If a set contains genes
shorter than average it will appear under-represented in
differential expression whereas if the set contains genes
longer than average the category is more likely to be over-
represent in differential expression. To demonstrate this
effect we looked for over-represented KEGG pathways
using the Marioni et al RNA-seq and microarray data. In
each analysis we only used genes found on both platforms
and then performed a pathway analysis using the DAVID
software [7,8]. We found several pathways which were
over-represented for differential expression between liver
and kidney. Tables 1 and 2 show all of the pathways over-
represented below a p-value of 0.1 (however after multi-

ple testing correction only the top 16 categories remain in
the microarray data at the same significance as the
sequencing data). Categories highlighted in bold do not
appear overrepresented anywhere in the list from the
other platform. After multiple testing correction the
microarray platform contains four pathways below a
threshold of 0.1 all of which are found in the sequencing
data. By contrast the RNA-seq data contains nine catego-
ries of which three are not contained anywhere on the
array data. Figure 3 shows the lengths of the genes associ-
ated with each of these categories. The first box gives the
distribution of genes in pathways appearing significant on
both platforms. The second box gives genes appearing sig-
nificant only in the sequencing platform (i.e. do not
appear anywhere on the list from the array platform) and
the third box is the length distribution of all the tran-
scripts in the analysis. It can be clearly seen that genes in
categories only over-represented on the RNA-seq platform
are significantly longer than average.

Discussion
Transcript length bias in RNA-seq data is a predictable
consequence of the sampling process and cannot be cor-
rected by dividing by length of the transcript (e.g. the sta-
tistical methods in Cloonan et al (2008) or Sultan et al.

Differential expression as a function of transcript lengthFigure 1
Differential expression as a function of transcript length. The data is binned according to transcript length and the per-
centage of transcripts called differentially expressed using a statistical cut-off is plotted (points). A linear regression is also plot-
ted (lines). a – e use all the data from RNA-seq and the microarrays from studies [4-6] respectively. f and g plot 33% of genes 
with highest expression levels (blue crosses) and 33% of genes with low expression (red triangles) taken from the microarray 
data for genes which appear on both platforms in [6]. The regression gives a significant trend for the percent of differential 
expression with transcript length for a, c, d and f and the lowly expressed genes in g. Note that this figure illustrates common 
data features between disparate experiments and is not a comparison between platforms, methods or experiments.

Oshlack (2009) Biology Direct



Problems: GC content bias
Removing technical variability in RNA-seq 207

Fig. 1. Exploratory plots. (a) The points show the frequency of counts in the bins shown on the x-axis. The 3 colors
represent 3 samples (NA12812, NA12874, and NA11993) from the Montgomery data. (b) log2-RPKM values are
stratified by GC-content for 2 biological replicates from the Montgomery data (NA11918 and NA12761) and are
summarized by boxplots. The 2 samples are distinguished by the 2 colors (colors can be seen in the online version).
Genes with average (across all 60 samples) log2-RPKM values below 2 are not shown. (c) Log fold changes between
RPKM values from the 2 samples and the same genes shown in (b) were computed and are plotted against GC-content.
Red is used to show the genes with the 10% highest GC-content and blue is used to show the genes with the 10%
lowest GC-content. (d) RPKM log fold changes are plotted against average log2 counts for the samples and genes
shown in (b), with the same color coding as in (c). (e) As (d) but from values corrected using the method proposed by
Pickrell and others (2010). (f) As (d) but for values normalized using our approach (see Section 4).

the percent of C or G nucleotides in a gene: the so-called “GC-content” effect. GC-content has been shown
to influence a number of DNA-related measurements. Examples include gene expression microarrays (Wu
and others, 2004; Zhang and others, 2003; Naef and Magnasco, 2003), copy number arrays (Nannya and
others, 2005; Carvalho and others, 2007), sequencing coverage (Dohm and others, 2008), and RNA-seq
(Pickrell and others, 2010). The difference in counting efficiency between genes means that expression
levels cannot be compared between genes directly. A more subtle and detrimental problem is that these
systematic biases affect different samples differently, thus, even within gene, comparison between 2 sam-
ples becomes problematic. In fact, Pickrell and others (2010) demonstrated that the GC-content effect
can change from sample to sample. Here, we demonstrate that this appears to be a general problem. In
Figure 1(b), we show the distribution of log2-RPKM for various strata of gene GC-content for 2 biolog-
ical replicates from the Montgomery study. For illustration purposes, we selected one sample in which
a higher GC-content leads to increased counting efficiency and another in which there is little impact.
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Lessons
Biological variability

Need for normalization

Issues with length, GC content, ?

Models for count data, borrowing strength across genes

.... but all of this addresses a question we could have answered 
using microarrays



A look at the data



Data from D. melanogaster
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Base effect - single sample
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Base effect - multiple samples
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Base effect - different study (and prep)

369860 369880 369900 369920 369940

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

gene: YLR110C

position

p
ro

p
o
rt

io
n
 o

f 
to

ta
l 
re

a
d
s
 i
n
 r

e
g
io

n

WT

Nagalakshmi



Base effect - conclusions
Reproducible base effect - like probe affinities in microarrays.

Seems to be prep dependent.

Creates issues for comparing different
regions in the genome.

Less of an issue for comparing the
same region across samples?
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Nucleotide content bias

experiments of Figure 1a, this pattern is smaller in mag-
nitude and extends upstream of the start position of
the reads. Because the two different priming
methods used in these experiments result in the same
pattern, we conclude that the pattern is caused by
DNase I digestion.

We find that computationally predicted binding
energies associated with the random hexamers do not
explain the observed hexamer frequencies at the beginning
of the reads (see Supplementary Data, Supplementary
Figure S3). Rather, we find that any relationship
between binding energies and hexamer frequencies is a
feature of the particular transcriptome and is not related
to the use of random hexamers for priming.

In the standard model of second-strand synthesis
of dscDNA, the second DNA strand is synthesized
by DNA polymerase primed from nicks in the
original RNA strand, where the nicks are created by
lightly treating the RNA–DNA duplexes with RNase.
This model implies that the 50 bias caused by random
hexamer priming will only affect reads from the 50-end
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Figure 1. Nucleotide frequencies versus position for stringently mapped reads. For each experiment, mapped reads were extended upstream of the
50-start position, such that the first position of the actual read is 1 and positions 0 to !20 are obtained from the genome. The first hexamer of the
read is shaded. Brief experimental protocols are indicated in the key. (a) RNA-Seq experiments conducted using priming with random hexamers, with
and without RNA fragmentation. (b) DNA resequencing and ChIP-Seq experiments. (c) RNA-Seq experiments with alternative library preparation
protocols, including priming with random hexamers followed by fragmentation using DNase I and priming with oligo(dT) followed by fragmentation
using either DNase I, nebulization or sonication.
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Figure 2. Hexamer frequencies. (a) The logarithm (base 2) of all (4096)
observed hexamer frequencies computed using positions 1–6 of the
aligned reads for an experiment in H. sapiens (8) versus an experiment
in S. cerevisiae (9). The two distributions have a correlation of 0:77.
(b) As in (a), but the hexamers correspond to positions 25–30 of the
aligned reads, with a correlation of 0:35.
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experiments of Figure 1a, this pattern is smaller in mag-
nitude and extends upstream of the start position of
the reads. Because the two different priming
methods used in these experiments result in the same
pattern, we conclude that the pattern is caused by
DNase I digestion.

We find that computationally predicted binding
energies associated with the random hexamers do not
explain the observed hexamer frequencies at the beginning
of the reads (see Supplementary Data, Supplementary
Figure S3). Rather, we find that any relationship
between binding energies and hexamer frequencies is a
feature of the particular transcriptome and is not related
to the use of random hexamers for priming.

In the standard model of second-strand synthesis
of dscDNA, the second DNA strand is synthesized
by DNA polymerase primed from nicks in the
original RNA strand, where the nicks are created by
lightly treating the RNA–DNA duplexes with RNase.
This model implies that the 50 bias caused by random
hexamer priming will only affect reads from the 50-end
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Figure 1. Nucleotide frequencies versus position for stringently mapped reads. For each experiment, mapped reads were extended upstream of the
50-start position, such that the first position of the actual read is 1 and positions 0 to !20 are obtained from the genome. The first hexamer of the
read is shaded. Brief experimental protocols are indicated in the key. (a) RNA-Seq experiments conducted using priming with random hexamers, with
and without RNA fragmentation. (b) DNA resequencing and ChIP-Seq experiments. (c) RNA-Seq experiments with alternative library preparation
protocols, including priming with random hexamers followed by fragmentation using DNase I and priming with oligo(dT) followed by fragmentation
using either DNase I, nebulization or sonication.
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Figure 2. Hexamer frequencies. (a) The logarithm (base 2) of all (4096)
observed hexamer frequencies computed using positions 1–6 of the
aligned reads for an experiment in H. sapiens (8) versus an experiment
in S. cerevisiae (9). The two distributions have a correlation of 0:77.
(b) As in (a), but the hexamers correspond to positions 25–30 of the
aligned reads, with a correlation of 0:35.
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Correcting for spatial heterogeneity
A sample of papers

Hansen (2010) Nucleic Acids Res
Li (2010) Genome Biology
Roberts (2011) Genome Biology
Jones (2012) Bioinformatics

Biases in Illumina RNA-Seq, Supplementary Data 15
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Figure S6. The effect of re-weighting on a single gene. The gene shown is the sense strand of YOL086C for the

“WT” experiment in S. cerevisiae(5). The plots of unadjusted and re-weighted counts show the base-level counts

starting at each location. The Anscombe residuals(17) are designed to have an approximately standard normal

distribution if the base-level counts are Poisson distributed. The ticks on the x-axis indicate unmappable bases.

The base-level counts have fewer and smaller extreme values using the re-weighting scheme, also reflected in the

Anscombe residuals that become more symmetric around zero. There is less effect of the re-weighting on the

coverage plot, although the magnitudes of the coverage peaks are reduced. The Pearson χ2
goodness-of-fit

statistic for this region is reduced from 63,022 to 30,620 and the coefficient of variation from 1.68 to 1.27. See

Supplementary Data for details.

Biases in Illumina RNA-Seq, Supplementary Data 16
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Figure S7. The effect of re-weighting on the Pearson χ2 goodness-of-fit statistic and coefficient of variation. The
data are base-level counts of the sense strand of 552 highly-expressed, non-small regions of constant expression
for the “WT” experiment in S. cerevisiae. (a) Pearson χ2 goodness-of-fit statistics for the re-weighted vs.
unadjusted base-level counts. (b) A close-up of (a). (c) A density estimate of the distribution of ratios between the
re-weighted and the unadjusted Pearson χ2 goodness-of-fit statistics (values less than one represent improvement
due to re-weighting). (d)-(f) As (a)-(c), but for the coefficient of variation. The results for the anti-sense strand are
similar, with a slightly larger improvement.
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Junction reads
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Junction reads, zoom
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Mapping reads to the transcriptome
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Mapping transcripts
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The basic approaches
the ‘noise’ level generated by mismapped reads or intronic RNA 
from incompletely spliced heterogenous nuclear RNA (hnRNA). 
In mouse and human samples, we have especially noticed that 
prominent read densities often extend well beyond the annotated 
3 untranslated regions or as alternatively spliced 5  untranslated 
regions, internal exons or retained introns. ERANGE, G-Mo.R-Se 
and TopHat first aggregate reads into transfrags. Whereas G-Mo.R-
Se and TopHat rely primarily on spliced reads to connect transfrags 
together, ERANGE uses two different strategies depending on the 
availability of paired reads. In the currently conventional unpaired 
sequence read case, ERANGE assigns transfrags to genes based on an 
arbitrary user-selected radius, whereas in the paired-end read case, 
it will bring together transfrags only when they are connected by at 
least one paired read. Both strategies work much better with data 
that preserve RNA strandedness.

Quantifying gene expression. Given a gene model and mapped 
reads, one can sum the read counts for that gene as one measure of 
the expression level of that gene at that sequencing depth. However, 
the number of reads from a gene is naturally a function of the 
length of the mRNA as well as its molar concentration. A simple 
solution that preserves molarity is to normalize the read count by 
the length of the mRNA and the number of million mappable reads 
to obtain reads per kilobase per million (RPKM) values18. RPKMs 
for genes are then directly comparable within the sample by pro-
viding a relative ranking of expression. Although they are straight-
forward, RPKM values have several substantive detail differences 
between software packages, and there are also some caveats in using 
them. Whereas ERANGE uses a union of known and novel exon 
models to aggregate reads and determine an RPKM value for the 
locus, TopHat and RSAT restrict themselves to known or prespeci-
fied exons. ERANGE will also include spliced reads and can include 
assigned multireads in its RPKM calculation, whereas other pack-
ages are limited to uniquely mappable reads.

Several experimental issues influence the RPKM quantification, 
including the integrity of the input RNA, the extent of ribosomal 
RNA remaining in the sample, size selection steps and the accuracy 
of the gene models used. RPKMs reflect the true RNA concentration 
best when samples have relatively uniform sequence coverage across 
the entire gene model, which is usually approached by using random 
priming or RNA-ligation protocols, although both protocols cur-
rently fall short of providing the desired uniformity. Poly(A) prim-
ing has different biases (3 ) from partial extension or when there is 
partial RNA degradation. Resulting ambiguities in RPKMs from an 
RNA-seq experiment are akin to microarray intensities that need 
to be post-processed before comparison to other RNA-seq samples 
using any number of well-documented normalization methods, 
such as variance stabilization42, for example.

More sophisticated analyses of RNA-seq data allow users to extract 
additional information from the data. One area of considerable inter-
est and activity is in transcript modeling and quantifying specific 
isoforms. BASIS calculates transcript levels from coverage of known 
exons by taking advantage of specifically informative nucleotides 
from each transcript isoform. A second area is sequence variation. The 
RNA sequences themselves can be mined to identify positions where 
the base reported differs from the reference genome(s), identifying 
either a single-nucleotide polymorphism or a private mutation25,43. 
When these are heterozygous and phased or informatively related to 
the source genome, RNA single-nucleotide polymorphisms can be 

(SINEs and LINEs) in the untranslated regions of genes as well as 
the abundance of retroposed pseudogenes for highly expressed 
housekeeping genes in large genomes. Both of these vary from one 
genome to the next39. For example, several GAPDH retroposed 
pseudogenes in the mouse genome differ by less than 2 nucleotides 
(0.2%) from the mRNA for GAPDH itself, making it difficult to 
map reads correctly to the originating locus based on RNA-seq data 
alone. Orthogonal data such as RNA polymerase II occupancy and 
ChIP-seq measurements can later be brought to bear in some cases, 
but different software and use parameters make starting choices 
based on the RNA data alone. Whereas the algorithms are generally 
sensible, specific cases can be insidious and are worth being aware 
of. For example, a minority of reads from one paralog can map best 
to other sites (usually another paralog or pseudogene) because of 
the error rate in sequencing, which is quite substantial on current 
platforms (typically around 1%). For highly expressed genes, this 
can cause a shadow of expression at these pseudogenes, which may 
then be called as transfrags. Similarly, reads that are intron-spanning 
from a source gene may map instead perfectly and uniquely to a 
retroposed pseudogene. The ERANGE package avoids such mis-
assignment by mapping reads simultaneously across the genome 
and splice junctions, thus turning them into multireads that are 
subsequently handled separately.

Assigning reads to known and new gene models. The next level 
of RNA-seq analysis associates mapped reads with known or new 
gene models. Given a set of annotations, all tools can tally the reads 
that fall on known gene models, and several tools like RSAT40 and 
BASIS41 deal primarily with the annotated models. However, a sub-
stantial fraction of reads fall outside of the annotated exons, above 

De novo assembly of the transcriptome

Map onto the genome and splice junctions

Map onto the genome

Highly expressed gene

Lowly expressed gene

Read coverage must
be high enough to build
EST contigs (solid bar)

Read mapper must
support splitting reads
to record splices

Splice junctions
sequences from
either annotations
or inferred

AAA

AAA

a

b

c

Figure 6 | Approaches to handle spliced reads. (a) In de novo transcriptome 
assembly, splice-crossing reads (red) will only contribute to a contig (solid 
green), when the reads are at high enough density to overlap by more than 
a set of user-defined assembly parameters. Parts of gene models (dotted 
green) or entire gene models (dotted magenta) can be missed if expressed 
at sub-threshold. (b) Splice-crossing reads can be mapped directly onto the 
genome if the reads are long enough to make gapped-read mappers practical. 
(c) Alternatively, regular short read mappers can be used to map spliced reads 
ungapped onto supplied additional known or predicted splice junctions. 
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Strategies for mapping to junctions
Map to known junctions (or to known transcripts, but that 
involves a lot of bookkeeping).

Map to combination of known exons.

Map completely de-novo using canonical acceptor and donor 
sites. (huge!)

Map de-novo, but constrain the search to canonical acceptor 
and donor sites between and in transcribed region: transcript 
assembly. (TopHat).

Paired-end data will help with this.



FP rates for junctions
Distinguishing Con!dent Junctions from 

False Positives

0%

10%

20%

30%

40%

1+ Offsets 2+ Offsets 3+ Offsets 4+ Offsets 5+ Offsets

0%

0.018%

0.035%

0.053%

0.070%

1+ Offsets 2+ Offsets 3+ Offsets 4+ Offsets 5+ Offsets

1 

Offset

2 

Offsets

3 

Offsets

4 

Offsets

5 

Offsets 3! Exon5! Exon

3! Exon5! Exon

3! Exon5! Exon

3! Exon5! Exon

3! Exon5! Exon

Annotated Junctions (n= 58,212)

Randomly Generated Junctions (n=5,409,600)

%
 o

f 
T
o

ta
l 
A

n
n

o
ta

te
d

 J
u

n
c

ti
o

n
s

%
 o

f 
T
o

ta
l 

R
a

n
d

o
m

 J
u

n
c

ti
o

n
s

Brenner, Graveley, Dudoit



Issues
Hard to map near splice sites (both de-novo and known)

Similar regions of the genome + 
error in reads +
differences between sample and reference
= possibility of mapping errors.  Still no real understanding.

Do not underestimate this aspect of the data.
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TopHat
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While the QPALMA pipeline has organizational similarities to
TopHat, there are major differences. First, QPALMA uses a training
step that requires a set of known junctions from the reference
genome. Second, the QPALMA pipeline’s initial mapping phase
uses Vmatch (Abouelhoda et al., 2004), a general-purpose suffix
array-based alignment program. Vmatch is a flexible, fast aligner,
but because it is not designed to map short reads on machines
with small main memories, it is substantially slower than other
specialized short-read mappers. De Bono et al. report that Vmatch
maps reads at around 644 400 reads per CPU hour against the
120 Mbp Arabidopsis thaliana genome. QPALMA’s runtime appears
to be dominated by its splice site scoring algorithm; its authors
estimate that mapping 71 million RNA-Seq reads to A.thaliana
would take 400 CPU hours, which is ∼180 000 reads per CPU hour.

In this article, we describe TopHat, a software package that
identifies splice sites ab initio by large-scale mapping of RNA-Seq
reads. TopHat maps reads to splice sites in a mammalian genome at
a rate of ∼2.2 million reads per CPU hour. Rather than filtering out
possible splice sites with a scoring scheme, TopHat aligns all sites,
relying on an efficient 2-bit-per-base encoding and a data layout
that effectively uses the cache on modern processors. This strategy
works well in practice because TopHat first maps non-junction
reads (those contained within exons) using Bowtie (http://bowtie-
bio.sourceforge.net), an ultra-fast short-read mapping program
(Langmead et al., 2009). Bowtie indexes the reference genome
using a technique borrowed from data-compression, the Burrows–
Wheeler transform (Burrows and Wheeler, 1994; Ferragina and
Manzini, 2001). This memory-efficient data structure allows Bowtie
to scan reads against a mammalian genome using around 2 GB of
memory (within what is commonly available on a standard desktop
computer). Figure 1 illustrates the workflow of TopHat.

2 METHODS
TopHat finds junctions by mapping reads to the reference in two phases. In the
first phase, the pipeline maps all reads to the reference genome using Bowtie.
All reads that do not map to the genome are set aside as ‘initially unmapped
reads’, or IUM reads. Bowtie reports, for each read, one or more alignment
containing no more than a few mismatches (two, by default) in the 5′-most s
bases of the read. The remaining portion of the read on the 3′ end may have
additional mismatches, provided that the Phred-quality-weighted Hamming
distance is less than a specified threshold (70 by default). This policy is
based on the empirical observation that the 5′ end of a read contains fewer
sequencing errors than the 3′ end. (Hillier et al., 2008). TopHat allows Bowtie
to report more than one alignment for a read (default = 10), and suppresses
all alignments for reads that have more than this number. This policy allows
so called ‘multireads’ from genes with multiple copies to be reported, but
excludes alignments to low-complexity sequence, to which failed reads often
align. Low complexity reads are not included in the set of IUM reads; they
are simply discarded.

TopHat then assembles the mapped reads using the assembly module
in Maq (Li et al., 2008). TopHat extracts the sequences for the resulting
islands of contiguous sequence from the sparse consensus, inferring them
to be putative exons. To generate the island sequences, Tophat invokes the
Maq assemble subcommand (with the -s flag) which produces a compact
consensus file containing called bases and the corresponding reference bases.
Because the consensus may include incorrect base calls due to sequencing
errors in low-coverage regions, such islands may be a ‘pseudoconsensus’:
for any low-coverage or low-quality positions, TopHat uses the reference
genome to call the base. Because most reads covering the ends of exons will
also span splice junctions, the ends of exons in the pseudoconsensus will

Fig. 1. The TopHat pipeline. RNA-Seq reads are mapped against the whole
reference genome, and those reads that do not map are set aside. An initial
consensus of mapped regions is computed by Maq. Sequences flanking
potential donor/acceptor splice sites within neighboring regions are joined
to form potential splice junctions. The IUM reads are indexed and aligned
to these splice junction sequences.

initially be covered by few reads, and as a result, an exon’s pseudoconsensus
will likely be missing a small amount of sequence on each end. In order to
capture this sequence along with donor and acceptor sites from flanking
introns, TopHat includes a small amount of flanking sequence from the
reference on both sides of each island (default = 45 bp).

Because genes transcribed at low levels will be sequenced at low coverage,
the exons in these genes may have gaps. TopHat has a parameter that controls
when two distinct but nearby exons should be merged into a single exon.
This parameter defines the length of the longest allowable coverage gap in
a single island. Because introns shorter than 70 bp are rare in mammalian
genomes such as mouse (Pozzoli et al., 2007), any value less than 70 bp for
this parameter is reasonable. To be conservative, the TopHat default is 6 bp.

To map reads to splice junctions, TopHat first enumerates all canonical
donor and acceptor sites within the island sequences (as well as their
reverse complements). Next, it considers all pairings of these sites that could
form canonical (GT–AG) introns between neighboring (but not necessarily
adjacent) islands. Each possible intron is checked against the IUM reads for
reads that span the splice junction, as described below. By default, TopHat
only examines potential introns longer than 70 bp and shorter than 20 000 bp,
but these default minimum and maximum intron lengths can be adjusted
by the user. These values describe the vast majority of known eukaryotic
introns. For example, more than 93% of mouse introns in the UCSC known
gene set fall within this range. However, users willing to make a small
sacrifice in sensitivity will see substantially lower running time by reducing
the maximum intron length. To improve running times and avoid reporting
false positives, the program excludes donor–acceptor pairs that fall entirely
within a single island, unless the island is very deeply sequenced. An example
of a ‘single island’ junction is illustrated in Figure 2. The gene shown has
two alternate transcripts, one of which has an intron that coincides with the
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feel comfortable creating directories, moving files between them 
and editing text files in a UNIX environment. Installation of the 
tools may require additional expertise and permission from one’s 
computing system administrators.

Read alignment with TopHat
Alignment of sequencing reads to a reference genome is a core step 
in the analysis workflows for many high-throughput sequencing 
assays, including ChIP-Seq31, RNA-seq, ribosome profiling32 and 
others. Sequence alignment itself is a classic problem in computer 
science and appears frequently in bioinformatics. Hence, it is per-
haps not surprising that many read alignment programs have been 
developed within the last few years. One of the most popular and to 
date most efficient is Bowtie33 (http://bowtie-bio.sourceforge.net/
index.shtml), which uses an extremely economical data structure 
called the FM index34 to store the reference genome sequence and 
allows it to be searched rapidly. Bowtie uses the FM index to align 
reads at a rate of tens of millions per CPU hour. However, Bowtie 
is not suitable for all sequence alignment tasks. It does not allow 
alignments between a read and the genome to contain large gaps; 
hence, it cannot align reads that span introns. TopHat was created 
to address this limitation.

TopHat uses Bowtie as an alignment ‘engine’ and breaks up reads 
that Bowtie cannot align on its own into smaller pieces called seg-
ments. Often, these pieces, when processed independently, will 
align to the genome. When several of a read’s segments align to 
the genome far apart (e.g., between 100 bp and several hundred 
kilobases) from one another, TopHat infers that the read spans a 
splice junction and estimates where that junction’s splice sites are. 
By processing each ‘initially unmappable’ read, TopHat can build 
up an index of splice sites in the transcriptome on the fly without 
a priori gene or splice site annotations. This capability is crucial, 
because, as numerous RNA-seq studies have now shown, our cata-
logs of alternative splicing events remain woefully incomplete. Even 
in the transcriptomes of often-studied model organisms, new splic-
ing events are discovered with each additional RNA-seq study.

Aligned reads say much about the sample being sequenced. 
Mismatches, insertions and deletions in the alignments can iden-
tify polymorphisms between the sequenced sample and the ref-
erence genome, or even pinpoint gene fusion events in tumor 
samples. Reads that align outside annotated genes are often strong 
evidence of new protein-coding genes and noncoding RNAs. As 
mentioned above, RNA-seq read alignments can reveal new alter-
native splicing events and isoforms. Alignments can also be used 
to accurately quantify gene and transcript expression, because 
the number of reads produced by a transcript is proportional to 
its abundance (Box 2). Discussion of polymorphism and fusion 

detection is out of the scope of this protocol, and we address 
transcript assembly and gene discovery only as they relate to dif-
ferential expression analysis. For a further review of these topics,  
see Garber et al.12.

Transcript assembly with Cufflinks
Accurately quantifying the expression level of a gene from RNA-
seq reads requires accurately identifying which isoform of a given 
gene produced each read. This, of course, depends on knowing all 
of the splice variants (isoforms) of that gene. Attempting to quantify 
gene and transcript expression by using an incomplete or incorrect 
transcriptome annotation leads to inaccurate expression values8. 
Cufflinks assembles individual transcripts from RNA-seq reads that 
have been aligned to the genome. Because a sample may contain 
reads from multiple splice variants for a given gene, Cufflinks must 
be able to infer the splicing structure of each gene. However, genes 
sometimes have multiple alternative splicing events, and there may 
be many possible reconstructions of the gene model that explain 
the sequencing data. In fact, it is often not obvious how many splice 
 variants of the gene may be present. Thus, Cufflinks reports a parsi-
monious transcriptome assembly of the data. The algorithm reports 
as few full-length transcript fragments or ‘transfrags’ as are needed to 
‘explain’ all the splicing event outcomes in the input data.

TopHat

Cufflinks

Cuffmerge

Final
transcriptome

assembly

Condition A

Reads

Mapped
reads

Assembled
transcripts

Mapped
reads

Condition B

Differential
expression results

Cuffdiff

Expression 
plots

CummeRbund

Reads

Mapped
reads

Assembled
transcripts

Mapped
reads

Step 1

Step 2

Steps 3–4

Step 5

Steps 6–18

Figure 2 | An overview of the Tuxedo protocol. In an experiment involving 
two conditions, reads are first mapped to the genome with TopHat. The 
reads for each biological replicate are mapped independently. These 
mapped reads are provided as input to Cufflinks, which produces one file of 
assembled transfrags for each replicate. The assembly files are merged with 
the reference transcriptome annotation into a unified annotation for further 
analysis. This merged annotation is quantified in each condition by Cuffdiff, 
which produces expression data in a set of tabular files. These files are 
indexed and visualized with CummeRbund to facilitate exploration of genes 
identified by Cuffdiff as differentially expressed, spliced, or transcriptionally 
regulated genes. FPKM, fragments per kilobase of transcript per million 
fragments mapped. 
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TopHat and Cufflinks are both operated through the UNIX shell. 
No graphical user interface is included. However, there are now 
commercial products and open-source interfaces to these and other 
RNA-seq analysis tools. For example, the Galaxy Project18 uses a 
web interface to cloud computing resources to bring command-
line–driven tools such as TopHat and Cufflinks to users without 
UNIX skills through the web and the computing cloud.

Alternative analysis packages
TopHat and Cufflinks provide a complete RNA-seq workflow, but 
there are other RNA-seq analysis packages that may be used instead 
of or in combination with the tools in this protocol. Many alterna-
tive read-alignment programs19–21 now exist, and there are several 
alternative tools for transcriptome reconstruction22,23, quantifica-
tion10,24,25 and differential expression26–28 analysis. Because many of 
these tools operate on similarly formatted data files, they could be 
used instead of or in addition to the tools used here. For example, 
with straightforward postprocessing scripts, one could provide 
GSNAP19 read alignments to Cufflinks, or use a Scripture22 tran-
scriptome reconstruction instead of a Cufflinks one before differ-
ential expression analysis. However, such customization is beyond 
the scope of this protocol, and we discourage novice RNA-seq users 
from making changes to the protocol outlined here.

This protocol is appropriate for RNA-seq experiments on organ-
isms with sequenced reference genomes. Users working without a 
sequenced genome but who are interested in gene discovery should 
consider performing de novo transcriptome assembly using one 
of several tools such as Trinity29, Trans-Abyss30 or Oases (http://
www.ebi.ac.uk/~zerbino/oases/). Users performing expression ana-
lysis with a de novo transcriptome assembly may wish to consider 
RSEM10 or IsoEM25. For a survey of these tools (including TopHat 
and Cufflinks) readers may wish to see the study by Garber et al.12, 
which describes their comparative advantages and disadvantages 
and the theoretical considerations that inform their design.

Overview of the protocol
Although RNA-seq experiments can serve many purposes, we 
describe a workflow that aims to compare the transcriptome pro-
files of two or more biological conditions, such as a wild-type versus 
mutant or control versus knockdown experiments. For simplicity, 
we assume that the experiment compares only two biological con-
ditions, although the software is designed to support many more, 
including time-course experiments.

This protocol begins with raw RNA-seq reads and concludes with 
publication-ready visualization of the analysis. Figure 2 highlights 
the main steps of the protocol. First, reads for each condition are 
mapped to the reference genome with TopHat. Many RNA-seq 
users are also interested in gene or splice variant discovery, and the 
failure to look for new transcripts can bias expression estimates 
and reduce accuracy8. Thus, we include transcript assembly with 

Cufflinks as a step in the workflow (see Box 1 for a workflow that 
skips gene and transcript discovery). After running TopHat, the 
resulting alignment files are provided to Cufflinks to generate a 
transcriptome assembly for each condition. These assemblies are 
then merged together using the Cuffmerge utility, which is included 
with the Cufflinks package. This merged assembly provides a uni-
form basis for calculating gene and transcript expression in each 
condition. The reads and the merged assembly are fed to Cuffdiff, 
which calculates expression levels and tests the statistical signifi-
cance of observed changes. Cuffdiff also performs an additional 
layer of differential analysis. By grouping transcripts into biologi-
cally meaningful groups (such as transcripts that share the same 
transcription start site (TSS)), Cuffdiff identifies genes that are dif-
ferentially regulated at the transcriptional or post-transcriptional 
level. These results are reported as a set of text files and can be 
displayed in the plotting environment of your choice.

We have recently developed a powerful plotting tool called 
CummeRbund (http://compbio.mit.edu/cummeRbund/), which 
provides functions for creating commonly used expression plots 
such as volcano, scatter and box plots. CummeRbund also han-
dles the details of parsing Cufflinks output file formats to con-
nect Cufflinks and the R statistical computing environment. 
CummeRbund transforms Cufflinks output files into R objects 
suitable for analysis with a wide variety of other packages available 
within the R environment and can also now be accessed through the 
Bioconductor website (http://www.bioconductor.org/).

This protocol does not require extensive bioinformatics exper-
tise (e.g., the ability to write complex scripts), but it does assume 
familiarity with the UNIX command-line interface. Users should 

Cufflinks package

Cuffcompare
  Compares transcript assemblies to annotation

Cuffmerge
  Merges two or more transcript assemblies

Cuffdiff
  Finds differentially expressed genes and transcripts 
  Detects differential splicing and promoter use

TopHat
Aligns RNA-Seq reads to the genome using Bowtie

Discovers splice sites

CummeRbund
Plots abundance and differential 
expression results from Cuffdiff

Bowtie
Extremely fast, general purpose short read aligner

Cufflinks
  Assembles transcripts

Figure 1 | Software components used in this protocol. Bowtie33 forms the 
algorithmic core of TopHat, which aligns millions of RNA-seq reads to the 
genome per CPU hour. TopHat’s read alignments are assembled by Cufflinks 
and its associated utility program to produce a transcriptome annotation of 
the genome. Cuffdiff quantifies this transcriptome across multiple conditions 
using the TopHat read alignments. CummeRbund helps users rapidly explore 
and visualize the gene expression data produced by Cuffdiff, including 
differentially expressed genes and transcripts.

Trapnell (2012) Nat. Protocols


