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ABSTRACT 

 

 The acquisition of functional magnetic resonance imaging (fMRI) data in a finite subset of k-space 

produces ring-artifacts and ‘side lobes’ that distort the image.  In this paper, we explore the consequences of 

this problem for functional imaging studies, which can be considerable, and propose a solution. The 

truncation of k-space is mathematically equivalent to convolving the underlying “true” image with a 

sinc function whose width is inversely related to the amount of truncation. Spatial smoothing with a 

large enough kernel can eliminate these artifacts, but at a cost in image resolution. However, too 

little spatial smoothing leaves the ringing artifacts and side lobes caused by k-space truncation intact, 

leading to a decrease in signal-to-noise ratio and statistical power.  Thus, to make use of the high-resolution 

afforded by MRI without introducing artifacts, new smoothing filters are needed that are optimized to 

correct k-space truncation-related artifacts. We develop a prolate spheroidal wave function (PSWF) filter 

designed to eliminate truncation artifacts and compare its performance to the standard Gaussian filter in 

simulations and analysis of fMRI data on a visual-motor task.  The PSWF filter effectively corrected 

truncation artifacts and resulted in more sensitive detection of visual-motor activity in expected brain 

regions, demonstrating its efficacy. 
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Introduction 

 In functional magnetic resonance imaging (fMRI) studies it is common practice to spatially 

smooth the acquired data prior to performing statistical analysis. Spatial smoothing involves blurring the 

functional MRI images by convolving the image data with a filter kernel, most frequently a Gaussian, 

though other types of kernels (e.g. sinc kernel) may also be used. Gaussian smoothing is implemented in 

major software packages such as SPM (Statistical Parametric Mapping, Wellcome Institute of Cognitive 

Neurology, University College London), AFNI (Analysis of Functional Imaging Data), and FSL (FMRIB 

software library, Oxford).  It is used primarily to minimize the errors in group analysis introduced in the 

spatial normalization of brains into a common space and to make data conform to the assumptions of 

Gaussian Random Field Theory if it is used for correction for multiple comparisons (Worsley and Friston, 

1995). In addition, if the spatial extent of a region of interest (ROI) is larger than the spatial resolution, 

smoothing may reduce random noise in individual voxels and increase the signal-to-noise ratio (SNR) 

within the ROI (Rosenfeld and Kak, 1982; Smith, 2003).  Although it is advantageous to smooth data for 

these reasons, there are also obvious costs in spatial resolution.  With larger sample sizes, higher field 

strengths, and other advances in imaging technology, many groups may wish to take advantage of the 

high potential spatial resolution of fMRI data and minimize the amount of smoothing. 

 However, there is a cost to not smoothing images that is perhaps under-appreciated.  The cost 

comes from the fact that data are acquired in a finite portion of k-space, which is often quite limited in 

functional (T2*) acquisition schemes. In order to obtain a “perfect” reconstruction of an image, an infinite 

number of k-space measurements need to be made. The restriction of sampling to a finite space introduces 

blurring in the image: this truncation is mathematically equivalent to convolving the image with a sinc 

function whose width is inversely related to the amount of k-space that is sampled.  The result is ringing 

artifacts and side lobes—aliased portions of the image that extend beyond the actual location of the 

imaged object—that distort the images (Fig. 1B).  Such artifacts, if significantly large, may at best reduce 

signal to noise ratio, and at worst result in mis-localization of functional activation. 
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 Spatial smoothing of images (e.g., with a Gaussian filter) can ameliorate these problems.  The 

process of spatial smoothing is equivalent to applying a low-pass filter to the sampled k-space data. It has 

the effect of altering the spatial resolution in the image, as it reduces the intensity of high-frequency 

points in k-space, as well as changing the image’s resulting point-spread function.  If the frequencies 

sampled in the images are higher than the filter cutoff, the high frequency information (i.e., fine spatial 

resolution) will be lost, though the side lobes will be eliminated (Fig. 1D).  Alternatively, if the 

frequencies sampled are lower than those in the filter, direct application of the filter will not be able to 

completely eliminate the side lobes. In this case, k-space is insufficiently sampled to support the applied 

filter and significant truncation artifacts will remain (Fig. 1C). The effective smoothing applied to the 

images will therefore be wider than intended. Thus, when image data are rather coarsely sampled (e.g. 

64×64 3.75 mm voxels in a 240 mm field of view) special care needs to be taken to minimize truncation 

artifacts. In this paper we show that in certain situations a Gaussian filter will not allow for control for 

these serious effects and should not be used when applying a narrow filter (e.g. with FWHM < 8 mm) to a 

low resolution (e.g. 64×64) image. We show in a series of simulations that failure to take proper care of 

these issues will lead to a decrease in signal-to-noise ratio and to decreased power in the resulting 

statistical tests.   

 In principal, one can make a distinction between two separate, but related, preprocessing steps. 

The first is the need to correct artifacts due to the reconstruction of finite k-space data, and the second is 

smoothing as a means of increasing signal-to-noise and validating certain statistical techniques. While, 

most smoothing kernels are designed primarily to deal with the latter issue, they can if properly designed 

also be used to handle the former. One method that is well-suited to controlling truncation artifacts is the 

0th order prolate spheroidal wave function (PSWF) (Slepian and Pollak, 1961; Landau and Pollak, 1961, 

1962). The PSWF is the function, with compact support on a fixed subset of k-space, which maximizes 

the signal over a certain predefined subset of image-space. Computationally, this function is the largest 

eigenfunction of the finite, or truncated, Fourier transform. It should be noted that discrete prolate 
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spheroidal sequences (Slepian and Pollak, 1961) have previously appeared in the fMRI literature as 

part of the multitaper technique for temporal smoothing (Mitra et. al., 1997; Mitra and Pesaran, 

1999). The attractive features of the PSWF spatial smoothing filter are discussed in this paper. 

Simulations show that the power to detect activation is significantly increased when using the PSWF filter 

instead of a Gaussian filter if the FWHM is below 8 mm. Further data from a visual task is used to 

illustrate its efficiency when applied to fMRI data.  

 In this work we will focus on comparing the PSWF filter with its Gaussian counterpart. However, 

it is important to note that a number of other studies have been concerned with finding alternatives to 

smoothing with a fixed Gaussian filter. For example, statistical analysis frameworks using Gaussians of 

varying width (Poline and Mazoyer, 1994; Worsley et. al., 1996) and rotations (Shafie et. al., 2003) have 

been proposed. As an alternative to using a Gaussian kernel, a number of papers have suggested the use of 

wavelets (see Van De Ville et al. (2006) for an excellent overview of the literature).  In addition, data-

dependent smoothing methods have also been suggested. One promising example is the use of anisotropic 

diffusion (Kim et. al., 2005).  It should be noted that while the approach we are suggesting is data-

independent, as are both the Gaussian and wavelet techniques, it does depend on the acquisition 

parameters. 

 

Methods 

Theory 

Spatial smoothing. Spatial smoothing involves blurring the functional MRI images by applying a moving 

average filter to the images. When smoothing an image, each voxel is effectively transformed into the 

weighted sum over a region of interest (ROI), which consists of the voxels lying under the kernel of the 

filter. The size of the kernel is determined by the full width at half maximum (FWHM), which measures 

the width of the kernel at 50 percent of its peak value. Hence, voxels that lie within the range defined by 

the FWHM are weighted higher than voxels lying outside of this range.  
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 To carry out spatial smoothing in MRI, a smoothing matrix, representing the filter, is constructed 

which has the same size as the image. The image matrix is convolved with the smoothing matrix by first 

Fourier transforming both the image and the smoothing matrix, and then calculating the inverse Fourier 

transform of the product of these two matrices. The process of convolving the image using a smoothing 

kernel can be written as 

  ∫∫
ΩΩ

=−=
*

)(ˆ)(ˆ)()()(~ kkkuuxux xk deKFdKFF i , [1] 

where )(xK  is the smoothing matrix, )(ˆ kK  its Fourier transform, )(ˆ kF  is the experimental sampling 

function in k-space and F(x) is its corresponding inverse Fourier transform (the image). Here )(~ xF  

represents the value of the smoothed data at the coordinate point, x , of the image.  

 Typically when performing spatial smoothing in fMRI one uses a Gaussian kernel, though other 

choices are also possible. However, due to the popularity of the Gaussian we will concentrate on studying 

its properties in this particular paper.  It can be expressed on the form:   

 
⎭
⎬
⎫

⎩
⎨
⎧
−∝Φ 2

2

2
exp)(

σ
xxK . [2] 

Convolving the image using the Gaussian kernel is equivalent to multiplying the k-space data by the 

Fourier transform of the kernel function, which in turn can be written as: 

 ( )
⎭
⎬
⎫

⎩
⎨
⎧−∝Φ

222
2
1exp)(ˆ kk πσK . [3] 

Studying the Fourier transform of the Gaussian in Eq. [3], it is clear that it also follows a Gaussian 

distribution, in this case with a standard deviation equal to 1)2( −πσ . 

 The width of the smoothing kernel is determined by the amount of spatial smoothing required and 

is written in terms of the FWHM. It is important to note that the relationship between the FWHM and the 

standard deviation of the Gaussian can be written as 

  
)2ln(22

FWHM
=σ . [4] 
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Fig. 2A (first and second row - right column) shows an example of )(xΦK  and )(ˆ kΦK  in one dimension. 

By studying the shape of )(ˆ kΦK  it is clear that application of this filter devalues points in the outer 

regions of k-space and is therefore equivalent to low-pass filtering. 

 A well known fact about the Gaussian distribution states that 99.7% of its mass is contained in a 

region lying within 3 standard deviations of its mean. Due to the symmetric nature of the Gaussian, this 

region will make up a circular shape in two dimensions (spherical in three dimensions). Hence, 99.7% of 

the mass of ˆ K Φ(k)  will lie within a circular region with radius ( ) 123 −πσ . Using this property, we can 

define an alternative measure for the extent of a filter. Let the width of the kernel in k-space be defined as 

W, if 99.7% of the kernels mass lies in the range ]5.0,5.0[ WW− . Though the support of the Gaussian is 

infinite, the width of ˆ K Φ(k) is related to the FWHM by Eq. [4] and can be expressed as  

  
FWHM

W 1)2ln(26
π

= . [5] 

Similarly, we can define the width of the filter, )(xΦK , in image-space as T, if 99.7% of the kernels mass 

in image-space lies in the range ]5.0,5.0[ TT− . Hence, the width can be expressed using Eq. [4] as 

   
)2ln(2

3FWHMT = . [6] 

Effective Smoothing. As mentioned above, there is an additional source of blurring inherent in the 

reconstruction of MR images. This blurring is due to the fact that sampling is performed over a 

finite subset of k-space. In order to obtain a “perfect” reconstruction of the underlying image one 

would need to sample an infinitely large region of k-space. Unfortunately, this is not possible and 

k-space is by necessity truncated.  This truncation results in a ringing artifact in the image which is 

due to the under-sampling of high spatial frequency components of k-space (Fig. 1B).  By 

truncating k-space we are performing an operation that is mathematically equivalent to convolving 

the underlying “true” image with a sinc function, whose width is inversely related to the amount of 

truncation. It should be noted that throughout this paper we are assuming that we are dealing with images 
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that have been reconstructed using the inverse discrete Fourier transform (IDFT). Other reconstruction 

algorithms (e.g. SENSE and GRAPPA based reconstruction) give rise to other types of artifacts than 

those described above. However, since the bandwidth issues are comparable for all reconstruction 

techniques, the ringing artifacts are expected to be similar. For this reason, and the fact that most 

practitioners still work directly with images reconstructed using the IDFT, we concentrate on artifacts 

related to the IDFT in this work. 

 If one were to apply a filter with 4 mm FWHM directly to a 64x64 image, the resulting smoothed 

image would not possess the exact amount of smoothness that would be expected, as the applied filter is 

too narrow to completely eliminate the side-lobes of the sinc function that arise due to truncation (Figs. 

1C & 2A).  It is important to realize that directly applying the filter to the image-space data is equivalent, 

by the Fourier convolution theorem, to applying a truncated (in k-space) version of the filter to the k-

space data. In the continuation we will refer to effective smoothing as the blurring in the image due to the 

combination of the applied filter and the truncation effects. The effective smoothing kernel will thus be the 

convolution of the applied filter and the sinc function that arises due to finite sampling (Fig. 2 – last row).  

 We measured the effects of ringing when applying a Gaussian filter, with varying FWHM (3-12 

mm), directly to an image. If no truncation effects were present we would expect 99.7% of the mass to lie 

within ±3σ (or ±1.274FWHM) of the center of the effective smoothing kernel, i.e. within the width of the 

kernel. It is clear from Fig. 3A that the proportion of the effective smoothing kernel that lies in this range 

is greatly affected for filters with FWHM less than 8 mm. Further, according to Fig. 3B, the FWHM of the 

effective smoothing kernel deviates from the applied FWHM. It is clear that for narrow filters (FWHM < 

8 mm) this deviation becomes rather significant. For example, when the FOV is equal to 240 mm, a 

Gaussian filter with FWHM of 4 mm applied directly in image-space will have an effective FWHM of 

5.35 mm when the effects of finite sampling are included. In addition over 25% of its mass will lie outside 

of its intended width. It would clearly be beneficial to design a filter that is able to reduce the effects of 

truncation artifacts in the image. In the next section we discuss a filter that provides optimal control over 

truncation artifacts.  
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The Prolate Spheroidal Wave Function Filter.  The prolate spheroidal wave function (PSWF) filter is 

the function, with compact support on a fixed set of k-space, which maximizes the signal over a certain 

predefined subset of image-space. To find this function, we begin by setting up the problem formulation. 

As k-space consists of a sequence of discrete measurements during MRI data acquisition, it should 

therefore be chosen to be a discrete space. On the other hand, image-space, denoted by Ω in this paper, 

can be chosen to be either a discrete space consisting of a collection of the image voxels (e.g. 

the NN × voxels in an image) or as a continuous space. We discuss the latter below. Next, consider a 

convex region of interest (ROI), denoted B, in image-space and the k-space sampling region, A (e.g. the 

collection of measured points on a 64×64 grid –see Fig. 4A-B). The objective is to find the filter function 

g(k), that satisfies the following two criteria: 

 

1. It takes the value 0 for points outside of A.  

2. Its inverse Fourier transform, G(x), has maximal signal concentration in B, i.e. the ratio  

 

                                          (7) 

 

 is maximized over all possible functions for which the first criterion holds. 

 

These conditions ensure that g(k) is the function with compact support on A, whose inverse Fourier 

transform has the least amount of signal leakage outside of the region B. Thus, it is the function with 

optimal control over ringing artifacts outside of B. Note that λ takes values between 0 and 1 and can be 

interpreted as the amount of signal leakage that the filter gives rise to outside of the predetermined ROI B. 

 As an additional constraint, the denominator of the ratio in Eq. 7 is set equal to one. This simplifies 

the problem to finding the function, g(k), with norm equal to one, whose inverse Fourier transform 

maximizes, 

∫

∫

Ω

=
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dG
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  ∫=
B

dG xx 2)(λ .  (8)  

Using Parseval’s identity, the problem can be written in matrix form as,  

  { }gKg B
ˆmax +=λ   (9) 

   

under the constraint, 

  1)()(
j

jj == ∑
∈

+

A

gg
k

kkgg . (10)  

Let us define BK̂  to be the Fourier transform of the indicator function of the region B, which can be 

written:  

  { }∫ −=
B

B diK xkxk ),(2exp)(ˆ π                                    (11) 

Then it can be shown (Yang et al, 2002; Lindquist, 2003; Lindquist et al, 2006) that the kernel, BK̂ , is 

given by,  

  )'(ˆ)',(ˆ kkkkK −= BB K  (12) 

for k, k ' ∈ A.  A more detailed derivation of these results can be found in the Appendix. For simple 

regions B (e.g. circles, squares, ellipses) there exist analytical expressions for BK̂ , which allow for easy 

computation of the kernel defined in Eq. 12.  

 The kernel BK̂  is positive definite which implies that all of its eigenvalues kλ , 1,0 −= ak K , are 

non-negative, where a denotes the number of points sampled in k-space (e.g. 2Na = ). In fact,  

  01 110 ≥≥≥≥≥ −aλλλ K . (13) 

The eigenfunction, g0, associated with the largest eigenvalue, 0λ , is termed the 0-order solution, and 

provides the solution to the problem stated in Eq. 7. In addition, 0λ  is equal to the fraction of the total 

signal intensity in B calculated according to Eq. 7 and provides a quantitative measure of the signal 
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leakage that the eigenvector gives rise to. A value of 0λ  close to 1 indicates little signal leakage, while 

the leakage increases as 0λ  decreases. The set of eigenfunctions 110 ,, −aggg K have some interesting 

properties. As we will always choose A to be symmetrical about the center of k-space (k=0), the set of 

eigenvectors can always be taken to be real and orthogonal on B. In addition, the index i not only ranks 

the eigenvalues, but also specifies the number of zeros the function ig  has within the region B (Percival 

and Walden, 1993). The function g0 will therefore be positive over the whole region B, a property it 

shares with the Gaussian kernel. 

 By applying the filter g(k) directly to the k-space data and thereafter taking the inverse Fourier 

transform of the filtered k-space data, the resulting image will represent the true image convolved with 

the function G(x). Therefore the PSWF can be used as a filter to spatially smooth fMRI data. The amount 

of smoothing applied will depend upon the size of the region B. In our discussion of the PSWF filter it 

will often make more sense to talk about the filters width instead of the traditional FWHM used for the 

Gaussian.  As long as 997.0≥λ , the width of the PSWF is bounded by the diameter of the region B, as 

this condition ensures that less than 0.3% of the signal lies outside of B. The PSWF filter has the 

important property that any other choice of filter will give rise to a greater amount of signal leakage 

outside of the spatial coverage region. Hence, the PSWF filter is chosen to minimize the amount of signal 

leakage, and thereby ringing, outside of the region B. This property leads us to believe that it has excellent 

potential as a spatial smoothing filter in fMRI.  

 In practice, one can construct a smoothing kernel by taking the IDFT of g(k) and reconstructing it 

onto a matrix with the same dimensions as the image. Smoothing can thereafter be performed in an 

analogous manner as for Gaussian, which is described algebraically in Eq. 1.  In our implementation, A is 

chosen to correspond to the sampled region of k-space (Fig. 4B) and B is chosen to be a circular region 

with diameter 1.274FWHM (equal to 6σ) to ensure a kernel with similar width as a Gaussian filter of a 

given FWHM. Figs. 4C-D show examples of G(x) and g(k) corresponding to the regions A and B. The 

PSWF filter shares many of the same qualities as the Gaussian filter. However, it is completely 
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concentrated on a sub-region, A, of k-space, while the Fourier transform of the Gaussian kernel has 

infinite support. If one wishes to obtain a filter that more exactly mimics the properties of the Gaussian, A 

can be chosen as a circular region with diameter equal to the minimum of N and W, where N denotes the 

image dimensions and W the width of the Gaussian one seeks to mimic.  This criteria ensures that the 

PSWF filter will have equivalent width in the frequency domain as the Gaussian whenever possible (W>N 

for filters with FWHM < 8 mm), and will therefore give rise to filters with similar properties in image-

space.  It should be noted that the idea of matching the equivalent FWHM of a function is not new, and 

has been done before for different wavelet functions (Van De Ville et. al., 2003; Fadili and Bullmore, 

2004). Fig. 5 shows the effective FWHM and leakage for a PSWF constructed in this manner, when N=64 

and FOV=200 mm. Also included are similar plots for the Gaussian filter, which is equivalent to those 

shown in Fig. 3. It is clear that the PSWF filter gives rise to filters that have equivalent properties to the 

Gaussian for FWHM>8 mm. In addition, for narrow filters, it is clear that the PSWF filter gives improved 

control over the amount of leakage outside of the width of the filter. The price one pays for this is a slight 

increase in the effective FWHM of the filter. For comparison purposes we show in Fig. 6 two examples of 

the combined effects of truncation and smoothing when using PSWF and Gaussian kernels. The left panel 

shows the results for a narrow filter (4 mm FWHM), while the right panel shows the results for a wide 

filter (12 mm FWHM). While the effective smoothing kernels are roughly equivalent for the wide filter, 

the narrow PSWF filter shows better control of ringing artifacts and slightly widened FWHM compared 

to its Gaussian counterpart. This is consistent with the results shown in Fig. 5. 

 

Simulation studies 

Simulation 1.  To more closely study the issues involved with truncation artifacts we performed a 

simulation study, in which a circular region of radius 22.5 mm was placed in the center of a blank image 

with FOV 240 mm (Fig. 1A). Using the simple geometry of the image, theoretical k-space measurements 

were calculated corresponding to a 64×64 region of k-space. The image was then reconstructed using the 

inverse fast Fourier transform (IFFT) (Fig. 1B) and Gaussian smoothing with 4 and 12 mm FWHM was 
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applied to the resulting images. In addition, a PSWF filter with the same width as the Gaussian with 4 mm 

FWHM was applied to the data. 

Simulation 2.  (Part A) The image described in the previous simulation (Fig. 1A) was recreated 160 

times. In 80 of the images the intensity for voxels within the circle was set to 1.0. These images were 

denoted as OFF images. In the remaining 80 images the intensity was set to 1.05. These are denoted as 

ON images. The images were thereafter ordered according to the paradigm of 4 repetitions of 20 OFF/ 20 

ON images and Gaussian noise was added to the data with a standard deviation corresponding to a 

Cohen’s d of 0.25 (Cohen, 1988). Theoretical k-space measurements were calculated corresponding to a 

64×64 region of k-space and the images were reconstructed at this resolution using the IFFT. The 

resulting data was smoothed using both PSWF and Gaussian filters with FWHM equal to 4, 8 and 12 mm. 

The resulting data was analyzed using the standard GLM approach. This procedure was repeated 1000 

times and the statistical power to detect activation was calculated for each filter type and width.  (Part B) 

The procedure outlined in part A was repeated using a more realistic activation pattern (Fig. 8B). Using a 

grey matter mask a region of activity was created. The resulting data was interpolated to 10 times its size 

(640×640) and the fast Fourier transform was used to calculate k-space data. The central 64×64 region 

was used in order to mimic the effects of finite k-space sampling. Using this data set the same 

experimental paradigm as described in (A), with 4 repetitions of 20 OFF/ 20 ON images, was created. The 

data was analyzed in an analogous manner as described in part A. 

 

Experiment 

 Nine students at the University of Michigan were recruited and paid $50 for participation in the 

study.  All human participant procedures were conducted in accordance with Institutional Review Board 

guidelines.  The experimental data consisted of a visual paradigm conducted on the 9 subjects. It 

consisted of a blocked alternation of 11 s of full-field contrast-reversing checkerboards (16 Hz) with 30 s 

of open-eye fixation baseline. Blocks of unilateral contrast-reversing checkerboards were presented on an 
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in-scanner LCD screen (IFIS, Psychology Software Tools).  Spiral-out gradient echo images were 

collected on a GE 3T fMRI scanner (Noll et. al., 1995).  Seven oblique slices were collected through 

visual and motor cortex, 3.12 × 3.12 × 5 mm voxels, TR = 0.5 s, TE = 25 ms, flip angle = 90, FOV = 20 

cm, 410 images. Data from all images were corrected for  slice-acquisition timing differences using 4-

point sinc interpolation (Oppenheim et. al. 1999) and corrected for head movement using 6-parameter 

affine registration (Woods et. al., 1998) prior to analysis. 

 For each subject Gaussian filters with FWHM of 4, 8 and 12 mm were applied to the slice of the 

data, which contained the largest signal over the visual cortex (slice #3). Thereafter, three PSWF filters, 

with equivalent width were applied to the same data set, giving a total of 6 series of smoothed images for 

each subject. Next a standard GLM analysis was performed on each of the 54 data sets (6 series of 

smoothed images for each of the 9 subjects). The data was thresholded and the number of active voxels in 

the visual cortex was counted for each series and a matched-pairs sign-test was performed for each level 

of smoothness. The test was designed to determine whether there is a significant difference in the number 

of active voxels between the two filter types across subjects. 

 

Results 

Simulation studies 

Simulation 1.  The simulated k-space data was reconstructed using the IFFT (Fig. 1B) and Gaussian 

smoothing with 4 and 12 mm FWHM was applied to the resulting images (Figs. 7A and B).  It is apparent 

that significant ringing artifacts exist in the reconstructed non-smoothed image. It is also clear that the 

filter with 4 mm FWHM was able to minimize, but not completely eliminate, these artifacts. The filter 

with 12 mm FWHM successfully eliminated these artifacts, at the price of decreased spatial resolution.  

Next, we applied a PSWF filter with the same width as the Gaussian with 4 mm FWHM and applied this 

to the same data set (Fig. 7C). It is clear that the PSWF was able to effectively control the ringing 

artifacts, while still maintaining a similar spatial resolution as the 4 mm Gaussian. Fig. 7D shows a cross-



 

 

15

section through the center of each image to better illustrate the ringing effects apparent in the various 

images. In particular note the smooth behavior of the PSWF compared to the 4 mm Gaussian.  

Simulation 2.  The functional simulation studies described in the Methods section were repeated 1000 

times for each filter type and width. The resulting data was analyzed using a standard GLM approach and 

false positive rates and power were assessed. Fig. 8 shows Receiver Operating Characteristic (ROC) 

curves for the Gaussian (dashed) and PSWF (bold) filters corresponding to each of the three different 

FWHM (4, 8 and 12 mm) and both simulation types (A and B). For both simulations there is minimal 

difference in power between the two filter types for wider filters (e.g. 8 and 12 mm), while for narrow 

filters (e.g. 4 mm) using a Gaussian filter will lead to a significant decrease in statistical power compared 

to the PSWF. 

 
Experimental Results  

Table I shows the number of significant voxels (p-value<0.005, uncorrected) in the visual cortex for each 

subject, obtained using both filter types for each of the three different degrees of smoothing. The p-values 

in the last row show the results of a sign test for matched pairs. The null hypothesis of no difference in the 

number of active voxels is rejected (p-value < 0.05) for both 4 and 8 mm smoothing. The increase in the 

number of active voxels for the data smoothed using the PSWF voxel is due to the increased SNR in the 

data, as a result of minimizing the signal leakage, and is consistent with the theoretical results. Fig. 9 

show the results for 5 randomly chosen subjects for each of the three degrees of smoothing. It is clear that 

there is an increased number of active voxels in the PSWF-smoothed data for narrow (≤8 mm) kernels. 

Finally, Fig. 10 shows the difference in the number of significant voxels between the two smoothing 

methods as a function of the chosen threshold. It is clear that for the case when the FWHM is 4 mm, there 

is a significant increase in the number of active voxels when using the PSWF filter, which is consistent 

with the increase in power shown in Fig. 8. 

 

 Discussion  
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 In this paper we have discussed two potential sources of blurring in fMRI data. The first is due to 

the algorithm used to reconstruct the image from finite k-space data and is generally considered an 

unwanted artifact of image reconstruction. The second is due to the voluntary application of a smoothing 

kernel - typically used to increase SNR.  The sinc function shown in Fig. 2 is the smoothing (spatial 

response function) that arises when reconstruction is performed using the inverse discrete Fourier 

transform (DFT). It is important to note that other reconstruction algorithms will ultimately give rise to 

other spatial response functions and may therefore be more or less effective in dealing with issues such as 

Gibbs ringing. For example, data obtained using parallel imaging techniques, do not reconstruct the image 

using the inverse DFT. In these situations the spatial response function is much more complicated than 

the sinc assumed in this paper. While the results of this paper can not be readily generalized to all 

reconstruction techniques, we have ultimately decided to focus on the artifacts that arise from using the 

DFT to reconstruct the images, as this is the type of data most practitioners will likely have to work with.  

In addition, as each reconstruction technique is faced with the same bandwidth problems the ringing 

artifacts should ultimately take a similar form. However, it should be noted that the PSWF methodology 

outlined in this paper have been generalized to k-space data that is sampled on non-cartesian k-space 

(Lindquist et. al., 2006). Hence, this would in principal allow for reconstruction and smoothing of data 

obtained in any manner using the PSWF methodology. 

  In this work we have illustrated that when applying a narrow Gaussian filter (e.g. 4 mm FWHM) 

to low-resolution data (e.g. 64×64), an insufficient number of measurements are made in k-space to 

support the applied filter.  Hence the smoothed images will contain more blurring than originally 

intended and the effective smoothing will be greater than the nominally applied smoothing. The 

truncation artifacts can be effectively controlled by applying a tapered filter function directly to the k-

space data. There are a number of ways of tapering the filter function. For example one can apply a 

Hamming filter to the truncated Gaussian, thereby eliminating its steep edges. However, in this work we 

introduce another tapered filter function, based on the theory of the prolate spheroidal wave function, 

which can be used to control the amount of ringing in the resulting smoothed images. The PSWF has 
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similar properties to the Gaussian, with the added benefit that it provides optimal control over truncation 

artifacts.  The PSWF filter has an additional benefit that has not previously been discussed. 

Throughout this paper we have defined the spatial coverage region of our filter, given by B, to be a 

circular region in order to obtain an isotropic filter comparable to a Gaussian. However, it is important to 

note that there is nothing in the theory of the PSWF that limits us to constructing isotropic filters, as B can 

be chosen to take other shapes as well. For example, we may want to choose B to be an oval or some 

other “blob-like” shape and a filter with spatial coverage corresponding to this region can be constructed 

using the PSWF methodology (Yang et. al., 2002, Lindquist et. al., 2006). 

 In principal, the amount of smoothing applied is determined by the expected extent of activation. 

By the matched filter theorem, optimal filtering is provided by using a filter with the same spatial extent 

as the activation. Of course this region is never known exactly, making it difficult to determine the 

optimal amount of smoothing in practice. However, it is reasonable to assume that the activation pattern 

takes place in a coherent “blob” in the brain and it would be difficult to argue that the pattern would be 

rippled in the manner that would be present after the application of a narrow Gaussian filter. We therefore 

feel that the PSWF is more in the spirit of the matched filter theorem than the Gaussian. However, with 

the introduction of high-field scanners and state-of-the-art MR imaging techniques, the “problematic” 

spatial resolutions under discussion in this work (e.g. 64×64 matrix 3.75 mm resolution) may eventually 

become obsolete. In these situations the advantages of the PSWF filter over the Gaussian are less clear. 

On the other hand, in these situations the rational for smoothing at all is questionable.  

 It should be noted that the Convolution theorem (illustrated in Fig.2) only holds when the filter is 

applied directly to the complex image-space data and most researchers instead work with magnitude 

images. However, since the PSWF filter is positive and real-valued in our implementation (like the 

Gaussian), it does not matter whether we apply the filter to the complex image-space data or to the 

positive magnitude images.  The results will be equivalent regardless and the Convolution theorem is still 

valid. The implementation of the filter is straightforward and Matlab code is available from the authors 

(www.stat.columbia.edu/~martin/Software.html). There is a one-time cost in calculating the filter 
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corresponding to a specific width, FOV and matrix size. This calculation involves calculating the largest 

eigenfunction of an aa× matrix. However, if we want an n-dimensional smoothing kernel we can 

approximate them as the separable product of n 1-dimensional 0-order prolate spheroidal wave functions. 

This significantly simplifies calculation with minimal loss of efficiency. 

 Simulation studies showed an increase in power compared to Gaussian smoothing with a small 

FWHM (< 8 mm). In addition, the experimental data presented in this paper clearly showed the benefits of 

using a PSWF filter. In general, we feel that the increase in power shown in both simulations, in 

conjunction with the increased number of activated voxels in the experimental data, together make a 

strong case for the PSWF methods superiority when narrow kernels (< 8 mm) are required for smoothing 

fMRI data. These results are consistent with the theory, which states that for narrow filters the PSWF has 

superior concentration properties compared to the Gaussian. By applying the PSWF filter we are able to 

increase the signal-to-noise by maintaining control over truncation effects.  

 While SNR is one important issue relating to spatial smoothing, also important are the statistical 

issues of inter-subject variability and statistical validity.  When using a tapered filter such as the PSWF 

these issues can only be positively impacted, as a reduction of the ringing effects can only be good for the 

subsequent statistical analysis, as it allows for construction of a kernel that better matches the extent of 

activation. Finally, we feel that it is reasonable to assume that the PSWF filter is interchangeable to the 

Gaussian in the sense that both can be used to provide the appropriate amount of smoothness needed to 

make the assumptions of the random field theory valid. In determining the appropriate filter width 

required for valid inference, we suggest using the same rule-of-thumb typically used for a Gaussian kernel 

(e.g. 2-3 voxels).   

 

 Conclusion 

  In this work a new spatial smoothing filter for fMRI is introduced. The filter is based on the use 

of prolate spheroidal wave functions and provides optimal control of truncation artifacts present in MR 

images. The PSWF filter has the important property that any other choice of filter will give rise to a 
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greater amount of signal leakage outside of the width of the filter. This property leads us to believe that it 

has excellent potential as a spatial smoothing filter in fMRI. Simulation studies showed a significant 

increase in power compared to the traditionally used Gaussian filter when smoothing with narrow filters 

(e.g. FWHM < 8 mm). Experimental data from a visual paradigm showed when smoothing with narrow 

filters the PSWF filter gave rise to a significant rise in the number of active voxels in the visual cortex 

compared to data smoothed with a comparable Gaussian filter. This rise is attributable to an increase in 

signal-to-noise ratio.   
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Figure Captions 

 

FIGURE 1.  (A) A circular region of radius 22.5 mm is placed in an image with FOV 240 mm and 

theoretical k-space measurements are calculated corresponding to a 64x64 region of k-space. (B) Image 

reconstruction with no smoothing. The ringing is due to the fact that k-space is truncated. (C) The image 

in (B) is smoothed using a Gaussian filter with 4 mm FWHM. The ringing artifacts are reduced but not 

completely eliminated. (D) The image in (B) is smoothed using a Gaussian filter with 12 mm FWHM. 

The ringing artifacts are eliminated, at the cost of reduced image resolution. The images are plotted on the 

log-scale to better illuminate the ringing artifacts.  

 

FIGURE 2. (A) A boxcar function (top left) is multiplied with a Gaussian kernel (top right). The line 

under the Gaussian shows the frequency extent of the boxcar compared to the Gaussian. After performing 

the inverse Fourier transform on the product, the result is equivalent by the Fourier Convolution Theorem,  

to convolving the point spread function (center left) with a Gaussian kernel (center right). The results of 

this convolution are shown in the bottom row. (B) A boxcar function (top left) is multiplied with a kernel 

(top right) designed to have the same frequency extent as the boxcar. After performing the inverse Fourier 

transform on the product, the result is equivalent to convolving the point spread function (center left) with 

the inverse Fourier transform of the kernel (center right). The results of this convolution are shown in the 

bottom row. The filter effectively controls for the ringing artifacts. 

 

FIGURE 3. (A) The proportion of the effective Gaussian smoothing kernel that lies within ±3σ (or ± 

1.274FWHM) of the center of the filter when N=64 and the FOV is equal to 200 and 240 mm (dashed and 

bold line respectively). (B)  The actual and expected FWHM plotted for a Gaussian filter for the case 

when N=64 and the FOV is equal to 200 and 240 mm (dashed and bold line respectively). For comparison 

purposes the dotted line shows where the actual and expected FWHM coincide.  
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FIGURE 4. A circular region B in image-space (top left) and a k-space subset A (top right). The PSWF 

filter g(k) (bottom right) and its inverse Fourier transform G(x) (bottom left) corresponding to the choice 

of A and B. Note the minimal ringing present in the image-space filter. 

 

FIGURE 5. (A) The proportion of the PSWF kernel (bold) and the Gaussian kernel (dashed) that lies 

within ±3σ (or ± 1.274FWHM) of the center of the filter when N=64 and the FOV is equal to 200 mm. 

(B)  The actual and expected FWHM plotted for the PSWF and Gaussian filter for the case when N=64 

and the FOV is equal to 200 mm (bold and dashed line respectively). For comparison purposes the dotted 

line shows where the actual and expected FWHM coincide.  

 

FIGURE 6. The effective smoothing kernel obtained using the PSWF (bold) and the Gaussian (dashed) 

with 4 mm (left) and 12 mm (right) FWHM (N=64, FOV=200 mm). While the filters are roughly 

equivalent for the wider FWHM, the narrow PSWF filter shows better control of ringing artifacts and 

slightly widened FWHM compared to its Gaussian counterpart.  

 

FIGURE 7. The image in Fig. 1B is smoothed using a Gaussian filter with FWHM equal to (A) 4 mm 

and (B) 12 mm, as well as with a PSWF with width equivalent to a 4 mm Gaussian (C). The images (A-C) 

are plotted on the log-scale to better illuminate the ringing artifacts. (D) A cross-section through the 

center of each image (A-C, along with Figs. 1A-B) illustrates the ringing effects apparent in each case. 

 

FIGURE 8.  (A) The simulated activation pattern and Receiver Operating Characteristic (ROC) curves 

from Simulation 2A obtained using Gaussian (dashed) and PSWF (bold) filters corresponding to 3 

different FWHM (4, 8 and 12 mm). For narrow filters (e.g. 4 mm) using a Gaussian filter will lead to a 

significant decrease in statistical power compared to the PSWF. (B) The same results for Simulation 2B. 

Analogous results hold in this situation. 
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FIGURE 9.  Statistical parametric maps, obtained from 5 randomly chosen subjects, showing voxels with 

significant activation (p-value<0.005) for each of the three different degrees of smoothing. Red represents 

voxels that are significant for both data that was smoothed using the PSWF and the Gaussian filter. Blue 

indicates voxels that were significant for the PSWF data only and yellow voxels that were significant for 

the Gaussian data only.  

 

FIGURE 10.  The difference in the number of significant voxels obtained using the PSWF and Gaussian 

kernel for a variety of thresholds (t*=2,…5 corresponding to p-values ranging from 0.025 to 0) for filters 

with FWHM 4, 8 and 12 mm. It is clear that there is a significant increase in the number of active voxels 

in the 4 mm case when using the PSWF filter that is attributable to the increase in power shown in Fig. 8.  
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Appendix A 

For a given A and B, the prolate spheroidal wave function, g(k), is obtained by finding the function whose 

inverse Fourier transform maximizes the ratio in Eq. 7. With the proper normalization of G(x) we can 

assume that 

  ∫
∞

= 1d|)(G| 2 xx . (14) 

The problem then becomes finding the solution to the following equation, subject to the above constraint 

on G(x):  

  ∫=
B

xx d|)G(|maxλ 2 . (15) 

We can rewrite the integral on the right hand side of Eq. 15 as follows: 
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where 
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B
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Combining Eqs. 15 and 16, the problem now becomes solving the equation 
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or, alternatively, 

 



 

 

37

{ }gKg B
ˆmax +=λ  (19) 

 
where BK̂  is an a×a matrix with elements given by  ),(ˆ lkBK  for A  , ∈lk . It is well known that the 

solution to this problem is the largest eigenfunction of the matrix BK̂ . This gives us the 0-order prolate 

spheroidal wave function filter.  One can construct a smoothing kernel by taking the inverse discrete 

Fourier transform of g(k) and reconstructing it onto a matrix with the same dimensions as the image. 

Smoothing can thereafter be performed in an analogous manner as for Gaussian, which is described 

algebraically in Eq. 1. 

 


