
 1 

 

A Generalization of the Two Dimensional Prolate Spheroidal Wave Function Method for  

Non-rectilinear MRI data Acquisition Methods 

 

Martin A. Lindquist1, Cun-Hui Zhang2, Gary Glover3, Lawrence Shepp2, Qing. X. Yang4 

 

 

1 Department of Statistics, Columbia University, New York, NY, 10027 (martin@stat.columbia.edu) 

2 Department of Statistics, Rutgers University, New Brunswick, NJ, 08854 

3 Department of Radiology, Lucas MR Center, Stanford University, Stanford, CA, 94305 

4 Department of Radiology (Center for NMR Research), The Pennsylvania State University, College of 

Medicine, The Milton S. Hershey Medical Center, Hershey, PA, 17033. 

 

 

 

 

 

 

 

EDICS: 3MRIM – Magnetic Resonance Imaging 

RUNNING TITLE:  Generalized 2D-PSWF Method 



 

 

2

ABSTRACT 

The two-dimensional Prolate Spheroidal Wave Function (2D-PSWF) method was previously introduced 

as an efficient method for trading-off between spatial and temporal resolution in magnetic resonance 

imaging (MRI), with minimal penalty due to truncation and partial volume effects. In the 2D-PSWF 

method, the k-space sampling area and a matching 2D-PSWF filter, with optimal signal concentration and 

minimal truncation artifacts, are determined by the shape and size of a given convex region of interest 

(ROI). The spatial information in the reduced k-space data is used to calculate the total image intensity 

over a non-square ROI instead of producing a low-resolution image.  This method can be used for 

tracking dynamic signals from non-square ROIs using a reduced k-space sampling area, while achieving 

minimal signal leakage. However, the previous theory is limited to the case of rectilinear sampling. In 

order to make the 2D-PSWF method more suitable for dynamic studies, this paper presents a generalized 

version of the 2D-PSWF theory that can be applied to non-rectilinear data acquisition methods. The 

method is applied to an fMRI study using a spiral trajectory, which illustrates the methods efficiency at 

tracking hemodynamic signals with high temporal resolution. 
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 INTRODUCTION 

 Magnetic resonance imaging (MRI) signals (raw data) are acquired in the frequency-domain (k-

space), which is typically sampled on a rectangular Cartesian grid, and then Fourier transformed into the 

spatial-domain (image-space).  A trade-off between spatial and temporal resolution is often used to 

increase the image sampling speed required by many dynamic applications [1]-[6].  However, reduction 

of spatial resolution in an image leads to a stronger partial-volume effect, which decreases the sensitivity 

of dynamic signals.  These problems are frequently encountered in rapid imaging and chemical shift 

imaging.  The origin of the problem is the disparity between the size and irregular geometry of the region 

of interest (ROI), and the rectangular voxel produced by the fast Fourier transform [7].   

 In order to solve this problem, the two dimensional Prolate Spheroidal Wave Function (2D-PSWF) 

method was developed to address the issues inherent in the fast Fourier transform [8]-[12]. To efficiently 

reduce the number of acquired data points, the 2D-PSWF method tailors the k-space sampling area 

according to the size and shape of a predetermined convex ROI and creates a matching 2D-PSWF filter to 

optimally reduce truncation effects.  In this method, the spatial information in the reduced k-space data is 

used to calculate the total signal intensity over a non-square ROI instead of producing a low-resolution 

image.  This method is ideally suited for localized spectroscopy and tracking dynamic signals from non-

square ROIs using a reduced k-space sampling area, while achieving minimal signal leakage.   

 Because hardware restrictions (gradient strength and slew rate) and the threshold of neuro-

stimulation by rapidly switching gradients set a physical limit for image acquisition rates, non-rectilinear 

data acquisition methods such as radial and spiral imaging are often employed. For these sampling 

schemes k-space is sampled non-uniformly and the sampling points do not lie on a rectangular grid. The 

original 2D-PSWF theory was developed only for the rectilinear sampling case. To further develop the 

2D-PSWF method to increase its suitability for dynamic MRI and CSI studies, this paper presents a 

generalized 2D-PSWF theory that can be applied to non-rectilinear data acquisition methods.  An 

example of its implementation for dynamic MRI is presented using a spiral k-space sampling method. 
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THEORY 

I. Fast fMRI using the 2D-PSWF 

Let us begin with a brief review of the basic theory of the 2D-PSWF in the context of its application to 

fMRI before proceeding to develop the general case.  As k-space consists of a sequence of discrete 

measurements during MRI data acquisition, it should therefore be chosen to be discrete. On the other 

hand, image-space, denoted by Ω in this paper, can be chosen to be either discrete or continuous. In 

previous applications of the 2D-PSWF theory to fMRI [8]–[12], image-space was defined as a discrete 

space consisting of a collection of image elements (voxels).  For an NN × image, the space consists of N2 

elements.   However, it may be more advantageous to instead treat image-space as continuous, as the 

underlying object being imaged should be considered continuous. Fig.1 gives an illustration of both 

approaches towards setting up the problem formulation. In this section we focus on the 

discrete/continuous case, as the discrete/discrete case has already been studied extensively in previous 

work [8]–[12]. 

Consider a convex ROI, B, in image-space. The objective of the 2D-PSWF method is to determine 

the optimal sampling region in k-space, A, of a predetermined size a, which maximizes the total signal 

over the region B in image-space (Fig. 1b).  This is achieved by designing a k-space sampling region 

based on the size and shape of given B, and combining this with a matched two-dimensional filter that 

maximizes the energy concentration in B. The key to the method is finding the matched filter function 

g(k), that satisfies the following two criteria:  

 

(i) It takes the value 0 for points outside of A.  

(ii) Its inverse Fourier transform, G(x), has maximal signal concentration in B, i.e. the ratio  
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As an additional constraint, the denominator of the ratio in (1) is set equal to one. This simplifies the 

problem to finding the function, g(k), with norm equal to one, whose inverse Fourier transform 

maximizes, 

∫=
B

dG xx 2)(λ . (2)  

 

The problem of finding g(k) is a 2D generalization of the theory of Prolate Spheroidal Wave 

Functions (PSWF) [13]-[18].  Using Parseval’s identity, the problem can be written in matrix form as, 

 

{ }gKg A,B
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Suppose BK  is the Fourier transform of the indicator function of the region B, denoted BI , which can be 

written: 
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Then it can be shown that the kernel, BA,K , is given by,  
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)'()',(, kkKkkK −= BBA  (6) 

 

for k, k ' ∈ A.  For simple regions B (e.g. circles, squares, ellipses) there exist analytical expressions for 

BÎ , which allow for easy computation of the kernel defined in (6). The solution to the problem stated in 

(3) is the largest eigenvector of the matrix BA,K . The corresponding largest eigenvalue, λ, provides a 

quantitative measure of the signal leakage that the eigenvector gives rise to. A value of λ close to 1 

indicates little signal leakage, while the leakage increases as λ decreases.  

It can be shown in an analogous manner that for the case when image-space is instead considered 

discrete (Fig. 1a), the problem becomes finding the largest eigenfunction of the aa ×  matrix with 

elements given by, 
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for k, k ' ∈ A.   

 

Once we calculate the optimal filter corresponding to some fixed A, for a given B, we let A vary 

among all possible k-space regions of a given size a. For each possible region we obtain a corresponding 

vector g(k,A) for which the stated criteria hold.  Finally we choose the region whose corresponding g(k,A) 

makes the maximal concentration ratio, λ, as large as possible. The problem of finding the optimal 

sampling region A is a difficult mathematical problem, as it involves an exponential growth in N 

computer searches for an NN ×  size image.  To avoid such an extremely computer-intensive search, a 

heuristic sampling scheme is introduced in [10], which computer searches show to be near-optimal. In 

addition it can be shown that the optimal choice of A, when B is a circle, is a circular region in k-space. 
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This choice coincides with the heuristic scheme, which for the convex regions B typically used in this 

method winds up giving re-scaled and rotated versions of B centered in the middle of k-space. 

In should be noted that in one dimension, one has an associated differential operator with the 

same eigenfunctions [13-16], which can be used to deduce conditions for when the multiplicity of the 

largest eigenvalue is equal to one. However, in higher dimensions such conditions do not exist and if we 

are not careful we may not have a unique eigenfunction, and hence have more than one answer to the 

maximization problem stated in (3). If the multiplicity of the largest eigenvalue is greater than one, it is 

beneficial to shrink the size of the sampling region A until the relationship 122 ≈<< λλ  holds. 

Experiment shows that we are able to consistently obtain a dominant eigenvalue that has multiplicity one, 

for appropriate regions, using this approach. Fig. 2 shows a plot of the two largest eigenvalues for the 

case when B is a small circular region with fixed radius (radius = 7.5mm, FOV = 200mm) and A is a 

circular region with variable radius, containing a equally spaced k-space measurements. As a increases it 

is clear from Fig. 2 that the value of the two largest eigenvalues both approach 1. However, as the largest 

eigenvalue increases faster, there exists a range of values for a, such that the largest eigenvalue is equal to 

one and the second largest is significantly below 1. In this particular example this corresponds to a region 

consisting of approximately 800 points in k-space. This value indicates an appropriate size, a, for the 

sampling region A. 

Once we have calculated the 2D-PSWF filter g(k), the next step is to apply it to the raw data. Let 

us assume that f(k) is an experimental sampling function in k-space and F(x) is its corresponding Fourier 

transform (the image). It can be shown [8]-[9] that we can calculate the integral of the signal intensity 

over B, FB, using the formula: 
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as long as g(k)>0 on A, which holds for the convex regions that we have studied. Equation (8) shows that 

the integral of the image intensity over B can be approximated using a reduced area of k-space, k ∈ A, 

since g(k) = 0 outside of A.  Thus, if we are interested in obtaining the total signal intensity over a given 

ROI in an image, the sampling of k-space can be reduced to a region A.  

A 2D-PSWF filter calculated for a specific B at x can be used for all translationally shifted ROIs in 

image space.  An alternative ROI at x + s can be obtained by shifting B (x) to B (x + s) in image-space, 

where s is a displacement vector. The signal intensity over the new ROI can be calculated as follows: 

 
 ∑
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Thus, A and the associated function g(k) can be used for calculation of any ROI with the same shape and 

size. Therefore having prior knowledge of the exact location of an ROI is of less importance, as one can 

simply shift the ROI if necessary during post-processing. 

 

II. The non-uniform sampling case. 

As the 2D-PSWF method often requires one to sample non-square regions in k-space, it is often more 

efficient to use a trajectory that samples k-space non-uniformly. However, it can be shown that the PSWF 

operator shown in (6) no longer yields the correct solution for the case when the k-space region A is 

sampled non-uniformly.  Note that throughout we assume that image-space is continuous and without loss 

of generality that Ω is a unit square. 

When calculating the PSWF function, the denominator of the ratio in (1) is set equal to one. In the 

case when the data is sampled on a Cartesian grid, this implies that 
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which is an essential constraint for the derivation of (6) to hold.  In the case when k-space is sampled non-

uniformly (10) no longer holds. To see why, let us take a closer look at the denominator of the ratio in (1), 
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When the k-space points k and l lay on the Cartesian grid, we have that 
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and thus 

1)( 2 =∑
∈A

g
k

k , (15) 

 

which implies that (10) will hold. However, when the coordinates k and l do not lie on the Cartesian grid, 

this relationship will not hold. Hence, when dealing with the non-uniform case we will have to take the 

kernel, K, into consideration while deriving the PSWF filter. 

 

III. The generalized prolate spheriodal wave function for non-uniform sampling 

Assume that we non-uniformly sample a finite set of points in k-space k1, k2, …. ka, which we will refer 

to as A.  In MRI, the measured signal at point kj, S(kj), is related to the image function F(x) according to 

the relationship: 

 

∫
Ω

−= xxk kx deFCS ji ),(2
j )()( π    for Nj …,1= , (16) 

 

where C is a constant and Ω denotes image space. This equation shows that S(kj) is a multiple of the 

Fourier transform of the image function. For notational simplicity we will assume the constant is equal to 

1 and will subsequently refer to S(kj) as )( jkf . 

Now, consider a function p(k) which is zero outside of A and whose inverse Fourier transform 

has its energy maximally concentrated on a region B in image-space. That is, p(k) is zero for any point 

lying outside of A, and its inverse Fourier transform maximizes the ratio given in (1).  Suppose we apply 

this function to the sampled data in the same manner described in the previous section. Following (9), we 

can calculate the signal intensity over an ROI B, centered at point s, as follows: 
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where  
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Hence the integral of signal intensity over B will be approximately equal to the image convolved 

with a point spread function which depends on the function p. By controlling the shape of P we can 

control the point-spread function and minimize signal leakage outside of the ROI. Ideally we would like 

P(x) to be completely concentrated on a region of the same size and shape as B. When k-space is sampled 

on a Cartesian grid, P(x)= G(x), which is the filter covered in previous papers and summarized in section 

I. In the non-uniform case P(x) will take a different form and the calculation of the PSWF function needs 

to be altered accordingly.     

 

IV. Determining the generalized prolate spheriodal wave function 

In this section we derive the optimal filter for the case when k-space is sampled non-uniformly and 

image-space is chosen to be discrete (Fig. 1a). The continuous image-space case is discussed briefly at the 

end of the section. In the PSWF theory, we are interested in finding the function P that solves the 

following optimization problem:  



 

 

12

 

∑
∑

Ω∈

∈=

i

i

i

B
i

p P

P

x

x

k x

x

2

2

)( |)(|

|)(|
maxλ  (19) 

 

where )(xP  is defined in (18). 

Let Ω denote the set of N2 points in an NN × image-space, and let B consist of b adjacent voxels 

that cover the chosen shape of the ROI. To present the problem in matrix notation, let F represent the 

vector form of F(x), for x ∈ Ω. Similarly, let p and f be vectors of p(k) and f(k), respectively, for k ∈ A. 

We will also make use of the inner product notation, where 
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Further let us define two operators,  
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Here it should be noted that T is an 2Na× and T* an aN ×2  matrix. It is important to note two useful 

facts about the operators T and T*. First, 
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and similarly,  

A),(),( * TfpfpT =Ω . (24) 

 

Additionally, the matrix IBT* is defined as the b rows of the matrix T* that correspond with elements in 

the ROI B and similarly, TIB will consist of the b columns of the matrix T that correspond with elements 

in B. When multiplying these two matrices we will simply write TIBT*, instead of TIBIBT*. 

Turning our attention back to (19), for any fixed B ⊂  Ω, we can rewrite the numerator, in discrete 

form, as follows: 
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Similarly we can rewrite the denominator as, 
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Let us define R=(TT*)1/2. Since R*=R, it holds that ( ) ( )AA RpRpRRpp ,, = . 

Let ξ= Rp.  Now (25) can be written as, 

 

( ) ( )ξRTTIξRpTTIp 1*1* ,, −−= BB A  

( )AξRTTIRξ 1*1, −−= B  (27) 

  

and the problem defined in (19) can be reformulated as follows:  

 

( )A*,max ξRTTIRξ 11 −−
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( ) 1,subject to A =ξξ  (28) 

 

The solution to this problem is the largest eigenvalue λ and the corresponding eigenvector ξ of 

the matrix BA,K =R-1TIBT*R-1.  In the case when k-space is sampled uniformly, R2=TT*=I,  where I is 

the aa ×  identity matrix, and BA,K  can be written as:   
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which is the kernel shown in (7). However, when k-space is sampled non-uniformly we have to take the 

matrix R into consideration in our continued calculations. 

Since λ is the largest eigenvalue of BA,K  and ξ its corresponding eigenvector, it must hold that 

 

ξRTTIRξ 1*1 −−= Bλ . (31) 

 

In general, b << a, and hence, to simplify the calculation, BA,K  can be expressed in image-space to 

reduce the matrix size. Let ξRTIη 1−= *
B .  Multiplying both sides of (31) by the matrix 1RTI −*

B  yields 

 

      ξRTTIRRTIη 111 −−−= **
BBλ  

ηTIRTI 2
BB

−= *  

ηK AB,=  (32) 

 

This shows that η is an eigenvector of the matrix AB,K , which is a bb×  matrix that has the same largest 

eigenvalue, λ, as BA,K . Once η is obtained, we can use it to calculate the optimal filter p. Begin by 

multiplying both sides of the equation η=IBT*R-1ξ with the matrix R-1TIB. Together with (31) this gives 

the following relationship between η and ξ: 

 

ξξRTTIRηTIR 111 λ== −−− *
BB . (33) 

  

This in turn implies that 

ηTIRξ 1
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Using this relationship, and the fact that ξ = Rp, we can express p as,  

 

ηTIRξRp 21
B

−− ==
λ
1  (35) 

 

The inverse Fourier transform of p is the function for which the ratio in (19) is maximized and therefore 

maximizes the energy over the predefined ROI B. Equation (35) represents the optimal PSWF filter for 

the ROI B and ( ) )()( iiP xTpx =  represents the corresponding point spread function.  

Once p is obtained, the total signal intensity over the ROI B can be evaluated directly from the 

reduced k-space area using the formula: 
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as shown by (17). 

 In this section image-space was chosen to be discrete. It should be noted that the problem can be 

set up in an analogous manner for continuous image-space. However, we ultimately determined that 

treating image-space as discrete allowed for a simpler expression of the dual kernel in image-space (32), 

which in turn greatly simplifies numerical calculation. 

 

 

V. Calculation of the generalized PSWF 

The main difficulty in applying this method to MRI data, is inverting the matrix R2. In certain situations, 

this can be difficult due to the size of the matrix and to the fact that the smallest eigenvalues can take 

values close to 0, making the matrix ill-conditioned. When this scenario arises there are two potential 

problems in calculating p. The first difficulty is the calculation of the kernel KB,A and the corresponding 
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largest eigenfunction η. The second difficulty is the calculation of ηTIR 2
B

− . The first problem can be 

solved by substituting R-2=(TT*)-1 with the pseudoinverse of TT*.  

When calculating the kernel KB,A we can avoid the problem of inverting R2 by defining a 

mapping. Let U: Rk → T*k, where U = (u1, …. ua) and u1, …. ua ∈ Ω.  The vectors ui form an orthogonal 

basis of Ω. We can write T* and T in terms of the unitary matrix U as follows: URT =* and  1−= RUT . 

Since R=(TT*)1/2=R* and ||Uε || = || ε ||,  the matrix UU-1 will be the projection onto the range of 

T*.  We can rewrite the generalized prolate kernel, KB,A, in terms of the matrices U and U-1,   

BBAB TIRTIK 2−= *
,  

BB IUUI 1−=  (37) 

 

 Using this mapping we can calculate the kernel without having to invert the matrix R2. Instead 

we need to find a basis which spans T*. This can be done in a variety of fashions, for example by 

calculating the singular value decomposition of T*. Once we have determined U, it is easy to calculate 

KB,A and obtain the largest eigenfunction in the usual manner. 

As the matrix R-2 works as a weighing function that compensates for the non-uniform sampling, 

an alternative approximate solution that is significantly less computer intensive is to substitute the matrix 

R-2 with a matrix with diagonal elements equal to the values of some density compensation function. This 

will give a reasonable approximation at a fraction of the cost for most sampling trajectories that one 

would potentially use in MRI.  

 

METHODS 

The generalized 2D-PSWF method was implemented in Matlab (Mathworks Inc.) on a personal 

computer.  To demonstrate its utility for dynamic studies, a high temporal resolution fMRI experiment 

was designed to simultaneously track the hemodynamic signals in both visual and motor cortices while 

the subject undergoes a visual-motor activation paradigm. Following the steps of the generalized 2D-
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PSWF method, circular ROIs with a radius of 8 mm were chosen for the primary visual cortex and the 

primary motor cortex (Fig. 8). Since the ROIs were chosen to be circles, the optimal sampling in k-space 

was also circular [10]. This predetermined circular sub-region of k-space was sampled with 3628 points 

using a spiral trajectory [19] that allowed a minimum repetition time of 60 ms (Fig. 9).  After calculating 

the optimal filter p corresponding to this choice of A and B, the signal intensity over the circular ROI, B, 

was calculated with the acquired k-space data using (36).  

The activation paradigm consisted of six cycles of 30 s intervals. At the beginning of each 

interval a 100 ms light flash was presented. The subject was instructed to press a button with their right 

thumb immediately after sensing the flash, thereby leading to activation of the motor cortex. During the 

30 second interval, 500 images were acquired rapidly every 60 ms. The sequence was repeated six times, 

each time producing a dynamic data set of 500 temporal points. The images were obtained in an oblique 

slice containing both primary visual and motor cortices using a spiral trajectory.  The dynamic signals 

from the pre-determined ROIs were acquired with an effective TE 30 ms, flip angle 15 degrees, field of 

view 240×240 mm2, slice thickness 10.3 mm, matrix 24 × 24 and bandwidth 12.5 kHz. The experiment 

was performed on a 3.0 T whole body scanner (GE magnet, General Electric Medical Systems, 

Milwaukee, WI, USA). A healthy male volunteer (age 28) participated in the study after giving written 

informed consent. The activated ROIs in the slice were determined by correlating their time-course signal 

intensity with the experimental paradigm.  For comparison purposes, the acquired k-space data were also 

used to reconstruct low-resolution images using conventional re-gridding methods [20] for the dynamic 

analysis. 

 

RESULTS 

In this section, a computer experiment is described to illustrate the concepts and mathematical procedure 

of the generalized 2D-PSWF method for non-uniformly sampled data.  An application of the method to 

fMRI is demonstrated using experimental data. 
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I. A Computer Phantom Study 

As shown in Fig. 3, we constructed a 6464×  phantom image containing an ellipse representing a human 

brain that consists of 1209 points. The image intensities are assigned values of 1 or 0 for the points inside 

or outside the ellipse, respectively. Two smaller ellipses having an intensity of 1.1, each consisting of 75 

points, are placed inside the larger ellipse to simulate ROIs with static contrast to the large ellipse. To 

simulate a dynamic image series, this base image is recreated 64 times according to a boxcar paradigm 

consisting of eight cycles of four “ON” and four “OFF” periods.  An image is considered in the “ON” 

state, if there is an “activated” circular ROI with intensity 1.05 in the corner of the large ellipse. 

Conversely, an image is considered in the “OFF” state, if no such ROI exists in the image. The 

“activated” ROI consists of 21 points. A 5% white noise floor is added to all 64 images. These dynamic 

images are subsequently transformed into k-space for application of the 2D-PSWF method to measure the 

dynamic signal change in a given ROI, B.   

 

II. Choosing A and B 

In this simulation, our ROI B is chosen to be the same size and shape as the “activated” circular region 

consisting of 21 points. The optimal k-space sampling area, A, corresponding to this ROI will also be 

circular [10]. The spiral sampling trajectory is the natural choice for sampling a circular k-space region A. 

In order to demonstrate the influence of the size of A, three sampling sizes shown in Fig. 4 are given. Our 

first choice of A (Fig. 4a) consists of 454 points and covers approximately 11% of the total area of k-

space needed for a full image reconstruction of a 64×64 image. We also choose two other sampling 

regions for comparison, one that consists of 910 points covering 17% of k-space (Fig. 4b) and another 

that consists of 3664 points covering 78.5% of k-space (Fig. 4c).   

 

III. Eigenvalues and eigenvectors 

Using the generalized prolate kernel in (32), the optimal filter, p(k), with respect to A and B can be 

calculated. Fig. 5 shows the optimal filter functions corresponding to the three different sampling sizes. 
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The signal leakage for each of the three filters is shown in Fig. 6. It is clear that as the sampling size A 

increases, so does the concentration of the signal within the ROI.  

 In the rectilinear case [8]-[9] a lower limit for choosing the number of sampling points was given 

by the relationship  

  a = 3N2/b,         (38) 

 

where b is the size of the ROI B and N2 is the size of the image. This formula cannot be directly applied to 

non-uniform data, as the area of k-space effectively covered is more important than the actual number of 

points sampled. However, by calculating the lower limit for a in the rectilinear case according to (38), we 

can determine the appropriate area of the k-space region that needs to be covered. For b equal to 21 and N 

equal to 64, we find that we would need to sample 585 points in the rectilinear case. This corresponds to a 

circular region of k-space with radius 14 unit points. It is interesting to note that the first sampling region 

is smaller than this heuristic threshold, while the latter two lie above it.   

 

IV. Calculating the signal intensity over B 

Once the filter p(k) corresponding to the given k-space subset A is obtained, the total signal intensity over 

B can be calculated directly from the reduced k-space area using (36). In this study the 2D-PSWF method 

was applied to data sampled using the sampling trajectory with 910 points in Fig. 4b. Fig. 7 shows a plot 

(solid line) of  ∑
∈B

tF
x

x ),(  as a function of the image number, t, obtained using a reduced k-space sample 

and the 2D-PSWF method. Also contained in the same figure is a plot of dynamic signal change over B 

(dotted line), obtained by taking the sum over B directly from the phantom images. It is clear that with the 

2D-PSWF method the signal intensity over B closely follows the true signal change even though only 

17% of k-space was used in the analysis. 

 

V. Application to experimental data 
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To validate the theoretical analysis and computer modeling results, the utility of the generalized 2D-

PSWF method for dynamic studies was tested experimentally using a visual-motor stimulation fMRI 

paradigm.  With the generalized 2D-PSWF method, the dynamic signal change over each of the two ROIs 

during the execution of the stimulation paradigm was obtained.  Fig. 10 shows a plot of the average signal 

intensity in the visual cortex (bold line) and the motor cortex (light line) over the six runs.  A clear delay 

in motor activation due to reaction time can be seen. With the increased temporal resolution and SNR, we 

can more precisely determine the delay time in motor activation to be approximately 300 ms. For both 

cortices, the ‘negative dip’ in the time-course plot can be seen clearly. Fig. 11 shows a similar plot 

obtained from the same ROIs using images reconstructed with conventional re-gridding methods. The 

motor activation is significantly attenuated as a result of partial volume effects. 

The generalized 2D-PSWF methodology was able to detect the signal change in both activated 

regions of the brain. By translating the filter, the signal intensity over other circular ROIs centered at 

different areas of the brain could be calculated. No other significant activation was consistently detected 

in other regions in the chosen slice.  

 

DISCUSSION 

This paper presents a generalization of the 2D-PSWF method to non-uniformly sampled k-space data. 

This generalization is important, as k-space is typically sampled in a non-rectilinear fashion for dynamic 

MRI studies due to hardware limitations.  The example presented here samples k-space with a smooth 

spiral trajectory that eliminates abrupt switching of spatial encoding gradients. This approach is also 

advantageous for implementation of the 2D-PSWF method because it is more straightforward to sample 

the tailored non-square k-space regions using a spiral trajectory rather than using conventional rectilinear 

k-space sampling methods.  

 From a practical point of view, the major difficulty in applying the 2D-PSWF method to MR data 

is the computational difficulties that are involved in inverting the matrix R2. For typical MRI sampling 

trajectories, the matrix is often ill-conditioned because the smallest eigenvalues take values close to 0. In 



 

 

22

these situations, one can substitute the inverse with the pseudo-inverse that is a generalization of matrix 

inversion that can be computed using singular value decomposition. An additional difficulty is that when 

R2 is large, the calculation of the inverse or pseudo-inverse is computationally intensive. An alternative 

approximate solution that is significantly less computationally intensive is to substitute a matrix having 

diagonal elements equal to some density compensation weight w(k) for the matrix R-2. This will give a 

reasonable approximation at a fraction of the cost for most sampling trajectories used in MRI. 

 In the 2D-PSWF method, the reduction of k-space sampling is realized by trading off spatial 

resolution for temporal resolution while maintaining high SNR. Tailoring the sampling region and 

matching the 2D-PSWF filter to the shape and size of a given ROI allow us to optimize the reduction of 

k-space sampling with minimal truncation penalty.  The non-square shaped ROI reduces the signal 

leakage outside of the ROI, which improves the contrast-to-noise ratio (CNR). As demonstrated in Fig. 

10, the improved temporal resolution provides more detailed information about hemodynamic signals of 

visual and motor cortices.  A ‘negative dip” that peaks 2s after the onset of visual stimulation, is clearly 

visible in the hemodynamic signals from both visual and motor cortices. Since the amplitude of the 

negative dip is much smaller than the positive BOLD effect (< 1% at 3T), similar results reported 

previously generally required signal averaging across multiple runs from multiple subjects [21]. With the 

generalized PSWF method, the time course signal from the visual cortex allows the data to reliability 

characterize the hemodynamic response from a single subject. This is important for the clinical 

applications where diagnoses of abnormalities are normally based on a single subject study. The 

corresponding negative dip for the motor cortex is apparent but less pronounced in the plot. This may be 

due to averaging effect of the temporal signals over all the runs because the time of subject responding to 

the visual stimulation can be different with each run. With the conventional gridding method, both 

positive and negative activations in the time-course plot for motor cortex are diminished. 

 The other advantage of the high temporal resolution provided by the PSWF method is the increased 

frequency-domain bandwidth of the dynamic signal. This allows for better identification and subsequent 

filtering of undesirable physiologic noises in the hemodynamic signal. As shown in Fig. 11, the 
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characteristics for the signal over the motor cortex were interfered by a periodic modulation in the time 

course signal. This can be easily identified in the Fourier transform of the temporal signals shown in Fig. 

12, and subsequently removed by a specific bandpass filter.  

 Typically under the conditions needed to increase the temporal resolution, tracking the 

hemodynamic responses is difficult because the image SNR is significantly attenuated by the drastically 

reduced TR. However, as seen in Fig. 10, the 2D-PSWF method provides an adequate SNR for high 

temporal resolution dynamic studies.  Thus, the 2D-PSWF method can be a valuable tool for the studies 

of dynamics of the brain function such as functional neuron-neuron interaction, synchronization and 

connectivity [22]-[24].  

 

CONCLUSIONS 

The 2D-PSWF method addresses issues inherent in the fast Fourier transform, such as partial volume 

effects due to the square-shaped voxel and the inverse relationship between image resolution and k-space 

sampling area (temporal resolution).  These problems are frequently encountered in rapid imaging and 

chemical shift imaging.  This method uses prior knowledge of a given ROI and the temporal resolution 

requirements to design a reduced sampling area of k-space with a matched 2D-PSWF filter, such that 

optimal SNR and minimal truncation artifacts are achieved. 

This paper introduces a generalized version of the 2D-PSWF method that allows its application to 

non-uniformly sampled k-space data with arbitrary trajectory. This extension is important; as the k-space 

sub-regions normally take a non-square shape when applying the 2D-PSWF method and sampling on the 

Cartesian grid for a non-square k-space is inefficient.  To validate our method, the generalized 2D-PSWF 

method was applied to a high temporal resolution fMRI study using a spiral sampling trajectory and its 

effectiveness in tracking the dynamic signal change over the visual and motor cortices was illustrated.  
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FIGURES 

 

Fig. 1:  (a) Discrete/Discrete case - k-space consists of discrete measurements made inside of the region 

A. Image-space consists of the N2 voxel elements contained in the NN × image. B consists of a set of 

voxels. (b) Discrete/Continuous case - Image-space has support Ω. 

 

Fig. 2:  The two largest eigenvalues for the case when B is a small circular region with fixed radius 

(radius = 7.5mm, FOV = 200mm) and A is a circular region with variable radius, containing a equally 

spaced k-space measurements. As a increases both eigenvalues approach 1. The appropriate size of A is 

when the largest eigenvalue is equal to one and the second largest is significantly below 1.  

 

Fig. 3:  Computer phantom images. (a) Image without activation. (b) Image with activation in B. (c) 

Image with activation in B and 5% white noise. 

 

Fig. 4:  Spiral sampling trajectories consisting of (a) 454 points, (b) 910 points and (c) 3664 points.  

 

Fig 5: The optimal filter function, p, corresponding to each of the three sampling schemes shown in  Fig. 

4. The x-axis represents each point in the order it was sampled. 

 
 
Fig. 6: The function P(x) and the corresponding signal leakage given by each of the three filters shown in 

Fig. 5. 

 

Fig. 7: The time-course signal intensities over B using the 2D-PSWF method and only 17% of k-space. 

The signal intensity with full k-space sampling is plotted in dotted lines for comparison.  
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Fig. 8:  The two ROIs (21 voxels) in the motor (upper) and visual (lower) cortices superimposed on a 

low-resolution image of the acquired slice. 

 

Fig. 9:  The optimal sampling region corresponding to the ROIs given in Fig 6. The trajectory used in the 

experiment is superimposed. Compare this with full k-space (64×64) which is marked by the black box.  

 

Fig. 10: The dynamic signal change over the visual (bold) and motor (light) cortex for the first 18s 

following visual stimuli. The delay in time-to-peak between the two curves is approximately 300 ms. 

 

Fig. 11:  The dynamic signal changes over the visual (bold) and motor (light) cortex for the first 18s 

following visual stimuli, obtained by integrating the signal over the ROIs in images reconstructed using 

re-gridding methods. 

 

Fig. 12: The Fourier transform of the dynamic signal over the motor cortex shown in Fig. 9. A peak at 

ω=16 indicates the frequency of the periodic fluctuation apparent in the signal. 
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