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The Statistical Analysis of fMRI Data
Martin A. Lindquist

Abstract. In recent years there has been explosive growth in the number
of neuroimaging studies performed using functional Magnetic Resonance
Imaging (fMRI). The field that has grown around the acquisition and analysis
of fMRI data is intrinsically interdisciplinary in nature and involves contri-
butions from researchers in neuroscience, psychology, physics and statistics,
among others. A standard fMRI study gives rise to massive amounts of noisy
data with a complicated spatio-temporal correlation structure. Statistics plays
a crucial role in understanding the nature of the data and obtaining relevant
results that can be used and interpreted by neuroscientists. In this paper we
discuss the analysis of fMRI data, from the initial acquisition of the raw data
to its use in locating brain activity, making inference about brain connec-
tivity and predictions about psychological or disease states. Along the way,
we illustrate interesting and important issues where statistics already plays a
crucial role. We also seek to illustrate areas where statistics has perhaps been
underutilized and will have an increased role in the future.

Key words and phrases: fMRI, brain imaging, statistical analysis, chal-
lenges.

1. INTRODUCTION

Functional neuroimaging has experienced an explo-
sive growth in recent years. Currently there exist a
number of different imaging modalities that allow re-
searchers to study the physiological changes that ac-
company brain activation. Each of these techniques
has advantages and disadvantages and each provides a
unique perspective on brain function. In general, these
techniques are not concerned with the behavior of sin-
gle neurons, but rather with activity arising from a large
group of neurons. However, they differ in what they at-
tempt to measure, as well as in the temporal and spatial
resolution that they provide. Techniques such as elec-
troencephalography (EEG) and magnetoencephalog-
raphy (MEG) are based on studying electrical and
magnetic activity in the brain. They provide tempo-
ral resolution on the order of milliseconds but uncer-
tain spatial localization. In contrast, functional mag-
netic resonance imaging (fMRI) and positron emission
tomography (PET) provide information on blood flow
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changes that accompany neuronal activity with rela-
tively high spatial resolution, but with a temporal reso-
lution limited by the much slower rate of brain hemo-
dynamics. While each modality is interesting in its own
right, this article focuses on statistical issues related to
fMRI which in the past few years has taken a dominant
position in the field of neuroimaging.

Functional MRI is a noninvasive technique for study-
ing brain activity. During the course of an fMRI ex-
periment, a series of brain images are acquired while
the subject performs a set of tasks. Changes in the
measured signal between individual images are used
to make inferences regarding task-related activations
in the brain. fMRI has provided researchers with un-
precedented access to the brain in action and, in the
past decade, has provided countless new insights into
the inner workings of the human brain.

There are several common objectives in the analy-
sis of fMRI data. These include localizing regions of
the brain activated by a task, determining distributed
networks that correspond to brain function and mak-
ing predictions about psychological or disease states.
Each of these objectives can be approached through
the application of suitable statistical methods, and sta-
tisticians play an important role in the interdisciplinary
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teams that have been assembled to tackle these prob-
lems. This role can range from determining the ap-
propriate statistical method to apply to a data set, to
the development of unique statistical methods geared
specifically toward the analysis of fMRI data. With the
advent of more sophisticated experimental designs and
imaging techniques, the role of statisticians promises
to only increase in the future.

The statistical analysis of fMRI data is challenging.
The data comprise a sequence of magnetic resonance
images (MRI), each consisting of a number of uni-
formly spaced volume elements, or voxels, that par-
tition the brain into equally sized boxes. The image
intensity from each voxel represents the spatial distrib-
ution of the nuclear spin density in that area. Changes
in brain hemodynamics, in reaction to neuronal activ-
ity, impact the local intensity of the MR signal, and
therefore changes in voxel intensity across time can be
used to infer when and where activity is taking place.

During the course of an fMRI experiment, images of
this type are acquired between 100–2000 times, with
each image consisting of roughly 100,000 voxels. Fur-
ther, the experiment may be repeated several times for
the same subject, as well as for multiple subjects (typi-
cally between 10–40) to facilitate population inference.
Though a good number of these voxels consist solely
of background noise, and can be excluded from fur-
ther analysis, the total amount of data that needs to be
analyzed is staggering. In addition, the data exhibit a
complicated temporal and spatial noise structure with a
relatively weak signal. A full spatiotemporal model of
the data is generally not considered feasible and a num-
ber of short cuts are taken throughout the course of the
analysis. Statisticians play an important role in deter-
mining which short cuts are appropriate in the various
stages of the analysis, and determining their effects on
the validity and power of the statistical analysis.

fMRI has experienced a rapid growth in the past sev-
eral years and has found applications in a wide variety
of fields, such as neuroscience, psychology, economics
and political science. This has given rise to a bounty
of interesting and important statistical problems that
cover a variety of topics, including the acquisition of
raw data in the MR scanner, image reconstruction, ex-
perimental design, data preprocessing and data analy-
sis. Figure 1 illustrates the steps involved in the data
processing pipeline that accompanies a standard fMRI
experiment. To date, the primary domain of statisti-
cians in the field has been the data analysis stage of the
pipeline, though many interesting statistical problems
can also be found in the other steps. In this paper we

FIG. 1. The fMRI data processing pipeline illustrates the different
steps involved in a standard fMRI experiment. The pipeline shows
the path from the initial experimental design to the acquisition and
reconstruction of the data, to its preprocessing and analysis. Each
step in the pipeline contains interesting mathematical and statisti-
cal problems.

will discuss each step of the pipeline and illustrate the
important role that statistics plays, or can play. We con-
clude the paper by discussing a number of additional
statistical challenges that promise to provide important
areas of research for statisticians in the future.

2. ACQUIRING fMRI DATA

The data collected during an fMRI experiment con-
sists of a sequence of individual magnetic resonance
images, acquired in a manner that allows one to study
oxygenation patterns in the brain. Therefore, to under-
stand the nature of fMRI data and how these images
are used to infer neuronal activity, one must first study
the acquisition of individual MR images. The overview
presented here is by necessity brief and we refer inter-
ested readers to any number of introductory text books
(e.g., Haacke et al., 1999) dealing specifically with MR
physics. In addition, it will also be critical in subse-
quent data analysis to have a clear understanding of the
statistical properties of the resulting images, and their
distributional properties will be discussed. Finally, we
conclude with a brief discussion linking MRI to fMRI.

2.1 Data Acquisition

To construct an image, the subject is placed into the
field of a large electromagnet. The magnet has a very
strong magnetic field, typically between 1.5–7.0 Tesla,1

which aligns the magnetization of hydrogen (1H )

11 Tesla = 10,000 Gauss, Earths magnetic field = 0.5 Gauss,
3 Tesla is 60,000 times stronger than the Earths magnetic field.
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atoms in the brain. Within a slice of the brain, a radio
frequency pulse is used to tip over the aligned nuclei.
Upon removal of this pulse, the nuclei strive to return
to their original aligned positions and thereby induce
a current in a receiver coil. This current provides the
basic MR signal. A system of gradient coils is used to
sequentially control the spatial inhomogeneity of the
magnetic field, so that each measurement of the signal
can be approximately expressed as the Fourier trans-
formation of the spin density at a single point in the
frequency domain, or k-space as it is commonly called
in the field. Mathematically, the measurement of the
MR signal at the j th time point of a readout period can
be written

S(tj ) ≈
∫
x

∫
y
M(x, y)

(1)
· e(−2πi(kx(tj )x+ky(tj )y)) dx dy,

where M(x,y) is the spin density at the point (x, y),
and (kx(tj ), ky(tj )) is the point in the frequency do-
main (k-space) at which the Fourier transformation is
measured at time tj . Here tj = j�t is the time of the
j th measurement, where �t depends on the sampling
bandwidth of the scanner; typically it takes values in
the range of 250–1000 μs.

To reconstruct a single MR image, one needs to
sample a large number of individual k-space measure-
ments, the exact number depending on the desired
image resolution. For example, to fully reconstruct a
64 × 64 image, a total of 4096 separate measurements
are required, each sampled at a unique coordinate of
k-space. There is a time cost involved in sampling each
point, and therefore the time it takes to acquire an im-
age is directly related to its spatial resolution. There are
a variety of approaches toward sampling the data. Tra-
ditionally, it has been performed on a Cartesian grid
which is uniformly spaced and symmetric about the
origin of k-space. This method of sampling, as illus-
trated in Figure 2, allows for the quick and easy recon-
struction of the image using the Fast Fourier Transform
(FFT). Recently, it has become increasingly popular to
sample k-space using nonuniform trajectories; a par-
ticularly popular trajectory has been the Archimedean
spiral (Glover, 1999b). While such trajectories pro-
vide a number of benefits relating to speed and signal-
to-noise ratio, the FFT algorithm cannot be directly
applied to the nonuniformly sampled raw data. As a
solution to this problem, the raw data are typically in-
terpolated onto a Cartesian grid in k-space and there-
after the FFT is applied to reconstruct the image (Jack-
son et al., 1991).

FIG. 2. The raw data obtained from an MRI scanner are collected
in the frequency domain, or k-space. While k-space can be sam-
pled in a variety of ways, the most common approach is to sample
uniformly on a grid (left). The inverse Fourier transform allows
the data to be transformed into image space, where data analysis
is performed (right). The resolution and spatial extent of the im-
ages depends directly on the extent of sampling and spacing of the
k-space measurements.

While the description so far has focused on sam-
pling a single two-dimensional (2D) slice of the brain,
most studies require the acquisition of a full 3D brain
volume. The standard approach toward 3D imaging is
to acquire a stack of adjacent slices (e.g., 20–30) in
quick succession. Since the nuclei must be re-excited
before sampling a new slice, this places constraints on
the time needed to acquire a brain volume. Using this
methodology, it takes approximately 2 seconds to ob-
tain a full brain volume of dimension 64 × 64 × 30. As
an alternative, it is possible to design a sampling trajec-
tory that directly samples points in 3D k-space (Mans-
field, Howseman and Ordidge, 1989; Mansfield, Coxon
and Hykin, 1995; Lindquist et al., 2008b). Though this
approach would potentially allow the same number of
k-space points to be sampled at a faster rate, the stacked
slice approach remains dominant. However, with in-
creases in computational power and hardware improve-
ments, 3D sampling should attract increased attention.

The process of designing new k-space sampling tra-
jectories is an interesting mathematical problem, which
can easily be generalized to three dimensions by let-
ting k(t) = (kx(t), ky(t)), kz(t)). The goal is to find a
trajectory k(t) that moves through k-space and satis-
fies the necessary constraints. The trajectory is defined
as a continuous curve and along this curve measure-
ments are made at uniform time intervals determined
by the sampling bandwidth of the scanner. The tra-
jectory starts at the point (0,0,0) and its subsequent
movement is limited by constraints placed on both its
speed and acceleration. In addition, there is a finite
amount of time the signal can be measured before the
nuclei need to be re-exited and the trajectory is re-
turned to the origin. Finally, the trajectory needs to be
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space-filling, which implies that each point in the lat-
tice contained within some cubic or spherical region
around the center of k-space needs to be visited long
enough to make a measurement. The size of this region
determines the spatial resolution of the subsequent im-
age reconstruction. For a more complete formulation
of the problem, see Lindquist et al. (2008a). The prob-
lem bears some resemblance to the traveling salesman
problem and can be approached in an analogous man-
ner. One application where trajectory design is impor-
tant is rapid imaging (Lindquist et al., 2006, 2008a) and
we return to this issue in a later section.

2.2 Statistical Properties of MR Images

As the signal in (1) is measured over two chan-
nels, the raw k-space data are complex valued. It is as-
sumed that both the real and imaginary component is
measured with independent normally distributed error.
Since the Fourier transformation is a linear operation,
the reconstructed voxel data will also be complex-
valued with both parts following a normal distribu-
tion. In the final stage of the reconstruction process,
these complex valued measurements are separated into
magnitude and phase components. In the vast major-
ity of studies only the magnitude portion of the signal
is used in the data analysis, while the phase portion is
discarded. Traditionally, the phase has not been con-
sidered to contain relevant signal information, though
models that use both components (Rowe and Logan,
2004) have been proposed. It should be noted that the
magnitude values no longer follow a normal distribu-
tion, but rather a Rice distribution (Gudbjartsson and
Patz, 1995). The shape of this distribution depends on
the signal-to-noise (SNR) ratio within the voxel. For
the special case when no signal is present (e.g., for vox-
els outside of the brain), it behaves like a Rayleigh dis-
tribution. When the SNR is high (e.g., for voxels within
the brain) the distribution is approximately Gaussian.
Understanding the distributional properties of MR im-
ages is important, and this area provides some inter-
esting research opportunities for statisticians in terms
of developing methods for estimating the variance of
the background noise and methods for identifying and
removing outliers that arise due to acquisition artifacts.

2.3 From MRI to fMRI

The data acquisition and reconstruction techniques
outlined in this section provide the means for obtain-
ing a static image of the brain. However, changes in
brain hemodynamics in response to neuronal activity
impact the local intensity of the MR signal. Therefore,

a sequence of properly acquired brain images allows
one to study changes in brain function over time.

An fMRI study consists of a series of brain vol-
umes collected in quick succession. The temporal res-
olution of the acquired data will depend on the time be-
tween acquisitions of each individual volume; once the
k-space has been sampled, the procedure is ready to be
repeated and a new volume can be acquired. This is one
reason why efficient sampling of k-space is important.
Typically, brain volumes of dimensions 64 × 64 × 30
(i.e. 122,880 voxels) are collected at T separate time
points throughout the course of an experiment, where
T varies between 100–2000. Hence, the resulting data
consists of roughly 100,000 time series of length T .
On top of this, the experiment is often repeated for M

subjects, where M usually varies between 10 and 40.
It quickly becomes clear that fMRI data analysis is a
time series analysis problem of massive proportions.

3. UNDERSTANDING fMRI DATA

The ability to connect the measures of brain physi-
ology obtained in an fMRI experiment with the under-
lying neuronal activity that caused them will greatly
impact the choice of inference procedure and the sub-
sequent conclusions that can be made. Therefore, it
is important to gain some rudimentary understand-
ing of basic brain physiology. The overview presented
here is brief and interested readers are referred to text
books dealing specifically with the subject (e.g., Huet-
tel, Song and Mccarthy, 2004). In addition, since neu-
ronal activity unfolds both in space and time, the spa-
tial and temporal resolution of fMRI studies will limit
any conclusions that can be made from analyzing the
data and understanding these limitations is paramount.
Finally, as relatively small changes in brain activity are
buried within noisy measurements, it will be important
to understand the behavior of both the signal and noise
present in fMRI data and begin discussing how these
components can be appropriately modeled.

3.1 BOLD fMRI

Functional magnetic resonance imaging is most
commonly performed using blood oxygenation level-
dependent (BOLD) contrast (Ogawa et al., 1992) to
study local changes in deoxyhemoglobin concentration
in the brain. BOLD imaging takes advantage of inher-
ent differences between oxygenated and deoxygenated
hemoglobin. Each of these states has different mag-
netic properties, diamagnetic and paramagnetic respec-
tively, and produces different local magnetic fields.
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FIG. 3. (A) The standard canonical model for the HRF used in
fMRI data analysis illustrates the main features of the response.
(B) Examples of empirical HRFs measured over the visual and
motor cortices in response to a visual-motor task. (C) The initial
2 seconds of the empirical HRFs give strong indication of an initial
decrease in signal immediately following activation.

Due to its paramagnetic properties, deoxy-hemoglobin
has the effect of suppressing the MR signal, while
oxy-hemoglobin does not. The cerebral blood flow re-
freshes areas of the brain that are active during the
execution of a mental task with oxygenated blood,
thereby changing the local magnetic susceptibility and
the measured MR signal in active brain regions. A se-
ries of properly acquired MR images can therefore be
used to study changes in blood oxygenation which, in
turn, can be used to infer brain activity.

The underlying evoked hemodynamic response to
a neural event is typically referred to as the hemo-
dynamic response function (HRF). Figure 3A shows
the standard shape used to model the HRF, sometimes
called the canonical HRF. The increased metabolic de-
mands due to neuronal activity lead to an increase in
the inflow of oxygenated blood to active regions of the
brain. Since more oxygen is supplied than actually con-
sumed, this leads to a decrease in the concentration of
deoxy-hemoglobin which, in turn, leads to an increase
in signal. This positive rise in signal has an onset ap-
proximately 2 seconds after the onset of neural activ-
ity and peaks 5–8 seconds after that neural activity has
peaked (Aguirre, Zarahn and D’Esposito, 1998). Af-
ter reaching its peak level, the BOLD signal decreases
to a below baseline level which is sustained for roughly

10 seconds. This effect, known as the post-stimulus un-
dershoot, is due to the fact that blood flow decreases
more rapidly than blood volume, thereby allowing for
a greater concentration of deoxy-hemoglobin in previ-
ously active brain regions.

Several studies have shown evidence of a decrease in
oxygenation levels in the time immediately following
neural activity, giving rise to a decrease in the BOLD
signal in the first 1–2 seconds following activation.
This decrease is called the initial negative BOLD re-
sponse or the negative dip (Menon et al., 1995; Mal-
onek and Grinvald, 1996). Figures 3B–C illustrate this
effect in data collected during an experiment that stim-
ulated both the visual and motor cortices. The ratio
of the amplitude of the dip compared to the positive
BOLD signal depends on the strength of the magnet
and has been reported to be roughly 20% at 3 Tesla
(Yacoub, Le and Hu, 1998). There is also evidence that
the dip is more localized to areas of neural activity
(Yacoub, Le and Hu, 1998; Duong et al., 2000; Kim,
Duong and Kim, 2000; Thompson, Peterson and Free-
man, 2004) than the subsequent rise which appears less
spatially specific. Due in part to these reasons, the neg-
ative response has so far not been reliably observed and
its existence remains controversial (Logothetis, 2000).

3.2 Spatial and Temporal Limitations

There are a number of limitations that restrict what
fMRI can measure and what can be inferred from an
fMRI study. Many of these limitations are directly
linked to the spatial and temporal resolution of the
study. When designing an experiment it is therefore
important to balance the need for adequate spatial res-
olution with that of adequate temporal resolution. The
temporal resolution determines our ability to separate
brain events in time, while the spatial resolution deter-
mines our ability to distinguish changes in an image
across spatial locations. The manner in which fMRI
data is collected makes it impossible to simultaneously
increase both, as increases in temporal resolution limit
the number of k-space measurements that can be made
in the allocated sampling window and thereby directly
influence the spatial resolution of the image. Therefore,
there are inherent trade-offs required when determin-
ing the appropriate spatial and temporal resolutions to
use in an fMRI experiment.

One of the benefits of MRI as an imaging technique
is its ability to provide detailed anatomical scans of
gray and white matter with a spatial resolution well be-
low 1 mm3. However, the time needed to acquire such
scans is prohibitively high and currently not feasible
for use in functional studies. Instead, the spatial res-
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olution is typically on the order of 3 × 3 × 5 mm3,
corresponding to image dimensions on the order of
64 × 64 × 30, which can readily be sampled in approx-
imately 2 seconds. Still, fMRI provides relatively high
spatial resolution compared with many other functional
imaging techniques. However, it is important to note
that the potential high spatial resolution is often limited
by a number of factors. First, it is common to spatially
smooth fMRI data prior to analysis which decreases
the effective resolution of the data. Second, performing
population inference requires the analysis of groups of
subjects with varying brain sizes and shapes. In order
to compare data across subjects, a normalization pro-
cedure is used to warp the brains onto a standard tem-
plate brain. This procedure introduces spatial impreci-
sion and blurring in the group data. An obvious impact
of all this blurring is that activation in small structures
may be mislocalized or even missed all together.

Inferences in space can potentially be improved by
advances in data acquisition and preprocessing. The
introduction of enhanced spatial inter-subject normal-
ization techniques and improved smoothing techniques
would help researchers avoid the most dramatic ef-
fects of blurring the data. Statistical issues that arise
due to smoothing and normalization will be revisited
in a later section dealing specifically with preprocess-
ing. A recent innovation in signal acquisition has been
the use of multiple coils with different spatial sensi-
tivities to simultaneously measure k-space (Sodickson
and Manning, 1997; Pruessmann et al., 1999). This ap-
proach, known as parallel imaging, allows for an in-
crease in the amount of data that can be collected in
a given time window. Hence, it can be used to either
increase the spatial resolution of an image or decrease
the amount of time required to sample an image with
a certain specified spatial resolution. Parallel imaging
techniques have already had a great influence on the
way data is collected and its role will only increase.
The appropriate manner to deal with parallel imaging
data is a key direction for future research. Designing
new ways of acquiring and reconstructing multi-coil
data is an important area of research where statistics
can play a vital role.

The temporal resolution of an fMRI study depends
on the time between acquisition of each individual im-
age, or the repetition time (TR). In most fMRI studies
the TR ranges from 0.5–4.0 seconds. These values in-
dicate a fundamental disconnect between the underly-
ing neuronal activity, which takes place on the order of
tens of milliseconds, and the temporal resolution of the
study. However, the statistical analysis of fMRI data

is primarily focused on using the positive BOLD re-
sponse to study the underlying neural activity. Hence,
the limiting factor in determining the appropriate tem-
poral resolution is generally not considered the speed
of data acquisition, but rather the speed of the under-
lying evoked hemodynamic response to a neural event.
Since inference is based on oxygenation patterns tak-
ing place 5–8 seconds after activation, TR values in the
range of 2 seconds are generally deemed adequate.

Because of the relatively low temporal resolution
and the sluggish nature of the hemodynamic response,
inference regarding when and where activation is tak-
ing place is based on oxygenation patterns outside of
the immediate vicinity of the underlying event we want
to base our conclusions on (i.e., the neural activity).
Since the time-to-peak positive BOLD response oc-
curs in a larger time scale than the speed of brain op-
erations, there is a risk of unknown confounding fac-
tors influencing the ordering of time-to-peak relative
to the ordering of brain activation in different regions
of interest. For these reasons it is difficult to deter-
mine the absolute timing of brain activity using fMRI.
However, studies have shown (Menon, Luknowsky and
Gati, 1998; Miezin et al., 2000) that the relative timing
within a voxel in response to different stimuli can be
accurately captured. There are also indications that fo-
cusing inference on features related to the initial dip
can help alleviate concerns (Lindquist et al., 2008a) re-
garding possible confounders. However, these types of
studies require significant increases in temporal resolu-
tion and the ability to rapidly acquire data becomes in-
creasingly important. Finally, another way of improv-
ing inferences in time is through appropriate experi-
mental design. In principal, it is possible to estimate
the HRF at a finer temporal resolution than the TR as
long as the onsets of repeated stimuli are jittered in
time (Dale, 1999). For example, if the onset is shifted
by TR/2 in half of the stimuli, one can potentially esti-
mate the HRF at a temporal resolution of TR/2, rather
than TR if jittering is not used.

3.3 Understanding Signal and Noise

Prior to modeling fMRI data, it is useful to gain a
better understanding of the components present in an
fMRI time series. In general, it consists of the BOLD
signal (which is the component of interest), a number
of nuisance parameters and noise. Each component is
discussed in detail below.

BOLD signal. The evoked BOLD response in fMRI
is a complex, nonlinear function of the results of
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neuronal and vascular changes (Wager et al., 2005),
complicating the ability to appropriately model its be-
havior. The shape of the response depends both on
the applied stimulus and the hemodynamic response
to neuronal events. A number of methods for model-
ing the BOLD response and the underlying HRF exist
in the literature. A major difference between methods
lies in how the relationship between the stimulus and
BOLD response is modeled. We differentiate between
nonlinear physiological-based models, such as the Bal-
loon model (Buxton, Wong and Frank, 1998; Friston
et al., 2000; Riera et al., 2004), which describes the
dynamics of cerebral blood volume and deoxygena-
tion and their effects on the resulting BOLD signal,
and models that assume a linear time invariant (LTI)
system, in which assumed neuronal activity (based on
task manipulations) constitutes the input, or impulse,
and the HRF is the impulse response function.

The Balloon model consists of a set of ordinary
differential equations that model changes in blood
volume, blood inflow, deoxyhemoglobin and flow-
inducing signal and how these changes impact the ob-
served BOLD response. While models of this type tend
to be more biophysically plausible than their linear
counterparts, they have a number of drawbacks. First,
they require the estimation of a large number of model
parameters. Second, they do not always provide reli-
able estimates with noisy data, and third, they do not
provide a direct framework for performing inference.
In general, they are not yet considered feasible alterna-
tives for performing whole-brain multi-subject analy-
sis of fMRI data in cognitive neuroscience studies, al-

though promising developments are being pursued on
this front and this is an exciting area for future research.

While the flexibility of nonlinear models is attrac-
tive, linear models provide robust and interpretable
characterizations in noisy systems. It is therefore com-
mon to assume a linear relationship between neuronal
activity and BOLD response, where linearity implies
that the magnitude and shape of the evoked HRF do
not depend on any of the preceding stimuli. Studies
have shown that under certain conditions the BOLD
response can be considered linear with respect to the
stimulus (Boynton et al., 1996), particularly if events
are spaced at least 5 seconds apart (Miezin et al., 2000).
However, other studies have found that nonlinear ef-
fects in rapid sequences (e.g., stimuli spaced less than
2 seconds apart) can be quite large (Birn, Saad and
Bandettini, 2001; Wager et al., 2005). The ability to as-
sume linearity is important, as it allows the relationship
between stimuli and the BOLD response to be modeled
using a linear time invariant system, where the stimu-
lus acts as the input and the HRF acts as the impulse
response function. Figure 4 shows an illustration of the
estimated BOLD signal corresponding to two different
types of stimulus patterns. In a linear system frame-
work the signal at time t , x(t), is modeled as the con-
volution of a stimulus function v(t) and the hemody-
namic response h(t), that is,

x(t) = (v ∗ h)(t).(2)

Here h(t) is either assumed to take a canonical form, or
alternatively modeled using a set of linear basis func-
tions.

FIG. 4. The BOLD response is typically modeled as the convolution of the stimulus function with the HRF. Varying stimulus patterns will
give rise to responses with radically different features.



446 M. A. LINDQUIST

Another important modeling aspect is that the tim-
ing and shape of the HRF are known to vary across
the brain, within an individual and across individuals
(Aguirre, Zarahn and D’Esposito, 1998; Schacter et al.,
1997). Part of the variability is due to the underlying
configuration of the vascular bed, which may cause dif-
ferences in the HRF across brain regions in the same
task for purely physiological reasons (Vazquez et al.,
2006). Another source of variability is differences in
the pattern of evoked neural activity in regions per-
forming different functions related to the same task.
It is important that these regional variations are ac-
counted for when modeling the BOLD signal and we
return to this issue in a later section.

In general, one of the major shortfalls when analyz-
ing fMRI data is that users typically assume a canoni-
cal HRF (Grinband et al., 2008), which leaves open the
possibility for mismodeling the signal in large portions
of the brain (Loh, Lindquist and Wager, 2008). There
has therefore been a movement toward both using more
sophisticated models and enhanced model diagnostics.
Both of these areas fall squarely in the purview of sta-
tisticians, and promise to have increased importance in
the future.

Noise and nuisance signal. The measured fMRI sig-
nal is corrupted by random noise and various nuisance
components that arise due both to hardware reasons
and the subjects themselves. For instance, fluctuations
in the MR signal intensity caused by thermal motion
of electrons within the subject and the scanner gives
rise to noise that tends to be highly random and inde-
pendent of the experimental task. The amount of ther-
mal noise increases linearly as a function of the field
strength of the scanner, with higher field strengths giv-
ing rise to more noise. However, it does not exhibit
spatial structure and its effects can be minimized by
averaging the signal over multiple data points. Another
source of variability in the signal is due to scanner drift,
caused by scanner instabilities, which result in slow
changes in voxel intensity over time (low-frequency
noise). The amount of drift varies across space, and it
is important to include this source of variation in your
models. Finally, physiological noise due to patient mo-
tion, respiration and heartbeat cause fluctuations in sig-
nal across both space and time. Physiological noise can
often be modeled and the worst of its effects removed.
In the next section we discuss how to correct for subject
motion as part of the preprocessing step of the analysis.
However, heart-rate and respiration gives rise to peri-
odic fluctuations that are difficult to model. According

to the Nyquist criteria, it is necessary to have a sam-
pling rate at least twice as high as the frequency of the
periodic function one seeks to model. If the TR is too
low, which is true in most fMRI studies, there will be
problems with aliasing; see Figure 5A for an illustra-
tion. In this situation the periodic fluctuations will be
distributed throughout the time course giving rise to
temporal autocorrelation. Noise in fMRI is typically
modeled using either an AR(p) or an ARMA(1,1)

process (Purdon et al., 2001), where the autocorrela-
tion is thought to be due to an unmodeled nuisance
signal. If these terms are properly removed, there is
evidence that the resulting error term corresponds to
white noise (Lund et al., 2006). Note that for high tem-
poral resolution studies, heart-rate and respiration can
be estimated and included in the model, or alternatively
removed through application of a band-pass filter.

The spatiotemporal behavior of the noise process is
complex. Figure 5B shows a time course from a sin-
gle voxel sampled at high temporal resolution (60 ms),
as well as its power spectrum. The power spectrum in-
dicates periodic oscillations in the signal due to phys-
iological effects and a low-frequency component cor-
responding to signal drift. At this resolution it is rel-
atively straightforward to remove the effects of these
nuisance functions by applying an appropriate filter. In
contrast, Figure 5C shows a time course sampled at a
more standard resolution (1 s). At this resolution, the
sampling rate is too low to effectively model physio-
logical noise and it gives rise to temporal autocorrela-
tion clearly visible in the accompanying autocorrela-
tion plot. Finally, Figure 5D shows spatial maps of the
model parameters from an AR(2) model estimated for
each voxel’s noise data. It is clear that the behavior of
the noise is not consistent throughout the image, indi-
cating spatial dependence. In fact, it is clearly possible
to make out rough anatomical detail in the maps, in-
dicating higher amounts of variability in certain brain
regions.

4. EXPERIMENTAL DESIGN

The experimental design of an fMRI study is com-
plicated, as it not only involves the standard issues rel-
evant to psychological experiments, but also issues re-
lated to data acquisition and stimulus presentation. Not
all designs with the same number of trials of a given
set of conditions are equal, and the spacing and order-
ing of events is critical. What constitutes an optimal
experimental design depends on the psychological na-
ture of the task, the ability of the fMRI signal to track
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FIG. 5. (A) The Nyquist criteria states that it is necessary to sample at a frequency at least twice as high as the frequency of the periodic
function one seeks to model to avoid aliasing. As an illustration assume that the signal is measured at the time points indicated by circles. In
this situation it is impossible to determine which of the two periodic signals shown in the plot give rise to the observed measurements. (B) An
fMRI time course measured at a single voxel sampled with 60 ms resolution. Its power spectrum indicates components present in the signal
whose periodicity corresponds to low-frequency drift and physiological effects. (C) An fMRI time course measured with 1 s resolution. The
autocorrelation function indicates autocorrelation present in the signal. (D) Spatial maps of the model parameters from an AR(2) model (i.e.
φ1, φ2 and σ ), estimated from each voxel’s noise data, indicates clear spatial dependence.

changes introduced by the task over time and the spe-
cific comparisons that one is interested in making. In
addition, as the efficiency of the subsequent statistical
analysis is directly related to the experimental design,
it is important that it be carefully considered during the
design process.

A good experimental design attempts to maximize
both statistical power and psychological validity. The
statistical performance can be characterized by its esti-
mation efficiency (i.e., the ability to estimate the HRF)
and its detection power (i.e., the ability to detect sig-
nificant activation). The psychological validity is often
measured by the randomness of the stimulus presen-
tation, as this helps control for issues related to an-
ticipation, habituation and boredom. When designing
an experiment there is inherent trade-offs between es-
timation efficiency, detection power and randomness.
The optimal balance between the three ultimately de-
pends on the goals of the experiment and the combi-
nation of conditions one is interested in studying. For
example, a design used to localize areas of brain acti-
vation stresses high detection power at the expensive
of estimation efficiency and randomness.

While the area of experimental design is a natural
domain for statisticians to conduct research, it has so
far been largely unexplored by members of the field.
Currently there are two major classes of fMRI exper-
imental designs: block designs and event-related de-
signs. In the following sections we describe each type
and discuss the applications for which they are best
suited. In addition, we also discuss ways of optimiz-
ing the experimental design.

Block Designs

In a block design the different experimental con-
ditions are separated into extended time intervals, or
blocks. For example, one might repeat the process of
interest (e.g., finger tapping) during an experimental
block (A) and have the subject rest during a control
block (B); see Figure 6. The A–B comparison can than
be used to compare differences in signal between the
conditions. In general, increasing the length of each
block will lead to a larger evoked response during the
task. This increases the separation in signal between
blocks, which, in turn, leads to higher detection power.
However, in contrast, it is also important to include
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FIG. 6. The two most common classes of experimental design are block designs and event-related designs. In a block design (top) exper-
imental conditions are separated into extended time intervals, or blocks, of the same type. In an event-related design (bottom) the stimulus
consists of short discrete events whose timing and order can be randomized.

multiple transitions between conditions, as otherwise
differences in signal due to low-frequency drift may
be confused for differences in task conditions. In addi-
tion, it is important that the same mental processes are
evoked throughout each block. If block lengths are too
long, this assumption may be violated due to the effects
of fatigue and/or boredom.

The main advantages to using a block design are
that they offer high statistical power to detect activa-
tion and are robust to uncertainties in the shape of the
HRF. The latter advantage is due to the fact that the pre-
dicted response depends on the total activation caused
by a series of stimuli, which makes it less sensitive
to variations in the shape of responses to individual
stimulus (see Figure 4). The flip side is that block de-
signs provide imprecise information about the particu-
lar processes that activated a brain region and cannot
be used to directly estimate important features of the
HRF (e.g., onset or width).

Event-Related Designs

In an event-related design the stimulus consists of
short discrete events (e.g., brief light flashes) whose
timing can be randomized; see Figure 6 for an illus-
tration with two conditions. These types of designs are
attractive because of their flexibility and that they al-
low for the estimation of key features of the HRF (e.g.,
onset and width) that can be used to make inference
about the relative timing of activation across conditions
and about sustained activity. Event-related designs al-
low one to discriminate the effects of different condi-

tions as long as one either intermixes events of different
types or varies the inter-stimulus interval between tri-
als. Another advantage to event-related designs is that
the effects of fatigue, boredom and systematic patterns
of thought unrelated to the task during long inter-trial
intervals can be avoided. A drawback is that the power
to detect activation is typically lower than for block de-
signs, though the capability to obtain images of more
trials per unit time can counter this loss of power.

Optimized Experimental Designs

What constitutes an optimal experimental design de-
pends on the task, as well as on the ability of the fMRI
signal to track changes introduced by the task over
time. It also depends on what types of comparisons
are of interest. The delay and shape of the BOLD re-
sponse, scanner drift and physiological noise all con-
spire to complicate experimental design for fMRI. Not
all designs with the same number of trials of a given set
of conditions are equal, and the spacing and ordering
of events is critical. Some intuitions and tests of design
optimality can be gained from a deeper understanding
of the statistical analysis of fMRI data.

Several methods have been introduced that allow re-
searchers to optimally select the design parameters, as
well as the sequencing of events that should be used
in an experiment (Wager and Nichols, 2003; Liu and
Frank, 2004). These methods define fitness measures
for the estimation efficiency, detection power and ran-
domness of the experiment, and apply search algo-
rithms (e.g., the genetic algorithm) to optimize the de-
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sign according to the specified criteria. When defin-
ing the fitness metrics it is typically assumed that the
subsequent data analysis will be performed in the gen-
eral linear model (GLM) framework described in Sec-
tion 6.2.1 and that the relationship between stimulus
and measured response can be modeled using a linear
time invariant system. The use of more complex non-
linear models requires different considerations when
defining appropriate metrics, the development of which
will be important as such models gain in popularity.
Finally, an important consideration relates to assump-
tions made regarding the shape of the HRF and the
noise structure. The inclusion of flexible basis func-
tions and correlated noise into the model will modify
the trade-offs between estimation efficiency and detec-
tion power, and potentially alter what constitutes an op-
timal design. Hence, even seemingly minor changes in
the model formulation can have a large impact on the
efficiency of the design. Together these issues compli-
cate the design of experiments and work remains to
find the appropriate balance between them. As research
hypotheses ultimately become more complicated, the
need for more advanced experimental designs will only
increase further and this is clearly an area where statis-
ticians can play an important role.

5. PREPROCESSING

Prior to statistical analysis, fMRI data typically un-
dergoes a series of preprocessing steps aimed at remov-
ing artifacts and validating model assumptions. The
main goals are to minimize the influence of data acqui-
sition and physiological artifacts, to validate statistical
assumptions and to standardize the locations of brain
regions across subjects in order to achieve increased
validity and sensitivity in group analysis. When analyz-
ing fMRI data it is typically assumed that all of the vox-
els in a particular brain volume were acquired simulta-
neously. Further, it is assumed that each data point in
a specific voxel’s time series only consists of a signal
from that voxel (i.e., that the participant did not move
in between measurements). Finally, when performing
group analysis and making population inference, all in-
dividual brains are assumed to be registered, so that
each voxel is located in the same anatomical region
for all subjects. Without preprocessing the data prior
to analysis, none of these assumptions would hold and
the resulting statistical analysis would be invalid.

The major steps involved in fMRI preprocessing are
slice timing correction, realignment, coregistration of
structural and functional images, normalization and
smoothing. Below each step is discussed in detail.

Slice Timing Correction

When analyzing 3D fMRI data it is typically as-
sumed that the whole brain is measured simultane-
ously. In reality, because the brain volume consists of
multiple slices that are sampled sequentially, and there-
fore at different time points, similar time courses from
different slices will be temporally shifted relative to
one another. Figure 7A illustrates the point. Assume
that three voxels contained in three adjacent slices ex-
hibit the same true underlying temporal profile. Due to
the fact that they are sampled at different time points
relative to one another, the corresponding measured
time courses will appear different. Slice timing cor-
rection involves shifting each voxel’s time course so
that one can assume they were measured simultane-
ously. This can be done either using interpolation or
the Fourier shift theorem to correct for differences in
acquisition times.

Motion Correction

An important issue involved in any fMRI study is
the proper handling of any subject movement that may

FIG. 7. (A) Illustration of slice timing correction. Assume three
brain slices, exhibiting a similar time course, are sampled sequen-
tially during each TR (top row). Since the voxels are sampled at
different time points relative to one another, their respective time
courses will appear shifted (bottom row). Slice timing correction
shifts the time series so they can be considered to have been mea-
sured simultaneously. (B) Illustration of normalization using warp-
ing. A high resolution image (left) is warped onto a template image
(center), resulting in a normalized image (right).
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have taken place during data acquisition. Even small
amounts of head motion during the course of an ex-
periment can be a major source of error if not treated
correctly. When movement occurs, the signal from a
specific voxel will be contaminated by the signal from
neighboring voxels and the resulting data can be ren-
dered useless. Therefore, it is of great importance to
accurately estimate the amount of motion and to use
this information to correct the images. If the amount of
motion is deemed too severe, it may result in the sub-
ject being removed completely from the study.

The first step in correcting for motion is to find the
best possible alignment between the input image and
some target image (e.g., the first image or the mean
image). A rigid body transformation involving 6 vari-
able parameters is used. This allows the input image to
be translated (shifted in the x, y and z directions) and
rotated (altered roll, pitch and yaw) to match the target
image. Usually, the matching process is performed by
minimizing some cost function (e.g., sums of squared
differences) that assesses similarity between the two
images. Once the parameters that achieve optimal re-
alignment are determined, the image is resampled us-
ing interpolation to create new motion corrected voxel
values. This procedure is repeated for each individual
brain volume.

Coregistration and Normalization

Functional MRI data is typically of low spatial res-
olution and provides relatively little anatomical detail.
Therefore, it is common to map the results obtained
from functional data onto a high resolution structural
MR image for presentation purposes. The process of
aligning structural and functional images, called coreg-
istration, is typically performed using either a rigid
body (6 parameters) or an affine (12 parameters) trans-
formation.

For group analysis, it is important that each voxel
lie within the same brain structure for each individ-
ual subject. Of course individual brains have different
shapes and features, but there are regularities shared by
every nonpathological brain. Normalization attempts
to register each subjects anatomy to a standardized
stereotaxic space defined by a template brain [e.g.,
the Talairach or Montreal Neurological Institute (MNI)
brain]. In this scenario using a rigid body transforma-
tion is inappropriate due to the inherent differences in
the subjects brains. Instead, it is common to use nonlin-
ear transformations to match local features. One begins
by estimating a smooth continuous mapping between
the points in an input image with those in the target

image. Next, the mapping is used to resample the input
image so that it is warped onto the target image. Fig-
ure 7B illustrates the process, where a high resolution
image is warped onto a template image, resulting in a
normalized image that can be compared with similarly
normalized images obtained from other subjects.

The main benefits of normalizing data are that spa-
tial locations can be reported and interpreted in a con-
sistent manner, results can be generalized to a larger
population and results can be compared across studies
and subjects. The drawbacks are that it reduces spatial
resolution and may introduce errors due to interpola-
tion.

Spatial Smoothing

It is common practice to spatially smooth fMRI data
prior to analysis. Smoothing typically involves con-
volving the functional images with a Gaussian kernel,
often described by the full width of the kernel at half
its maximum height (FWHM). Common values for the
kernel widths vary between 4–12 mm FWHM. There
are several reasons why it is common to smooth fMRI
data. First, it may improve inter-subject registration
and overcome limitations in the spatial normalization
by blurring any residual anatomical differences. Sec-
ond, it ensures that the assumptions of random field
theory (RFT), commonly used to correct for multiple-
comparisons, are valid. A rough estimate of the amount
of smoothing required to meet the assumptions of RFT
is a FWHM of 3 times the voxel size (e.g., 9 mm for
3 mm voxels). Third, if the spatial extent of a region
of interest is larger than the spatial resolution, smooth-
ing may reduce random noise in individual voxels and
increase the signal-to-noise ratio within the region.

The process of spatially smoothing an image is
equivalent to applying a low-pass filter to the sampled
k-space data prior to reconstruction. This implies that
much of the acquired data is discarded as a byprod-
uct of smoothing and temporal resolution is sacrificed
without gaining any benefits. Additionally, acquiring
an image with high spatial resolution and thereafter
smoothing the image does not lead to the same re-
sults as directly acquiring a low resolution image. The
signal-to-noise ratio during acquisition increases as the
square of the voxel volume, so acquiring small vox-
els means that signal is lost that can never be recov-
ered. Hence, it is optimal in terms of sensitivity to
acquire images at the desired resolution and not em-
ploy smoothing. Some recent acquisition schemes have
been designed to acquire images at the final functional
resolution desired (Lindquist et al., 2008b). This allows
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for much more rapid image acquisition, as time is not
spent acquiring information that will be discarded in
the subsequent analysis.

While all the preprocessing steps outlined above are
essential for the standard model assumptions required
for statistical analysis to hold, there needs to be a clear
understanding of the effects they have on both the spa-
tial and temporal correlation structure. More generally,
it is necessary to study the interactions among the in-
dividual preprocessing steps. For example, is it better
to perform slice timing correction or realignment first,
and how will this choice impact the resulting data?
Ideally there would be one model for both, that also
performs outlier detection and correction for physio-
logical noise. There has been increased interest in de-
veloping generative models that incorporate multiple
steps at once, and this is another problem with a clear
statistical component that promises to play an impor-
tant role in the future.

6. DATA ANALYSIS

There are several common objectives in the analy-
sis of fMRI data. These include localizing regions of
the brain activated by a certain task, determining dis-
tributed networks that correspond to brain function
and making predictions about psychological or dis-
ease states. All of these objectives are related to under-
standing how the application of certain stimuli leads to
changes in neuronal activity. They are also all intrinsi-
cally statistical in nature, and this area is the primary
domain of statisticians currently involved in the field.
The statistical analysis of fMRI data involves working
with massive data sets that exhibit a complicated spa-
tial and temporal noise structure. The size and com-
plexity of the data make it difficult to create a full sta-
tistical model for describing its behavior, and a number
of shortcuts are required to balance computational fea-
sibility with model efficiency.

6.1 Modeling the fMRI Signal

In this section we introduce a generic model for de-
scribing fMRI data, and proceed by making a num-
ber of model assumptions that impact the direction of
the analysis. We begin by assuming that the data con-
sists of a brain volume with N voxels that is repeat-
edly measured at T different time points. In addition,
suppose the experiment is repeated for M subjects. In
Section 3.3 the various components present in an fMRI
time series were discussed. These included the BOLD

response, various nuisance signal and noise. Incorpo-
rating all these components, our model for fMRI ac-
tivation in a single voxel for a single subject can be
expressed

yij (t) =
G∑

g=1

zijg(t)γijg +
K∑

k=1

xijk(t)βijk + εij (t),(3)

for i = 1, . . . ,N , j = 1, . . . ,M and t = 1, . . . , T . Here
zijg(t) represents the contribution of nuisance covari-
ates at time t , including terms modeling the scanner
drift, periodic fluctuations due to heart rate and respi-
ration, and head motion. Similarly, xijk(t) represents
the task-related BOLD response (the signal of interest)
corresponding to the kth condition at time t . The terms
βijk and γijg represent the unknown amplitude of xijk

and zijg , respectively, and εij (t) the noise process. Ap-
propriate ways of modeling each of these signal com-
ponents are described in detail below.

The drift component. In fMRI the signal typically
drifts slowly over time due to scanner instabilities.
Therefore, most of the power lies in the low-frequency
portion of the signal. To remove the effects of drift,
it is common to remove fluctuations below a specified
frequency cutoff using a high-pass filter. This can be
performed either by applying a temporal filter as a pre-
processing step, or by including covariates of no in-
terest into the model. As an example of the latter, the
drift, μ(t), can be modeled using a pth order polyno-
mial function, that is,

μij (t) =
p∑

g=1

γijgt
g−1,(4)

which, assuming zijg(t) = tg−1, fits into the frame-
work described in model (3).

There are several alternative functions that have been
used to model the drift. For example, it is common to
use a series of low frequency cosine functions. The
most important issue when using a high-pass filter is
to ensure that the fluctuations induced by the task de-
sign are not in the range of frequencies removed by the
filter, as we do not want to throw out the signal of in-
terest. Hence, the ultimate choice in how to model the
drift needs to be made with the experimental design in
mind.

Seasonal components. Additional covariates may be
included to account for periodic noise present in the
signal, such as heart-rate and respiration. Physiologi-
cal noise can in certain circumstances be directly esti-
mated from the data (Lindquist et al., 2008a), or it can
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be removed using a properly designed band-pass filter.
However, in most studies, with TR values ranging from
2–4 s, one cannot hope to estimate and remove the ef-
fects of heart-rate and respiration solely by looking at
the fMRI time series. Some groups have therefore be-
gun directly measuring heart beat and respiration dur-
ing scanning and using this information to remove sig-
nal related to physiological fluctuations from the data
(Glover, Li and Ress, 2000). This is done either as a
preprocessing step, or by including these terms as co-
variates in the model. However, more often than not,
the effects of physiological noise are left unmodeled,
and the aliased physiological artifacts give rise to the
autocorrelated noise present in fMRI data (Lund et al.,
2006).

Noise. In standard time series analysis, model iden-
tification techniques are used to determine the appro-
priate type and order of a noise process. In fMRI data
analysis this approach is not feasible due to the large
number of time series being analyzed, and noise mod-
els are specified a priori. In our own work, we typically
use an auto-regressive process of order 2. The reason
we choose an AR model over an ARMA model is that
it allows us to use method of moments rather than max-
imum likelihood procedures to estimate the noise para-
meters. This significantly speeds-up computation time
when repeatedly fitting the model to tens of thousands
of time series. Choosing the order of the AR process
to be 2 has been empirically determined to provide the
most parsimonious model that is able to account for au-
tocorrelation present in the signal due to aliased physi-
ological artifacts.

The BOLD response. The relationship between stim-
uli and BOLD response is typically modeled using a
linear time invariant (LTI) system, where the stimulus
acts as the input and the HRF acts as the impulse re-
sponse function. See Figure 4 for an illustration of how
the BOLD response varies depending on the stimuli.
A linear time invariant system is characterized by the
following properties: scaling, superposition and time-
invariance. Scaling implies that if the input is scaled
by a factor b, then the BOLD response will be scaled
by the same factor. This is important as it implies that
the amplitude of the measured signal provides a mea-
sure of the amplitude of neuronal activity. Therefore,
the relative difference in amplitude between two con-
ditions can be used to infer that the neuronal activity
was similarly different. Superposition implies that the
response to two different stimuli applied together is
equal to the sum of the individual responses. Finally,

time-invariance implies that if a stimulus is shifted by
a time t , then the response is also shifted by t . These
three properties allow us to differentiate between re-
sponses in various brain regions to multiple closely
spaced stimuli.

In our model we allow for K different conditions
to be applied throughout the course of the experiment
(e.g., varying degrees of painful stimuli). The BOLD
response portion of the model can thus be written

sij (t) =
K∑

k=1

βijk

∫
hij (u)vk(t − u)du,(5)

where hij (t) is the HRF, vk(t) the stimulus function
and βijk the signal amplitude for condition k at voxel i

in the j th subject.

Model summary. For most standard fMRI experi-
ments we can summarize model (3) as

yij (t) =
p∑

g=1

γijgt
g−1

+
K∑

k=1

βijk

∫
hij (u)vk(t − u)du(6)

+ εij (t),

where εij is assumed to follow an AR(2) process. In
matrix form this can be written

yij = Zijγ ij + Xijβij + εij ,(7)

where γ ij = (γij1, . . . , γijp)T , βij = (βij1, . . . ,

βijK)T , Zij is a T × p matrix with columns corre-
sponding to the polynomial functions, and Xij is a
T × K matrix with columns corresponding to the pre-
dicted BOLD response for each condition.

Further, the model in (7) can be combined across
voxels as follows:

Yj = Xj Bj + Zj Gj + Ej .(8)

Here Yj is a T × N matrix, where each column is a
time series corresponding to a single brain voxel and
each row is the collection of voxels that make up an im-
age at a specific time point. The matrices Xj and Zj are
the common design matrices used for each voxel. Fi-
nally, Bj = (β1j , . . . ,βNj ), Gj = (γ 1j , . . . ,γ Nj ) and
Ej = (ε1j , . . . ,εNj ). The vectorized variance of E is
typically assumed to be separable in time and space.
In addition, somewhat surprisingly, the spatial covari-
ance is often assumed to be negligible compared to the
temporal covariance and therefore ignored.
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While (8) provides a framework for a full spatio-
temporal model of brain activity, it is currently not con-
sidered a feasible alternative due to the extreme com-
putational demands required for model fitting. Instead,
model (7) is applied to each voxel separately, and spa-
tial concerns are incorporated at a later stage (see be-
low). Alternatively, the matrix Yj is sometimes ana-
lyzed using Multivariate methods as described in Sec-
tion 6.3.

6.2 Localizing Brain Activity

The assumptions that one makes regarding the
BOLD response fundamentally impact the analysis
when using model (7). In most controlled experiments
it is reasonable to assume that the stimulus function
vk(t) is known and equivalent to the experimental par-
adigm (e.g., a vector of zeros and ones where 1 rep-
resents time points when the stimulus is “on” and 0
when it is “off”). If one further assumes that the HRF
is known a priori, (7) reverts to a multiple regres-
sion model with known signal components and un-
known amplitudes. These are the assumptions made in
the hugely popular GLM approach (Worsley and Fris-
ton, 1995; Friston et al., 2002), though the assump-
tion regarding fixed HRF can be relaxed. However,
in many areas of psychological inquiry (e.g., emotion
and stress), it may be difficult to specify information
regarding the stimulus function a priori. If one is un-
willing to make any assumptions regarding the exact
timing of neuronal activity, alternative methods may
be more appropriate for analyzing the data. In the next
two sections both scenarios will be discussed.

6.2.1 The general linear model approach. The gen-
eral linear model (GLM) approach has arguably be-
come the dominant way to analyze fMRI data. It mod-
els the time series as a linear combination of several
different signal components and tests whether activ-
ity in a brain region is systematically related to any

of these known input functions. The simplest version
of the GLM assumes that both the stimulus function
and the HRF are known. The stimulus is assumed to
be equivalent to the experimental paradigm, while the
HRF is modeled using a canonical HRF, typically ei-
ther a gamma function or the difference between two
gamma functions (see Figure 5). Under these assump-
tions, the convolution term in the BOLD response is a
known function and (7) reverts to a standard multiple
linear regression model. The BOLD response can be
summarized in a design matrix X, containing a sepa-
rate column for each of the K predictors; see Figure 8
for an example when K = 2.

In the remainder of the section we will, for simplic-
ity, assume that the nuisance term Z is accounted for
and can be ignored. Further, we assume a separate, but
identical, model for each voxel and suppress the voxel
index. Hence, the data for subject j at voxel i can be
written

yj = Xjβj + εj ,(9)

where εj ∼ N(0,V) with the structure of the covari-
ance matrix V corresponding to an AR(2) process with
unknown parameters φ1, φ2 and σ . The model para-
meters can be estimated using a Cochrane–Orcutt fit-
ting procedure, where the variance components are es-
timated using the Yule–Walker method (Brockwell and
Davis, 1998). After fitting the model, one can test for
an effect cT βj where c is a contrast vector. The con-
trast vector can be used to estimate signal magnitudes
in response to a single condition, an average over mul-
tiple conditions or the difference in magnitude between
two conditions. Hypothesis testing is performed in the
usual manner by testing individual model parameters
using a t-test and subsets of parameters using a partial
F -test. Since the covariance matrix has to be estimated,
a Satterthwaite approximation is used to calculate the
effective degrees of freedom for the test statistics. This
procedure is repeated for brain voxel and the results are

FIG. 8. In an fMRI experiment with two conditions (A and B), the stimulus function is convolved with a canonical HRF to obtain two sets of
predicted BOLD responses. The responses are placed into the columns of a design matrix X and used to compute whether there is significant
signal corresponding to the two conditions in a particular time course.
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summarized in a statistical map consisting of an image
whose voxel measurements correspond to the test sta-
tistic calculated at that particular voxel.

While the GLM is a simple and powerful approach
toward modeling the data, it is also extremely rigid.
Even minor mismodeling (e.g., incorrect stimulus
function or HRF) can result in severe power loss, and
can inflate the false positive rate beyond the nominal
value. Due to the massive amount of data, examining
the appropriateness of the model is challenging and
standard methods of model diagnostics are not feasible.
Recently some techniques have been introduced (Luo
and Nichols, 2003; Loh, Lindquist and Wager, 2008)
that allow one to quickly determine, through graphical
representations, areas in the brain where assumptions
are violated and model misfit may be present. How-
ever, in the vast majority of studies no model checking
is performed, calling into question the validity of the
results. Moving toward using more sophisticated mod-
els, as well as increased use of diagnostics, is an im-
portant area of current and future research. In both of
these areas statisticians can play an important role.

As mentioned in Section 3.3, the shape of the HRF
may vary across both space and subjects. Therefore,
assuming that the shape of the HRF is constant across
all voxels and subjects may give rise to significant mis-
modeling in large parts of the brain. We can relax this
assumption by expressing the HRF as a linear com-
bination of reference waveforms. This can be done in
the GLM framework by convolving the same stimulus
function with multiple canonical waveforms and enter-
ing them into multiple columns of X for each condi-
tion. These reference waveforms are called basis func-
tions, and the predictors for an event type constructed
using different basis functions can combine linearly to
better fit the evoked BOLD responses. The ability of
a basis set to capture variations in hemodynamic re-
sponses depends both on the number and shape of the
reference waveforms. There is a fundamental tradeoff
between flexibility to model variations and power, as
flexible models can model noise and produce noisier
parameter estimates. In addition, the inclusion of addi-
tional model parameters decreases the number of de-
grees of freedom for the subsequent test statistic.

One of the most flexible models, a finite impulse re-
sponse (FIR) basis set, contains one free parameter for
every time-point following stimulation in every cogni-
tive event-type that is modeled (Glover, 1999a; Goutte,
Nielsen and Hansen, 2000). Thus, the model is able to
estimate an HRF of arbitrary shape for each event type
in every voxel of the brain. Another possible choice

is to use the canonical HRF together with its temporal
derivative in order to allow for small shifts in the onset
of the HRF. Other choices of basis sets include those
composed of principal components (Aguirre, Zarahn
and D’Esposito, 1998; Woolrich, Behrens and Smith,
2004), cosine functions (Zarahn, 2002), radial basis
functions (Riera et al., 2004), spectral basis sets (Liao
et al., 2002) and inverse logit functions (Lindquist
and Wager, 2007b). For a critical evaluation of vari-
ous basis sets, see Lindquist and Wager (2007b) and
Lindquist et al. (2008c).

Multi-subject analysis. The analysis so far has been
concerned with single subject data. However, research-
ers typically want to make conclusions on population
effects, and statistical analysis needs to be extended
to incorporate information from a group of subjects.
Multi-subject fMRI data is intrinsically hierarchical
in nature, with lower-level observations (e.g., individ-
ual subjects) nested within higher levels (e.g., groups
of subjects). Multi-level models provide a framework
for performing mixed-effects analysis on multi-subject
fMRI data. In fMRI it is common to use a two-level
model where the first level deals with individual sub-
jects and the second level deals with groups of sub-
jects. In the first-level the data are autocorrelated with
a relatively large number of observations, while in the
second-level we have IID data with relatively few ob-
servations. The first-level model can be written

y = Xβ + ε,(10)

where y = (yT
1 , . . . ,yT

M)T , X = diag(X1, . . . ,XM),
β = (βT

1 , . . . ,βT
M)T , ε = (εT

1 , . . . ,εT
M)T and Var(ε) =

V where V = diag(VT
1 , . . . ,VT

M).
The second-level model can be written

β = XGβG + εG,(11)

where εG ∼ N(0, Iσ 2
G). Here XG is the second-level

design matrix (e.g., separating cases from controls) and
βG the vector of second-level parameters. The two-
level model can be combined into a single level model,
which can be expressed as

y = XXGβG + XεG + ε.(12)

Estimation of the regression parameters and variance
components can be performed iteratively, with regres-
sion parameters estimated using GLS and variance
components estimated using restricted maximum like-
lihood (ReML) and the EM-algorithm.

Recently, these types of multi-level mixed-effects
models have become popular in the neuroimaging
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community due to their ability to perform valid pop-
ulation level inference (e.g., Friston et al., 2002; Beck-
mann, Jenkinson and Smith, 2003). However, because
of the massive amount of data being analyzed and the
fact that it must be feasible to repeatedly fit the model
across all brain voxels, the most commonly used tech-
niques are by necessity simplistic. For example, they
do not readily allow for unbalanced designs and miss-
ing data. However, both issues are prevalent in fMRI
data analysis. Missing data may be present in a study
because of artifacts and errors due to the complexity of
data acquisition (including human error), while unbal-
anced designs are important because of interest in re-
lating brain activity to performance and other variables
that cannot be experimentally controlled. The introduc-
tion of techniques for performing rapid estimation of
multi-level model parameters that allow for this type of
data is of utmost importance. Multi-level models have
been heavily researched in the statistical community,
and statisticians can play an important role in devel-
oping methods tailored directly to the complexities of
fMRI data analysis.

Spatial modeling. Up to this point the entire analy-
sis procedure outlined in this section has been univari-
ate, that is, performed separately at each voxel. Indeed,
one of the most common short cuts used in the field
is, somewhat surprisingly, to perform fMRI data analy-
sis in a univariate setting (the so-called “massive uni-
variate approach”), where each voxel is modeled and
processed independently of the others. At the model-
level this approach assumes that neighboring voxels
are independent, which is generally not a reasonable
assumption as most activation maps show a clear spa-
tial coherence. In these situations the spatial relation-
ship is sometimes accounted for indirectly by smooth-
ing the data prior to voxel-wise analysis, and thereafter
applying random field theory to the map of test sta-
tistics to determine statistical significance for the en-
tire set of voxels. Hence, the “massive univariate ap-
proach” does take spatial correlation into account at
the level of thresholding using Gaussian random fields.
However, while the random field theory approach does
link voxel-wise statistics, it does not directly estimate
spatial covariances under a linear model. We discuss
random field theory further in Section 6.2.3.

Incorporating spatial considerations into the GLM
framework has become a subject of increased inter-
est in recent years. In the earliest approaches indi-
vidual voxel-wise GLMs were augmented with time
series from neighboring voxels (Katanoda, Matsuda
and Sugishita, 2002; Gossl, Auer and Fahrmeir, 2001).

Recently, a series of Bayesian approaches have been
suggested. Penny, Trujillo-Barreto and Friston (2005)
have proposed a fully Bayesian model with spatial pri-
ors defined over the coefficients of the GLM. Bow-
man (Bowman, 2005) presents a whole-brain spatio-
temporal model that partitions voxels into functionally
related networks and applies a spatial simultaneous au-
toregressive model to capture intraregional correlations
between voxels. Finally, Woolrich et al. (2005) have
developed a spatial mixture model using a discrete
Markov random field (MRF) prior on a spatial map of
classification labels. While these models are certainly
a step in the right direction, it is clear that the massive
univariate approach continues to be exceedingly popu-
lar among end users due to its relative simplicity.

Some headway has recently been made, but work
remains to be done and ideas from spatial statistics
can potentially play an important role. Fitting spa-
tial models using Bayesian statistics has been the fo-
cus of much attention lately and several promising ap-
proaches have been suggested (e.g., Bowman, 2005;
Bowman et al., 2008; Woolrich et al., 2005). How-
ever, model complexity is sometimes constrained by
the massive amounts of data and there is a clear need
for statisticians with strong training in Bayesian com-
putation to optimize the model fitting procedure.

6.2.2 Data with uncertain timing of activation. In
many areas of psychological inquiry—including stud-
ies on memory, motivation and emotion—it is hard to
specify the exact timing of activation a priori. In this
situation it may not be reasonable to assume that ei-
ther the experimental paradigm or the HRF are known.
Therefore, the GLM cannot be directly applied to these
data sets and alternative methods are needed. Typi-
cally, researchers take a more data-driven approach that
attempts to characterize reliable patterns in the data,
and relate those patterns to psychological activity post
hoc. One popular approach is independent components
analysis (ICA) (Beckmann and Smith, 2005; Calhoun
et al., 2001b; McKeown and Makeig, 1998), a mem-
ber of a family of analytic methods that also includes
principal components and factor analysis. While these
methods provide a great deal of flexibility, they do not
provide a formal framework for performing inference
about whether a component varies over time and when
changes occur in the time series. In addition, because
they do not contain any model information, they cap-
ture regularities whatever the source. Therefore, they
are highly susceptible to noise and components are of-
ten dominated by artifacts. For these reasons we prefer
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to use methods from change point analysis to model
fMRI data with unknown activation profiles.

In our own work, we use a three step procedure for
modeling such data. In a first stage we employ a multi-
subject (mixed-effects) extension of the exponentially
weighted moving average (EWMA) method (Roberts,
1959), denoted HEWMA (Hierarchical EWMA)
(Lindquist and Wager, 2007a), as a simple screen-
ing procedure to determine which voxels have time
courses that deviate from a baseline level and should be
moved into the next stage of the analysis. In the second
stage we estimate voxel-specific distributions of onset
times and durations from the fMRI response, by mod-
eling each subject’s onset and duration as random vari-
ables drawn from an unknown population distribution
(Robinson, Wager and Lindquist, 2009). We estimate
these distributions assuming no functional form (e.g.,
no assumed neural or hemodynamic response), and al-
lowing for the possibility that some subjects may show
no response. The distributions can be used to estimate
the probability that a voxel is activated as a function
of time. In the final step we perform spatial clustering
of voxels according to onset and duration characteris-
tics, and anatomical location using a hidden Markov
random field model (Robinson, Wager and Lindquist,
2009). This three step procedure provides a spatio-
temporal model for dealing with data with uncertain
onset and duration.

There exists a rich literature on sequential and
change point analysis with applications to a wide range
of fields. However, to date there have been relatively
few applications of these methods to fMRI data. As ex-
perimental paradigms and the psychological questions
researchers seek to understand become more compli-
cated, these methods could possibly play an important
role. Therefore, this is an area where statisticians can
make a contribution.

6.2.3 Multiple comparisons. The results of fMRI
studies are usually summarized in a statistical para-
metric map (SPM), such as the one shown in Figure 9.
These maps describe brain activation by color-coding
voxels whose t-values (or comparable statistics) ex-
ceed a certain statistical threshold for significance. The
implication is that these voxels are activated by the ex-
perimental task. When constructing such a map it is
important to carefully consider the appropriate thresh-
old to use when declaring a voxel active. In a typi-
cal experiment up to 100,000 hypothesis tests (one for
each voxel) are performed simultaneously, and it is cru-
cial to correct for multiple comparisons. Several ap-
proaches toward controlling the false positive rate have

FIG. 9. Statistical parametric maps (SPM) are used to present
the results of the statistical analysis. Voxels whose p-values are be-
low a certain threshold are color-coded to signify that they contain
significant task-related signal. The results are superimposed onto a
high-resolution anatomical image for presentation purposes.

been used; the fundamental difference between meth-
ods lies in whether they control the family-wise error
rate (FWER) or the false discovery rate (FDR).

Random Field Theory (RFT) (Worsley et al., 2004)
is the most popular approach for controlling the FWER
in the fMRI community. Here, the image of voxel-wise
test statistic values are assumed to be a discrete sam-
pling of a continuous smooth random field. In the RFT
approach one begins by estimating the smoothness of
the image, which is expressed in terms of resolution
elements, or resels (roughly equivalent to the number
of independent comparisons). Next, using information
about the number of resels and the shape of the search
volume, mathematical theory exists for calculating the
expected Euler characteristic. For large thresholds this
value is equal to the number of clusters of activity
that one would expect by chance at a certain statisti-
cal threshold. Hence, it can be used to determine the
appropriate threshold that controls the FWER at a cer-
tain level. RFT is a mathematically elegant approach
toward correcting for multiple comparisons. However,
like most other methods that control the FWER, it
tends to give overly conservative results (Hayasaka and
Nichols, 2004). If one is unwilling to make assump-
tions about the distribution of the data, nonparamet-
ric methods can be used to control the FWER. It has
been shown that such methods can provide substantial
improvements in power and validity, particularly with
small sample sizes (Nichols and Holmes, 2002).

The false discovery rate (FDR) controls the propor-
tion of false positives among all rejected tests and has
recently been introduced to the neuroimaging commu-
nity (Genovese, Lazar and Nichols, 2002). The FDR
controlling procedure is adaptive in the sense that the
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larger the signal, the lower the threshold. If all of the
null hypotheses are true, the FDR will be equivalent
to the FWER. Any procedure that controls the FWER
will also control the FDR. Hence, any procedure that
controls the FDR can only be less stringent and lead to
increased power. A major advantage is that since FDR
controlling procedures work only on the p-values and
not on the actual test statistics, it can be applied to any
valid statistical test. In contrast, for the RFT approach
the test statistics need to follow a known distribution.

The FDR controlling procedure that is most com-
monly used in fMRI data analysis is the so-called
Benjamini–Hochberg procedure (Benjamini and
Hochberg, 1995), where all tests are assumed to be in-
dependent. However, in fMRI data analysis it is more
realistic to assume that tests are dependent, as neigh-
boring voxels are more likely to have similarly valued
p-values. Hence, the introduction of FDR controlling
procedures that incorporate spatial information is of
utmost importance and an area of future research for
statisticians.

6.3 Assessing Brain Connectivity

Human brain mapping has primarily been used to
construct maps indicating regions of the brain that are
activated by specific tasks. Recently, there has been an
increased interest in augmenting this type of analy-
sis with connectivity studies that describe how vari-
ous brain regions interact and how these interactions
depend on experimental conditions. It is common in
the fMRI literature to distinguish between anatomical,
functional and effective connectivity (Friston, 1994).
Anatomical connectivity deals with describing how
different brain regions are physically connected and
can be tackled using diffusion tensor imaging (DTI).
Functional connectivity is defined as the undirected as-
sociation between two or more fMRI time series, while
effective connectivity is the directed influence of one
brain region on others. In this work we concentrate on
describing the latter two types of connectivity.

6.3.1 Functional connectivity. The simplest ap-
proach toward functional connectivity analyses com-
pares correlations between regions of interest, or be-
tween a “seed” region and other voxels throughout the
brain. Alternative approaches include using multivari-
ate methods, such as Principal Components Analysis
(PCA) (Andersen, Gash and Avison, 1999) and Inde-
pendent Components Analysis (ICA) (Calhoun et al.,
2001b; McKeown and Makeig, 1998), to identify task-
related patterns of brain activation without making any

a priori assumptions about its form. These methods in-
volve decomposing the T × N data matrix, Y, into a
set of spatial and temporal components according to
some criteria.2

PCA allows one to determine the spatial patterns that
account for the greatest amount of variability in a time
series of images. This can be achieved by finding the
singular value decomposition of the data matrix,

Y = USVT ,(13)

where U is an T × T unitary matrix, S is a T × N

diagonal matrix with nonnegative elements, and V is
an N × N unitary matrix. The columns of U represent
the weighted sum of time series from different voxels,
while the columns of V contain the voxel weights re-
quired to create each component in U. Thus, U repre-
sents the temporal components and V the spatial com-
ponents of the data. The elements of S represent the
amount of variability explained by each component
and are ordered in nonincreasing fashion. Hence, the
first column of V shows how to weight each of the N

voxel time series in order to capture the most variance
in Y, etc. The usefulness of this technique is twofold:
this decomposition can potentially reveal the nature of
the observed signal by finding its linearly independent
sources. Also, decomposing the signal and ordering the
components according to their weight is a useful way
to simplify the data or filter out unwanted components,
and can be used in the preprocessing stage as a data
reduction tool.

ICA is similar to PCA, but the components are re-
quired to be independent rather than orthogonal. ICA
assumes that Y is a weighted sum of p independent
source signals contained in the p ×N source matrix X,
whose weights are described by a T ×p mixing matrix
of weights M, that is,

Y = MX.(14)

Iterative search algorithms are used to estimate M
and X, simultaneously. In order to solve (14), ICA
makes a number of assumptions, the main ones being
that the data consist of p statistically independent com-
ponents, where at most one component is Gaussian.
The independence assumption entails that the activa-
tions do not have a systematic overlap in time or space,
while the non-Gaussiantity assumption is required for
the problem to be well defined. An ICA of Y produces

2Note that throughout this section we have suppressed the subject
index previously used.
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spatially independent component images in the ma-
trix X and is usually referred to as spatial ICA (sICA).
Performing ICA on YT instead produces temporally
independent component time series and is referred to
as temporal ICA (tICA).

Both PCA and ICA reduce the data to a lower-
dimensional space by capturing the most prominent
variations across the set of voxels. The components
may either reflect signals of interest or they may be
dominated by artifacts; it is up to the user to determine
which are important. Both ICA and PCA assume all
variability results from the signal, as noise is not in-
cluded in the model formulation, though noise-added
versions of ICA that account for nonsource noise have
been introduced (Hyvarinen, Karhunen and Oja, 2001).
In ICA, interpretation is made more difficult by the fact
that the sign of the independent components cannot be
determined. In addition, the independent components
are not ranked in order of appearance and it is there-
fore necessary to sift through all of the components to
search for the ones that are important.

ICA has been successfully applied to single-subject
fMRI data. Extending the approach to allow for group
inference is currently an active area of research. Sev-
eral techniques for performing multisubject ICA have
been proposed. The GIFT approach (Calhoun et al.,
2001a) consists of temporally concatenating the data
across subjects, and performing ICA decomposition
on the resulting data set. In contrast, the tensor ICA
(Beckmann and Smith, 2005) approach factors multi-
subject data as a trilinear combination of three outer
products. This results in a three-way decomposition
that represents the data in terms of their temporal, spa-
tial and subject-dependent variations. Finally, Guo and
Pagnoni (Guo and Pagnoni, 2008) have proposed a uni-
fied framework for fitting group ICA models. They
consider a class of models, assuming independence in
the spatial domain, which incorporate existing meth-
ods such as the GIFT and tensor ICA as special cases.
In general, the ability to perform functional connectiv-
ity analysis in the multisubject domain promises to be
an area of intense research in the future.

6.3.2 Effective connectivity. In effective connectiv-
ity analysis a small set of regions with a proposed set of
directed connections are specified a priori, and tests are
used to assess the statistical significance of individual
connections. Most effective connectivity methods de-
pend on two models: a neuroanatomical model that de-
scribes the areas of interest, and a model that describes
how they are connected. Commonly used methods in-
clude Structural Equation Modeling (SEM) (McIntosh

and Gonzalez-Lima, 1994) and Dynamic Causal Mod-
eling (DCM) (Friston, Harrison and Penny, 2003).

In SEM the emphasis lies on explaining the variance-
covariance structure of the data. It comprises a set of
regions and directed connections between them. Fur-
ther, path coefficients are defined for each link repre-
senting the expected change in activity of one region
given a unit change in the region influencing it. The
path coefficient indicates the average influence across
the time interval measured. Algebraically, we can ex-
press an SEM model as

Y = MY + ε,(15)

where Y is the data matrix, M is a matrix of path coef-
ficients and ε is independent and identically distributed
Gaussian noise. This can be rewritten

Y = (I − M)−1ε,(16)

where I represents the identity matrix. The solution of
the unknown coefficients contained in M is obtained
by studying the empirical covariance matrix of Y. In
SEM we seek to minimize the difference between the
observed covariance matrix and the one implied by
the structure of the model (16). The parameters of the
model are adjusted iteratively to minimize the differ-
ence between the observed and modeled covariance
matrix. All inference rests on the use of nested mod-
els and the likelihood ratio test (LRT) to determine
whether a path coefficient is reliably different from
zero.

A number of model assumptions are made when
formulating the SEM. The data are assumed to be
normally distributed and independent from sample to
sample. An important consequence of this assumption
is that SEM discounts temporal information. Conse-
quently, permuted data sets produce the same path co-
efficients as the original data, which is a major weak-
ness, as the assumption of independence is clearly vio-
lated in the analysis of a single subject.

The measurements used in SEM analysis are based
on the observed BOLD response and this ultimately
limits the scope of any interpretation that can be
made at the neuronal level. Dynamic Casual Model-
ing (DCM) (Friston, Harrison and Penny, 2003) is an
attempt to move the analysis to the neuronal level.
DCM uses a standard state-space design, and treats
the brain as a deterministic nonlinear dynamic sys-
tem that is subject to inputs and produces outputs. It
is based on a neuronal model of interacting cortical
regions, supplemented with a forward model describ-
ing how neuronal activity is transformed into measured
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hemodynamic response. Effective connectivity is para-
meterized in terms of the coupling among unobserved
neuronal activity in different regions. We can estimate
these parameters by perturbing the system and measur-
ing the response. Experimental inputs cause changes
in effective connectivity at the neuronal level which, in
turn, causes changes in the observed hemodynamics.

DCM uses a bilinear model for the neuronal level
and an extended Balloon model (Buxton, Wong and
Frank, 1998) for the hemodynamic level. In a DCM
model the user specifies a set of experimental inputs
(the stimuli) and a set of outputs (the activity in each
region). The task of the algorithm is then to estimate
the parameters of the system, or the “state variables.”
Each region has five state variables, four corresponding
to the hemodynamic model and a fifth corresponding to
neuronal activity. The estimation process is then car-
ried out using Bayesian methods, where Normal priors
are placed on the model parameters and an optimiza-
tion scheme is used to estimate parameters that maxi-
mize the posterior probability. The posterior density is
then used to make inferences about the significance of
the connections between various brain regions.

While many researchers use SEM and DCM in order
to ascribe causality between different brain regions, it
is important to keep in mind that the tests performed by
both techniques are based on model fit rather than on
the causality of the effect. Any misspecification of the
underlying model can lead to erroneous conclusions.
In particular, the exclusion of important lurking vari-
ables (e.g., brain regions involved in the network but
not included in the model) can completely change the
fit of the model and thereby affect both the direction
and strength of the connections. Therefore, a great deal
of care needs to be taken when interpreting the results
of these methods.

Granger causality (Roebroeck, Formisano and
Goebel, 2005) is another approach that is considered
to test effective connectivity. This approach does not
rely on a priori specification of a structural model, but
rather quantifies the usefulness of past values from one
brain region in predicting current values in another.
Granger causality provides information about the tem-
poral precedence of relationships among two regions,
but is a misnomer because it does not actually provide
information about causality.

Let x and y be two time courses of length T extracted
from two voxels. First, each time course is modeled
using a linear autoregressive model of the pth order
(where p ≤ T − 1). Second, each time course model is

expanded using the autoregressive terms from the other
voxel, that is,

x(n) =
p∑

i=1

a(i)x(n − i)

(17)

+
p∑

i=1

b(i)y(n − i) + εx(n),

y(n) =
p∑

i=1

a(i)y(n − i)

(18)

+
p∑

i=1

b(i)x(n − i) + εy(n),

where both εx and εy are defined to be white noise
processes. In this formulation the current value of both
time courses are assumed to depend both on the past
p-values of its own time course as well as the past
p-values of the other time course. By fitting both of
these models, one can test whether the previous history
of x has predictive value on the time course y (and vice
versa). If the model fit is significantly improved by the
inclusion of the cross-autoregressive terms, it provides
evidence that the history of one of the time courses can
be used to predict the current value of the other and a
Granger-causal relationship is inferred.

While the analysis of brain connectivity has been
an area of intense research the past couple of years, it
has primarily been concerned with analyzing connec-
tivity between different brain regions. However, there
is increasing interest in studying networks that incorpo-
rate information about performance scores on the task
and/or physiological measures. For example, it may
be of interest to determine brain regions that mediate
changes in heart rate or increases in reported stress in
response to a task (Wager et al., 2008). The incorpo-
ration of this information is complicated by the fact
that the different components included in the network
measure different types of responses, possibly on com-
pletely different time scales. These types of extensions
of current connectivity methods are an area where sta-
tisticians can play an important role in the future.

6.3.3 Understanding connectivity. Ultimately, the
distinction between functional and effective connectiv-
ity is not entirely clear (Horwitz, 2003). If the discrim-
inating features are a directional model in which causal
influences are specified and the ability to draw conclu-
sions about direct vs. indirect connections, then many
analyses (e.g., multiple regression) might count as ef-
fective connectivity. In the end, it is not the label that
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is important, but the specific assumptions and robust-
ness and validity of inference afforded by each method.
When performing connectivity studies researchers are
often interested in making statements regarding causal
links between different brain regions. However, the
idea of causality is a very deep and important philo-
sophical issue (Rubin, 1974; Pearl, 2000). Often a cav-
alier attitude is taken in attributing causal effects and
the differentiation between explanation and causation
is often blurred. Properly randomized experimental de-
signs permit causal inferences of task manipulations on
brain activity. However, in fMRI studies, all the brain
variables are observed, and none are manipulated. It
is therefore difficult to make strong conclusions about
causality and direct influences among brain regions,
because the validity of such conclusions is difficult to
verify. In general, the area of brain connectivity is ex-
periencing certain growing pains. There is a clear need
for a discussion of the goals of the analysis, as well
as which model assumptions are reasonable. To date,
many of these critical issues have not been properly ad-
dressed, and terms such as causality are used inappro-
priately. In addition, there is also room for introducing
new techniques for testing connectivity and ultimately
we believe ideas from casual inference will come to
play a role.

7. ADDITIONAL OPEN STATISTICAL
CHALLENGES

Throughout this paper we have attempted to high-
light the many interesting and important statistical
problems that arise in fMRI research. It is clear that
analyzing these massive data structures with their com-
plex correlation patterns provides a serious challenge
for researchers in the field. Many standard statistical
techniques are neither appropriate nor feasible for di-
rect application to fMRI data. As experimental designs
and imaging techniques become more sophisticated,
the need for novel statistical methodology will only in-
crease. As we look toward the future, there are many
open statistical challenges that need to be addressed for
fMRI to reach its full potential. We have attempted to
highlight many of these challenges throughout, but be-
low we discuss several additional topics in detail.

Classification and Prediction

There is a growing interest in using fMRI data as a
tool for classification of mental disorders, brain-based
nosology and predicting the early onset of disease.

For example, the promise of using fMRI as a screen-
ing device in detecting early onset of Alzheimer’s dis-
ease holds obvious appeal. In addition, there has been
growing interest in developing methods for predicting
stimuli directly from functional data. This would allow
for the possibility to infer information from the scans
about the subjects thought process and use brain ac-
tivation patterns to characterize subjective human ex-
perience. A particularly controversial application has
been the idea of using fMRI for lie detection. The effi-
cient prediction of brain states is a challenging process
that requires the application of novel statistical and ma-
chine learning techniques. Various multivariate pattern
classification approaches have successfully been ap-
plied to fMRI data in which a classifier is trained to dis-
criminate between different brain states and then used
to predict the brain states in a new set of fMRI data. To
date, efficient preprocessing of the data has been shown
to be more important than the actual method of predic-
tion. However, this is an area that without a doubt will
be the focus of intense research in the future and where
statisticians are well positioned to make a significant
impact.

Multi-modal Techniques

In neuroscience there is a general trend toward us-
ing multiple imaging methods in tandem to overcome
some of the limitations of each method used in isola-
tion. For example, recent advances in engineering and
signal processing allow electroencephalography (EEG)
and fMRI data to be collected simultaneously (Gold-
man et al., 2000). EEG has an extremely high temporal
resolution (on the order of ms) but poor spatial resolu-
tion, while fMRI suffers from the opposite problem. By
merging these two techniques, the hope is that one can
get the best of both worlds. In another example, dif-
fusion tensor imaging (DTI), a popular technique for
measuring directional diffusion and reconstructing the
fiber tracts of the brain (Le Bihan et al., 2001), can
be combined with fMRI to determine appropriate re-
gions of the brain to include in subsequent connectiv-
ity models. Finally, neuroimaging data are being com-
bined with transcranial magnetic stimulation (TMS) to
integrate the ability of neuroimaging to observe brain
activity with the ability of TMS to manipulate brain
function (Bohning et al., 1997). Using this technique,
one can simulate temporary “brain lesions” while the
subject performs certain tasks. One can then attempt to
infer causal relationships by studying differences in a
brain network when a region is functioning and when
it is not.
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Combining information from different modalities
will be challenging to data analysts, if for no other rea-
son than that the amount of data will significantly in-
crease. In addition, since the different modalities are
measuring fundamentally different quantities, it is not
immediately clear how to best combine the informa-
tion. This is an extremely important problem that has
already started to become a major area of research.

Imaging Genetics

The past several decades have seen rapid advances
in the study of human brain function. But perhaps even
more impressive have been the advances in molecular
genetics research that have taken place in the same time
period. However, despite the enormous amount of re-
search performed in both of these areas, relatively little
work has been done on combining these two types of
data.

Integrating genetics with brain imaging is an impor-
tant problem that has the potential to fundamentally
change our understanding of human brain function in
diseased populations. It could provide a way to study
how a particular subset of polymorphisms affects func-
tional brain activity. In addition, quantitative indica-
tors of brain function could facilitate the identification
of the genetic determinants of complex brain-related
disorders such as autism, dementia and schizophrenia
(Glahn, Thompson and Blangero, 2007). These indi-
cators may also aid in gene discovery and help re-
searchers understand the functional consequences of
specific genes at the level of systems neuroscience.
Imaging genetics promises to be an important topic of
future research, and to fully realize its promise, novel
statistical techniques will be needed.

The open statistical challenges discussed in this pa-
per are by no means complete. Rather, we hope that
they illustrate some of the possible statistical problems
that may be at the forefront of the statistical analysis of
fMRI data in the future. Other problems that will be of
importance include the acquisition and analysis of real-
time fMRI data, the development of efficient nonlinear
models for describing the relationship between stimu-
lus and BOLD response, and the synthesis of findings
across studies (e.g., meta-analyses), among many other
things.

A critical job for any statistician involved in the field
will be stressing the need for researchers to stringently
state and check model assumptions. Due to the enor-
mity of the analysis, model assumptions are typically
neither checked nor often even specified. However, for

most models even relatively small amounts of mismod-
eling can result in severe power loss, and inflate the
false positive rate beyond the nominal value. As in-
ference may be incorrect if model assumptions do not
hold, the lack of diagnostics calls some of the validity
of the analysis into doubt. This is an area where statis-
ticians must lead the way.

8. CONCLUSIONS

There has been explosive interest in the use of fMRI
in recent years. The rapid pace of development and the
interdisciplinary nature of the neurosciences present an
enormous challenge to researchers. Moving the field
forward requires a collaborative team with expertise in
psychology, neuroanatomy, neurophysiology, physics,
biomedical engineering, statistics, signal processing
and a variety of other disciplines depending on the re-
search question. True interdisciplinary collaboration is
exceedingly challenging, because team members must
know enough about the other disciplines to be able to
talk intelligently with experts in each field. Due to the
importance that statistics plays in this research, it is
important that more statisticians get involved in these
research teams for the methodology to reach its full
potential. Through the course of this paper, we have
attempted to illustrate that many of the problems in-
volved in studying these complicated data structures
are intrinsically statistical in nature. As the experimen-
tal design and imaging techniques become more so-
phisticated, the need for novel statistical methodology
will only increase, promising an exciting future for sta-
tisticians in the field.
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