
Logistic Regression with Brownian-like Predictors

Martin A. Lindquist and Ian W. McKeague 1

Department of Statistics, Columbia University, New York, NY 10027

Department of Biostatistics, Columbia University, New York, NY 10032

1Martin A. Lindquist is Associate Professor, Department of Statistics, Columbia University, New

York, NY 10027 (e-mail: martin@stat.columbia.edu); Ian W. McKeague is Professor, Department of

Biostatistics, Columbia University, New York, NY 10032 (e-mail: im2131@columbia.edu). The work

of the first author was supported by NSF grant DMS-0804198. The work of the second author was

supported by NSF grant DMS-0806088. The authors thank Bodhi Sen for discussions about the

bootstrap, Tor Wager for the fMRI data, and Galina Glazko, Andrei Yakovlev and Bill Stewart for

help with the gene expression data.



Abstract

This article introduces a new type of logistic regression model involving

functional predictors of binary responses, along with an extension of the ap-

proach to generalized linear models. The predictors are trajectories that have

certain sample-path properties in common with Brownian motion. Time points

are treated as parameters of interest, and confidence intervals developed under

prospective and retrospective (case-control) sampling designs. In an applica-

tion to fMRI data, signals from individual subjects are used to find the portion

of the time course that is most predictive of the response. This allows the iden-

tification of sensitive time points, specific to a brain region and associated with

a certain task, that can be used to distinguish between responses. A second ap-

plication concerns gene expression data in a case-control study involving breast

cancer, where the aim is to identify genetic loci along a chromosome that best

discriminate between cases and controls.

Key words: Brownian motion, empirical processes, functional logistic regression, functional

magnetic resonance imaging, gene expression, lasso, M-estimation.
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1 INTRODUCTION

This paper investigates a logistic regression model involving a binary response Y and

a predictor given by the value of the trajectory of a continuous stochastic process

X = {X(t), t ∈ [0, 1]} at some unknown time point. Specifically, we consider the

model

logit[P (Y = 1|X)] = α + βX(θ), (1)

and focus on the time point θ ∈ [0, 1] as the target parameter of interest. The intercept

α and the slope β are scalars, and logit(u) = log(u/(1 − u)). The trajectory of X

is assumed to be observed over a regular grid of time points, with a sufficiently high

resolution that for statistical purposes we can assume that it is observed continuously.

We call this a point-impact model, because it only involves the value of X at θ,

which represents a “sensitive” time point in terms of the relationship to the response.

Generalized linear models (McCullagh and Nelder 1989) can be treated in a similar

manner.

A motivation for using such a model arises from an fMRI experiment designed to

explore differences between individuals based on anxiety levels, see Lindquist et al.

(2007). Subjects in the experiment are classified as either resilient (Y = 1) or non-

resilient (Y = 0) according to a written test. Each of the 25 subjects (13 resilient and

12 non-resilient) performed a 7-minute anxiety-provoking speech preparation task (see
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Figure 1) during which a series of 215 fMRI images were acquired. The design was an

off-on-off design, with an anxiety-provoking period occurring between lower-anxiety

resting periods. The fMRI signal X(t) from the ventromedial prefrontal cortex, a

region known to be related to anxiety, is shown in Figure 2. It is of interest to furnish

a time interval that most clearly distinguishes between resilient and non-resilient

individuals. How can we find such a time interval? We propose the model (1) as a

natural way of approaching this problem, and in Section 2 we develop a confidence

interval for the time parameter θ.

The key idea behind our approach is to exploit sample path properties of the

trajectories, which appear from inspection of Figure 2 to be locally similar to those of

Brownian motion. Our results are developed for trajectories that are “Brownian-like”

in the sense that X(θ0 + t) − X(θ0) is a standard two-sided Brownian motion as a

process in t over some neighborhood of zero, where θ0 is the true value of θ.

Logistic regression plays an important role in case-control studies (Prentice and

Pyke 1979), in which the sampling is retrospective, and our model involving Brownian-

like trajectories is naturally relevant in that setting as well. A particular example

arises from gene expression data, with the “time” variable corresponding to location

along a chromosome. Figure 3 shows log gene expression levels from the breast tis-

sue of 10 breast cancer patients (from a sample of 40 cases) and 6 normal subjects

(controls), along a sequence of 776 loci from Chromosome 1, and 518 loci from Chro-
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Speech topic instruction Speech preparation “No speech” instruction

Fixation baseline Fixation baseline

Figure 1: A schematic of the experimental task design for the fMRI study, from
Lindquist et al. (2007). Subjects were informed that they were to be given 2 minutes
to prepare a 7-minute speech, whose topic would be revealed to them during scanning.
After the start of fMRI acquisition, there was 2 minutes of resting baseline. At the end
of this period, subjects viewed an instruction slide for 15 seconds that described the
speech topic. After 2 min of silent preparation, another instruction screen appeared
for 15 seconds that informed subjects that they would not have to give the speech.
An additional 2-min period of resting baseline followed to complete the functional
run. Images were acquired every 2 seconds throughout the course of the run.
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Figure 2: The fMRI signal over the ventromedial prefrontal cortex in reaction to an
anxiety-provoking task for resilient (left) and non-resilient (right) subjects. The black
line at the bottom of each plot indicates a 95% confidence interval for θ.

mosome 17. The latter chromosome contains the best known breast cancer gene, the

tumor suppressor BRCA1, but loci in this gene are not included; the complete data

set is described in Richardson et al. (2006). Our approach can provide a framework for

determining important genetic loci for discriminating between breast cancer patients

and normal subjects.
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Figure 3: Log gene expression levels for 10 breast cancer cases (left column) and 6
normal controls (right column) at 776 loci along Chromosome 1 (top row), and 518
loci along Chromosome 17 (bottom row). The black line at the bottom of each plot
indicates a 95% confidence interval for θ.

A complementary approach to what we propose is functional regression modeling,

which has been extensively developed in the functional data analysis literature (see,

e.g., Ramsay and Silverman 2006; James and Silverman 2005). However, estimates

of the regression function in such models may be difficult to interpret. Variable se-

lection techniques for increasing interpretability by eliminating “unnatural wiggles”

in the estimates have recently been introduced for functional linear models (James,

Wang and Zhu 2009). Our approach, in contrast, is based on finding interpretable

time points that influence the response. In some applications there are scientific rea-

sons to believe that there are only a small number of sensitive time points, and these
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cannot be captured by the integral used in functional regression. An example of

such point-impact causality arises with fMRI data in which shifts in the onset time

of brain activation have been observed across different age cohorts, see D’Esposito,

Deouell and Gazzaley (2003). In these situations, functional regression will be mis-

leading, whereas our approach specifically detects such shifts. Our simulation studies

and real data examples (in Sections 3 and 4) confirm this. For both the fMRI and

gene-expression examples, our model gives results that are both sensible and inter-

pretable in the context of application, whereas the functional estimates are difficult

to interpret. There is a clear distinction between the roles of the two approaches: if

the influence of the trajectories is spread over the time course or the aim is prediction

(or classification), then functional logistic regression is suitable, but if the influence

is concentrated at sensitive time points and interpretation is the overriding concern,

then our approach is more suitable.

Another important area of application arises in genome-wide studies involving the

expression of multiple genes, when more than one location is expected to influence

the response. Then it is of interest to expand the point-impact model (1) to allow

multiple sensitive time points, as in

logit[P (Y = 1|X)] = α +

p∑
j=1

βjX(θj), (2)

where 0 < θ1 < . . . < θp < 1 and p is a (known) upper bound on the number of

locations. When the βj correspond to values of a continuous function restricted to a
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fine grid, this approximates the functional logistic regression model discussed above.

When the number of non-zero components βj (i.e., the number of point-impacts) is

known to be small, but p is large, a lasso-type penalty can be used to regularize the

problem and provide a sparse collection of the θj. The confidence interval developed

in Section 2 naturally extends to this setting, but for ease of presentation we restrict

attention to a single sensitive time point.

2 ESTIMATION OF SENSITIVE TIME POINTS

In this section we introduce estimators for sensitive time points, and derive the asymp-

totic distribution, for three separate cases. We begin with logistic regression for both

prospective and retrospective sampling, and continue by extending the theory to gen-

eralized linear models. The last part of the section develops confidence intervals.

2.1 Prospective sampling

In this case the data consist of a random sample of n observations from the joint

distribution of X and Y , and the maximum likelihood estimator of the parameters in

(1) is given by

(θ̂n, α̂n, β̂n) = argmaxθ,α,βMn(θ, α, β), (3)
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where the log-likelihood function is Mn(θ, α, β) = Pn[mθ,α,β],

mθ,α,β(X, Y ) = Y [α + βX(θ)]− log[1 + exp(α + βX(θ))], (4)

and Pn is the empirical distribution of the data on (X, Y ).

The large sample distribution of θ̂n is given by the following result in which θ0

denotes the true value of θ.

Theorem 2.1 If X(θ0 + t) −X(θ0) is a standard two-sided Brownian motion (as a

process in t for 0 ≤ θ0 + t ≤ 1) that is independent of X(θ0), 0 < θ0 < 1 and β 6= 0,

then

n(θ̂n − θ0)→d λ
−1 argmaxt∈R(B(t)− |t|/2),

where B is a standard two-sided Brownian motion and λ = β2E[Var(Y |X)].

The main assumption of the theorem (that the increment of X about θ0 is a

two-sided Brownian motion, independent of X(θ0)) can be relaxed to the extent that

it is only needed locally, in a neighborhood of θ0. A standard Brownian motion

X approximately satisfies this property in a small neighborhood of θ0, because the

behavior of the increment of X around θ0 is only slightly affected by the constraint

X(0) = 0 when θ0 is far enough from 0.

Another way in which the conditions of the theorem can be relaxed is that the

infinitesimal variance of the two-sided Brownian motion does not need to be 1 (as with

standard Brownian motion), but can take an arbitrary value v > 0. The estimated
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quadratic variation v̂i of the ith trajectory Xi(t) should be used to normalize the

sample paths prior to analysis by replacing Xi(t) by Xi(t)/
√
v̂i. In some cases, it may

also be suitable to calibrate the mean of each trajectory as is discussed in connection

with the analysis of the fMRI data in Section 4.

The rate of convergence of θ̂n is controlled by the Hurst exponent of the trajecto-

ries, H, which for Brownian motion is H = 0.5. The Hurst exponent can be estimated

(Beran 1994; Embrechts and Maejima 2002) and, if found to deviate significantly from

0.5, either moving averages or differences could be applied before fitting the model (to

bring the trajectories into accordance with the assumption involving Brownian incre-

ments). If such manipulation of the data is thought to be unappealing, an alternative

would be to extend our approach to the case that the increments of X are locally

two-sided fractional Brownian motion with 0 < H ≤ 1. The convergence rate then

becomes n1/(2H) and, given sufficient resolution in the data, H could be estimated

locally (in the neighborhood of θ̂n), leading to the construction of confidence inter-

vals for θ0. This extension would greatly relax the relatively restrictive assumption

of Theorem 2.1, but would come at the cost of a more complex limiting distribution.

Another alternative would be to use a model-based bootstrap (as described in Section

3), which does not require the assumption of Brownian behavior and could be applied

to the original trajectories without pre-smoothing.

A referee raised the question of how to test the adequacy of the Brownian mo-
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tion assumption. A simple procedure would be to consider increments of X over a

succession of small time intervals and test whether they are uncorrelated. The mul-

tiple testing problem caused by the large number of increments can be handled by

adapting a bootstrap approach developed for high-throughput gene expression assays

in which it is of interest to find sets of genes that have correlated expression profiles,

see Dudoit and van der Laan (2008, p. 360).

2.2 Retrospective sampling

In case-control studies, the predictors are sampled retrospectively for a sample of cases

and a sample of controls. That is, we have a sample from the conditional distribution

of X given Y = 1, and an independent sample from the conditional distribution of X

given Y = 0. This gives a combined sample of size n = n0 + n1, where n1, n0 are the

sizes of the two samples.

Under the logistic regression model, the density of X(θ0) for cases can be expressed

using Bayes formula in the form exp(ᾱ+βx)h(x), where h(x) is the density ofX(θ0) for

controls (Prentice and Pyke 1979). Here ᾱ = α+log{(1−π)/π}, where π = P (Y = 1)

is the prevalence of cases in the population. Adapting the approach of Qin and Zhang

(1997) to the present setting then leads to estimates (as in (3)) based on the following

semiparametric profile log-likelihood function:

Mn(θ, ᾱ, β) = ρP1
n[ᾱ + βX(θ)]− (P0

n + ρP1
n) log[1 + ρ exp(ᾱ + βX(θ))],
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where P0
n and P1

n are the empirical distributions of the control and case samples,

respectively, and ρ = n1/n0 is assumed to remain fixed as n→∞. The estimates of

(ᾱ, β) for fixed θ based on this log-likelihood are identical to those of Prentice and

Pyke (1979). The following result gives the large sample behavior of θ̂n.

Theorem 2.2 If the assumptions of Theorem 2.1 hold for both cases and controls,

then

n(θ̂n − θ0)→d λ̄
−1 argmaxt∈R(B(t)− |t|/2),

where B is a standard two-sided Brownian motion and λ̄ is defined in the proof.

In contrast to the well-known result of Prentice and Pyke (1979) showing that

the limit distribution of the estimator of (ᾱ, β) is the same as if the data had been

obtained via prospective sampling, the above result shows that θ̂n has a different limit

distribution; although it is of the same form as in the prospective case, the nuisance

parameter is different (λ̄ 6= λ). Under both prospective and retrospective sampling,

α̂n and β̂n converge at
√
n-rate, are asymptotically normal (with the same limit as

though θ0 is known) and asymptotically independent of θ̂n.

2.3 Generalized linear models

In this section we show how the approach of Section 2.1 can be extended to generalized

linear models (McCullagh and Nelder 1989). We now model the conditional density
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of a scalar response Y given X by a canonical exponential family

p(y|X) = exp([X(θ)y − b(X(θ))]/a(φ) + r(y, φ)),

for some known functions a(·), b(·) and r(·, ·). Here φ is a dispersion parameter,

and p(·|X) is a density with respect to some given Borel measure. The cumulant

function b is assumed to be twice continuously differentiable and b′ strictly increasing.

In linear regression, φ is the variance of the random error, whereas in logistic and

Poisson regression there is no dispersion parameter. Previously we used the more

general expression α+βX(θ) in place of X(θ), but since α, β and φ can be estimated

separately after estimation of θ, to keep the notation simple, we now treat θ as the

only unknown parameter.

The log-likelihood Mn(θ) = Pn[mθ] is now based on mθ(X, Y ) = Y X(θ)−b(X(θ)).

As outlined in the Appendix, the limiting behavior of the corresponding maximum

likelihood estimator θ̂n is the same as that in Theorem 2.1, given the same assumptions

on X, except that the nuisance parameter λ is given by the ratio of the expected

curvature of the cumulant function at X(θ0) and a(φ):

λ = Eb′′(X(θ0))/a(φ) = E[Var(Y |X)]/a(φ)2.
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2.4 Confidence intervals

Based on the above results, a Wald-type confidence interval for θ0 having 100(1−γ)%

nominal coverage is given by

θ̂n ± (λ̂n)−1Zγ/2, (5)

where Zγ is the upper γ-quantile of argmaxt∈R(B(t) − |t|/2). Here λ̂ is a consistent

estimate of λ for prospective sampling, or of λ̄ for logistic regression with retrospective

sampling. Such an estimator λ̂ is obtained by putting empirical distributions in place

of expectations and plugging-in estimates of the relevant parameters α, ᾱ, β, and θ

in λ or λ̄.

A result of Bhattacharya and Brockwell (1976) shows that the distribution func-

tion F of argmaxt∈R(B(t)− |t|/2) can be expressed in terms of the standard normal

distribution function Φ as follows:

F (x) = 1/2 +
√
xe−x/8/

√
2π + 3exΦ(−3

√
x/2)/2− (x+ 5)Φ(−

√
x/2)/2,

for x ≥ 0. This distribution arises frequently in change-point problems under “con-

tiguous asymptotics” (Yao 1987; Stryhn 1996; Müller and Song 1997). The above

expression allows for the efficient computation of the upper-quantiles of F , and gives

Z.05 = 7.687, Z.025 = 11.033, and Z.005 = 19.767.

For logistic regression with prospective sampling, we can write λ = β2E[A/(A +

1)2], where A = exp[−(α + βX(θ0))]. When α and β are relatively small, λ is
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approximately β2/4. Then, using the expression for the variance of F given in Stryhn

(1996), the standard error of θ̂n is seen to be roughly 5/(nβ2). Fig. 4 shows plots

(obtained via Monte Carlo) that describe the behavior of λ in the special case that

X(θ0) ∼ N(0, σ2), for varying values of α, β and σ2.

The plots indicate that the parameter β has the largest impact on the value of λ.

For fixed values of α and σ2, λ increases with the absolute value of β. For large values

of β, the increase is roughly linear. In the neighborhood of 0, λ is approximately

equal to β2/4. Hence for small values of β the value of λ approaches 0, leading to a

substantial widening of the confidence interval for θ0. This is natural, as a value of

β close to zero implies that none of the time points have a major influence on the

response and the widened confidence interval reflects this fact. Similar comments can

be made in the case of retrospective sampling.
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Figure 4: Plots of the value of the nuisance parameter λ as a function of the variance
of X(θ0) with α = 0 and β = 1 (left), as a function of α with σ2 = 0.5 and β = 1
(center), and as a function of β with α = 0 and σ2 = 0.5 (right).
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3 SIMULATION STUDIES

In this section we report the results of five simulation studies that use standard Brow-

nian motion to define the functional predictor. We restrict attention to prospective

sampling, but the results are similar for retrospective sampling. The first simulation

illustrates the behavior of the estimators of α, β, and θ0 in repeated application of

the method. The second simulation studies the coverage probabilities of the proposed

confidence interval for θ0, and compares it with model-based bootstrap confidence in-

tervals. The third and fourth simulations are designed to explore the relationships

between the point-impact (PI) model (1), the lasso, and the commonly-used func-

tional logistic regression model

logit[P (Y = 1|X)] = α +

∫ 1

0

X(t)β(t) dt, (6)

where the regression function β(t) is treated non-parametrically; in the sequel we

refer to (6) as the functional-impact (FI) model. The last simulation example studies

the coverage probabilities of the confidence interval for β in the PI model.

To fit the FI model, we use the S-PLUS 7.0 function fGLM in the functionalData

library, with a B-spline basis of order 4 (piecewise cubic); the uniform grid of obser-

vation times provides the knots, and the roughness penalty for β(t) is taken as the

L2-norm of its second derivative, with the smoothing parameter selected by leave-

one-out cross-validation; no smoothing is used in the initial step of representing the
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trajectories in terms of the B-spline basis. For the lasso, we use the fast and efficient

coordinate descent algorithm implemented in the R package glmnet (Friedman, Hastie

and Tibshirani 2008) to calculate the lasso path diagram, in which the estimates of

βj in (2) are plotted against the magnitude of the constraint on their `1-norm.

Simulation I: The data are generated from the PI model with α = 0, β = 3, θ0 = 0.5

and n = 40. We restrict θ to a uniform grid of 101 points in the interval [0, 1], and the

Brownian predictors were generated over this grid using the R function fbmSim from

the fSeries package. The deviance (−2 log-likelihood) is calculated along the grid,

with α and β successively replaced by their estimates corresponding to each value

of θ; the grid point minimizing the deviance is then taken as the estimate θ̂n. The

results displayed in Figure 5 highlight the faster rate of convergence for θ̂n compared

with α̂n and β̂n.

nθ̂ nα̂ nβ̂
0 0.2 0.4 0.6 0.8 1.0 -2 -1 0 1 2 -2 0 2 4 6 108

Figure 5: Simulation I: histograms of estimates of θ̂n (left), α̂n (center) and β̂n (right)
from 10,000 replications.

Simulation II: We next repeated Simulation I using a variety of choices for α, β and n,
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while the value of θ0 was fixed as 0.5. For each combination, we calculated 100(1−γ)%

confidence intervals according to (5), and determined the coverage probability based

on 10,000 replications; the results are given in Table 1. At small sample sizes (e.g.

n = 40), the coverage probabilities are somewhat less than their nominal values.

Accuracy naturally improves with larger sample sizes and as β increases. Table

2 gives corresponding results for the model-based bootstrap in which the fitted PI

model is used to create bootstrap samples of the response; the coverage probabilities

now fall on the conservative side, but have a similar pattern of accuracy.

γ = 0.90 γ = 0.95 γ = 0.99
n α β = 3 β = 6 β = 3 β = 6 β = 3 β = 6
40 0 0.868 0.847 0.920 0.911 0.980 0.969

1 0.858 0.850 0.912 0.914 0.980 0.968
80 0 0.879 0.902 0.928 0.935 0.979 0.982

1 0.884 0.897 0.928 0.954 0.980 0.984

Table 1: Simulation II: coverage probabilities of the proposed confidence intervals for
θ0 having nominal coverage .90, .95 and .99.

γ = 0.90 γ = 0.95 γ = 0.99
n α β = 3 β = 6 β = 3 β = 6 β = 3 β = 6
40 0 0.977 0.923 0.988 0.968 1.000 0.999

1 0.971 0.938 0.994 0.974 0.997 0.993
80 0 0.949 0.942 0.982 0.971 0.998 0.993

1 0.956 0.912 0.984 0.952 1.000 0.996

Table 2: Simulation II: coverage probabilities of (percentile) bootstrap confidence
intervals for θ0 having nominal coverage .90, .95 and .99, based on 1000 replications
and 1000 bootstrap samples.

Simulation III: A single sample was generated from the PI model in Simulation I with
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n = 40. Figure 6 shows the results of fitting the PI and FI models along with the

lasso path diagram. The 95% confidence interval for θ0 is 0.5±0.071, very accurate as

expected. The deviance plotted at each possible value of θ on the grid of time points

has a remarkably sharp global minimum at θ0. The estimate of β(t) achieves its

maximum at θ0, but gives the misleading impression that the effect of the predictor is

spread out over much of the time course, rather than being concentrated at θ0; this is

not surprising perhaps, because cross-validation is a prediction error rate criterion, so

the smoothing causes the estimate to use as much of the information along the time

course as possible. The lasso performs well, immediately picking out θ0, as indicated

by the arrow in the path diagram (last panel).
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Figure 6: Simulation III: deviance calculated as a function of θ; the 95% confidence
interval for θ0 is depicted by the solid line at the bottom of the plot (first panel). The
estimated β(t) using the FI model with cross-validated roughness penalty (second
panel); in each panel the vertical line indicates the location of θ0. In the lasso path
diagram (third panel), the arrow indicates the path corresponding to the grid point
indicated to its right.

Simulation IV: Now consider the FI model for the spike-shaped regression functions

displayed in the first column of Figure 7. In each case, the estimate θ̂n (n = 40)
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coincides with one of the initial selections of the lasso, and both are either identical

or close to the point t = 0.5 at which β(t) achieves its maximum. The 95% confidence

intervals based on θ̂n are 0.5 ± 0.034 and 0.54 ± 0.042 for the narrower and wider

spikes, respectively. The estimates based on the FI model, even though it is correctly

specified, wrongly suggest that the influence of the predictor is substantial over the

whole time course. The estimates of β(t) have maxima located close to t = 0.5, the

location of the spikes, but have no other features in common with β(t).

Attempts at using a higher-order derivative penalty for estimating β(t) produced

similar results to Figure 7. Features of β(t) might conceivably be captured more

accurately using wavelet bases and thresholding, but we have restricted attention to

the most commonly-used approach to functional regression.

Simulation V: Data were generated in the same way as in Simulation II, except

X(t) = B(t+θ0)−B(θ0) where B is two-sided Brownian motion; θ0 = 0.5 and X(θ0) ∼

N(0, 0.5). Confidence intervals for β are based on the
√
n-rate asymptotic normality

of β̂n. The results reported in Table 3 show that these confidence intervals have

accurate coverage, except when β = 0, in which case there is severe undercoverage.

The case β = 0, while important for testing whether there is any effect of X, is,

however, outside the scope of our results. There is an implicit simultaneous inference

problem caused by minimizing the deviance over θ that appears when β = 0, but not

otherwise. The reason simultaneous inference is not an issue when β 6= 0 is that θ̂n
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Figure 7: Simulation IV: the regression function β(t) is taken as two separate Gaussian
pdfs centered at t = 0.5 (first column). The deviance as a function of θ and the 95%
confidence interval based on θ̂n (second column). The estimated β(t) with cross-
validated roughness penalty (third column); the vertical line indicates the time point
at which β(t) achieves its maximum. The lasso path diagram (fourth column) is
labelled as before.

converges at a much faster rate than β̂n and thus the inference for β is concentrated in

a very small neighborhood of θ0 and hypothesis testing is not needed over the whole

range of θ.

4 APPLICATIONS

In this section we illustrate our approach by applying it to two real data sets. The

first data set comes from the fMRI study described in the Introduction. As it is only

the relative change in signal that is important, the individual mean over the first
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γ = 0.90 γ = 0.95 γ = 0.99
n α β = 0 β = 3 β = 6 β = 0 β = 3 β = 6 β = 0 β = 3 β = 6
40 0 0.468 0.860 0.931 0.701 0.920 0.954 0.954 0.958 0.982

1 0.487 0.865 0.943 0.720 0.928 0.967 0.964 0.960 0.980
80 0 0.477 0.879 0.898 0.695 0.935 0.953 0.935 0.974 0.982

1 0.474 0.868 0.900 0.684 0.925 0.951 0.928 0.961 0.987

Table 3: Simulation V: coverage probabilities of confidence intervals for β having
nominal coverage .90, .95 and .99.

resting period has been removed from the entire time course for calibration purposes.

In addition, each trajectory has been normalized by the square root of its estimated

quadratic variation. Finally, each trajectory was smoothed with a moving average

window of width 3 time units. The width was chosen to given an estimated Hurst

exponent of approximately 0.5 (corresponding to Brownian motion). The resulting

trajectories are displayed in Figure 2. The trajectories of the 13 resilient subjects

remain stable over the whole time course, but the non-resilient trajectories show a

clear increase around the time of the anxiety-provoking task.

Figure 8 shows the results. The sensitive time point obtained using the proposed

model corresponds to the 84th time point, which is 28 seconds into the anxiety-

provoking period of the task. Inspecting the trajectories for subjects in the non-

resilient group shown in Figure 2, it appears that this time point coincides with peak

activity in the ventromedial prefrontal cortex. The 95% confidence interval for θ0 is

84± 5.4, as superimposed onto the bottom portion of the left panel of Figure 8. The

95% confidence interval for the regression parameter β is −14.9± 13.5.
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The FI model-based estimate of β(t) has a local extremum just after the start of

the anxiety-provoking period, but the influence of the predictor appears to be spread

out over most of the time course, even though the anxiety-provoking period does not

start immediately. The lasso first selects 87, then quickly adds 84 (the PI selection),

but is slow to add any further points (and these are widely dispersed over the time

course), suggesting that the PI model provides an adequate fit to the data.
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Figure 8: Results for the fMRI data. The deviance as a function of θ; the 95%
confidence interval for θ0 is depicted by a solid line along the bottom of the plot
(first panel). The estimate of the regression function β(t) in the functional logistic
regression model with cross-validated roughness penalty (second panel); the vertical
line indicates the location of θ̂n. The lasso path diagram (third panel) is labelled as
before.

Next we consider the case-control study involving breast cancer patients, as de-

scribed in the Introduction. For Chromosome 1, prior to analysis we took the natural

logarithm of the gene expression level and smoothed each of the resulting trajecto-

ries with a moving average window of width 17. The top row of Figure 3 shows the

trajectories of a subsample of the transformed data with breast cancer patients and

normal subjects separated. Results of the analysis are shown in the top row of Figure
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9. The 95% confidence interval for θ0 is 260± 27.8, and for β is 9.0± 8.0. The largest

peak in the estimate of β(t) again closely matches the estimate of θ0. The lasso path

diagram confirms the PI selection of 260, but suggests that several more loci may be

involved as well.
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Figure 9: Results for the gene expression data. Chromosome 1 (top row), Chromo-
some 17 (bottom row). The deviance calculated as a function of θ (first column); 95%
confidence intervals for θ0 are depicted by solid horizontal lines along the bottom of
each plot. The estimate of β(t) in functional logistic regression with cross-validated
roughness penalty (second column); the vertical lines indicate the location of θ̂n. The
lasso path diagrams (third column) are labelled as before.

For Chromosome 17, the data were handled similarly, except that a window of

width 11 was used in the smoothing step. The results are shown in the bottom row

of Figure 9. The 95% confidence interval for θ0 is 76± 16.7, and for β is 10.9 ± 9.6.

The lasso path diagram, and the presence of multiple-peaks in the estimate of β(t),
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now suggest that numerous loci (beyond the PI selection) are involved.

5 DISCUSSION

In this paper we have developed a point-impact logistic regression model for use with

“Brownian-like” predictors. It is expected that the approach will be useful when there

are one or more sensitive time points at which the trajectory has a strong effect on

the response. We have derived the rate of convergence, as well as the explicit limiting

distribution of estimators of such time parameters in prospective and retrospective

(case-control) settings. These results were used to construct Wald-type confidence

intervals.

Our approach is complementary to standard functional logistic regression which,

although well adapted to classification (prediction) problems, tends to over-smooth

the estimate of the regression function when there are localized effects; this is due

to the roughness penalty and the cross-validated choice of smoothing parameter. In

contrast, our approach allows the estimation of point impact effects that would not be

seen otherwise. It also enhances the interpretation of the lasso path diagram by pro-

viding confidence intervals around sensitive time points selected by lasso. In contrast

to the lasso, however, our approach is not designed to search for a sparse collection of

sensitive time points because it only applies when X is known to have some effect on

the response, i.e. β 6= 0; the implicit multiple testing problem concerning β is avoided
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in our case because of the fast rate of convergence of θ̂n.

To increase the flexibility of our approach, it would be of interest to avoid the need

for pre-smoothing the trajectories by extending our results to fractional Brownian

motion locally in the neighborhood of θ0, as discussed in Section 2.1. Instead of

Wald-type confidence intervals, however, it would be preferable in this case to pursue

a model-based bootstrap approach, as the rate of convergence of θ̂n depends on the

Hurst exponent, which is unlikely to be known in practice.

Going beyond the point-impact model, it would also be interesting to allow for the

estimation of sensitive domains in the time course, rather than sensitive time points.

In this situation, we would use

logit[P (Y = 1|X)] = α +

p∑
j=1

∫ rj

lj

βj(t) dX(t),

where βj(t) is a nonparametric regression function with support on [lj, rj], where

lj < rj are parameters. If the time intervals [lj, rj] are small, or the βj(t) are relatively

constant, then this model essentially reduces to (2). Otherwise, this model is not

covered by our approach and would require a separate development.

APPENDIX: Proofs

The proofs are based on the theory of M-estimation (see van der Vaart and Wellner

1996, Chapter 3.2) and involve establishing: a) the rate of convergence, b) the weak
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convergence of a suitably localized version of the empirical criterion function Mn, and

c) applying the argmax continuous mapping theorem.

It can be shown that θ̂n is asymptotically independent of α̂n and β̂n, which con-

verge at
√
n-rate, and its limiting distribution is the same as though α and β are

known; the proof of this involves mixed rates asymptotics (cf. Radchenko 2008) and

similar results arise in change-point problems, see for example Koul et al. (2003).

From now on we fix α and β, and treat the log-likelihood function as a function of

just θ. We start with the proof of Theorem 2.1 and then explain what modifications

are needed in the other two settings.

Rate of convergence. The first step is to identify a non-negative function d(·, θ0)

on the parameter space so that the criterion function M(θ) = E[mθ] satisfies

M(θ)−M(θ0) . −d2(θ, θ0) (7)

for all θ ∈ [0, 1], where . means “is bounded above up to a universal constant.”

Recall that in maximum likelihood estimation, the expected log-likelihood M is

usually twice-differentiable, M′(θ0) = 0 and the Fisher information −M′′(θ0) > 0, so

a Taylor expansion shows that M is approximately parabolic in the neighborhood of

θ0, and the best choice for d is the usual Euclidean distance. In the present setting,

however, the Brownian-like trajectories X are not smooth enough to ensure that M

is differentiable.
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Using the model (1) to find the expectation of the first term in mθ, we have

M(θ)−M(θ0) = E

(
β[X(θ)−X(θ0)]e

α+βX(θ0)

1 + eα+βX(θ0)

)
− E log

(
1 + eα+βX(θ)

1 + eα+βX(θ0)

)
.

The first term above vanishes by the assumption that the increments of X about θ0

are independent of X(θ0), leading to

M(θ)−M(θ0) = −E log

(
A+ eβσZ

A+ 1

)
≡ −g(σ),

for σ =
√
|θ − θ0| ≥ 0, where Z ∼ N(0, 1) and A = exp[−(α+ βX(θ0))] are indepen-

dent. Note that g is twice continuously differentiable with g(0) = 0,

g′(σ) = E

(
βZeβσZ

A+ eβσZ

)
≥ 0, g′′(σ) = E

(
Aβ2Z2eβσZ

(A+ eβσZ)2

)
> 0 (8)

for σ ≥ 0. It follows that g(σ) & σ2 for σ ∈ [0, 1], and (7) holds with the Hölder

metric

d(θ, θ0) =
√
|θ − θ0|. (9)

We will apply the following special case of a result of van der Vaart and Wellner

(1996, Theorem 3.2.5), giving a lower bound on the rate of convergence of the M-

estimator θ̂n in terms of the continuity modulus wn(δ) = supd(θ,θ0)<δ |Gn(mθ −mθ0)|,

where Gn =
√
n(Pn − P ) is the empirical process. In this result, outer expectation

E∗ and outer probability P ∗ are used to avoid measurability problems.

Proposition 5.1 Suppose that (7) holds, and E∗[wn(δ)] . δα for every δ > 0, where

0 < α < 2. Then n1/(4−2α)d(θ̂n, θ0) = O∗p(1).
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Note that α = 1 gives the usual n1/2-rate with respect to the metric d. The

moment condition above can be checked using an inequality from empirical process

theory:

E∗[wn(δ)] . J[ ](1,Mδ, L
2(P )){EM2

δ }1/2, (10)

where J[ ](1,Mδ, L
2(P )) is the bracketing entropy integral of the class of functions

Mδ = {mθ −mθ0 : d(θ, θ0) < δ} and Mδ is an envelope function for Mδ, cf. van der

Vaart and Wellner (1996, p. 291).

The following lemma shows that mθ is “Lipschitz in parameter” and consequently

that J[ ](1,Mδ, L
2(P )) < ∞ for all δ > 0, see van der Vaart and Wellner (1996), p.

294.

Lemma 5.1 Under the conditions of Theorem 2.1, if 0 < α < 1/2, there is a random

variable L with finite second moment such that

|mθ1 −mθ2 | ≤ L|θ1 − θ2|α (11)

for all θ1, θ2 ∈ [0, 1] almost surely.

Proof. Two-sided Brownian motion B has trajectories that are Lipschitz of any

order α < 1/2, in the sense that

|B(t)−B(s)| ≤ K|t− s|α ∀ t, s ∈ [−1, 1] (12)

almost surely, where K has moments of all orders; this is a consequence of the proof

of Kolmogorov’s continuity theorem, see Theorem 2.2 of Revuz and Yor (2006). With
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mθ given by (4), and writing B(t) = X(θ0 +t)−X(θ0), which is a two-sided Brownian

motion by hypothesis,

|mθ1 −mθ2 | ≤ 2|β||X(θ1)−X(θ2)|

= 2|β||B(θ1 − θ0)−B(θ2 − θ0)| ≤ 2K|β||θ1 − θ2|α, (13)

where the first inequality uses the fact that the derivative of x 7→ log(1 + ex) is

bounded between 0 and 1. We can then take L = 2K|β|. 2

From the above lemma, Proposition 5.1 and (10) we see that the rate of con-

vergence is controlled solely by the L2-norm of the envelope function Mδ, which

we now evaluate. First we bound the second moment of the continuity modulus

Fδ = sup|θ−θ0|<δ |mθ −mθ0|. Using the first inequality in (13), we have

EF 2
δ ≤ 4|β|E sup

|θ−θ0|<δ
|X(θ)−X(θ0)|2 = 4|β|E sup

|t|<δ
|B(t)|2 . δ, (14)

where the last step uses Doob’s inequality. In view of (9), the envelope function is

Mδ = Fδ2 , and we find {EM2
δ }1/2 . δ2, which translates to rate rn = n with respect

to the usual Euclidean distance. Having determined the rates of convergence, the

next step is to identify the limit distribution in each case by localizing the criterion

function.

Localizing the criterion function. Given the rate of convergence rn, write rn(θ̂n−

θ0) = ĥn = argmaxh∈RM̃n(h), where

M̃n(h) = sn[Mn(θ0 + h/rn)−Mn(θ0)], h ∈ R. (15)
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We need to show that there exists an appropriate scaling sn such that M̃n converges

weakly to a non-degenerate limit process M̃ in the space Bloc(R) of locally bounded

functions on R equipped with the topology of uniform convergence on compacta.

Then the argmax continuous mapping theorem, applicable since ĥn = O∗p(1), implies

that ĥn converges in distribution to the (unique) maximizer of M̃.

Setting sn = rn = n and centering Mn by its mean gives

M̃n(h) = n(Pn − P )(mθ0+h/n −mθ0) + nP (mθ0+h/n −mθ0)

= βGn[Y Zn(h)]−
√
nGn log

[
A+ eβZn(h)/

√
n

A+ 1

]
− ng

(√
|h|/n

)
, (16)

where Zn(h) ≡
√
n[X(θ0 + h/n) − X(θ0)]. Using the hypothesis of the theorem,

Zn(h) =d

√
nB(h/n) =d B(h) as processes, where the last step follows from the self-

similarity property of two-sided Brownian motion. It follows that the second term in

(16) (without the minus sign) can be written

√
nGn log

[
1 +

eβZn(h)/
√
n − 1

A+ 1

]
= βGn[Zn(h)/(A+ 1)] + op(1),

where we have used log(1 + x) = x + O(x2) and ex = 1 + x + O(x2) as x → 0. The

difference between the first term in (16) and first term in the above display is

βGnZn(h)[Y − 1/(A+ 1)] =d βB(h)

(
1

n

n∑
i=1

[Yi − 1/(Ai + 1)]2

)1/2

→d βcB(h),

where c2 = E[Var(Y |X)] and we have used the fact that (A, Y ) is independent of Zn.
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The third term in (16) (without the minus sign) tends to g′′(0)|h|/2. Noting that

E[Var(Y |X)] = E

[
1

(A+ 1)

(
1− 1

(A+ 1)

)]
= E

[
A

(A+ 1)2

]
= g′′(0)/β2

(the last step follows from (8)), we conclude that M̃n converges weakly to M̃ in

the space Bloc(R), where M̃(h) = βcB(h) − β2c2|h|/2. This completes the proof of

Theorem 2.1.

Proof of Theorem 2.2. The rate of convergence is again n, which can be seen using

essentially the same argument as before. Putting sn = rn = n1 in the case-control

version of the localized criterion function (15) gives, along the lines of (16),

M̃n(h) = βρG1
n[Zn1(h)]− ρ

√
n1G1

n log

[
A+ ρeβZn1 (h)/

√
n1

A+ ρ

]
− n1√

n0

G0
n log

[
A+ ρeβZn1 (h)/

√
n1

A+ ρ

]
(17)

−n1ρg1

(√
|h|/n1

)
− n1g0

(√
|h|/n1

)
,

where Gj
n =
√
nj(Pjn − Pj), j = 0, 1 are the empirical processes for the two samples

(n0 controls, n1 cases), and

gj(σ) = Pj log

(
A+ ρeβσZ

A+ ρ

)
.

Here Z ∼ N(0, 1) and A = exp[−[ᾱ + βX(θ0))] are independent under Pj by the

hypothesis of the theorem. Note the slightly different definition of A in the case-

control setting. Using similar steps to the previous proof, the combined first three
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terms in (17) are asymptotically equivalent to

βρG1
nZn1(h)[1− ρ/(A+ ρ)]− β√ρG0

nZn1(h)[ρ/(A+ ρ)]

=d βρB1(h)
{
P1
n[1− ρ/(A+ ρ)]2

}1/2 − β√ρB0(h)
{
P0
n[ρ/(A+ ρ)]2

}1/2

→d β
√
ρc1B(h),

where B0 and B1 are independent two-sided Brownian motions, and

c21 = ρP1[1− ρ/(A+ ρ)]2 + P0[ρ/(A+ ρ)]2.

Note that

n1gj

(√
|h|/n1

)
→ g′′j (0)|h|/2 = β2ρPj[A/(A+ ρ)2]|h|/2,

giving the limits of the last two terms in (17), so

M̃n(h)→d β
√
ρc1B(h)− β2ρc2|h|/2

where

c2 = (P0 + ρP1)[A/(A+ ρ)2].

We conclude that

n(θ̂n − θ0) = (1 + 1/ρ)n1(θ̂n − θ0)→d λ̄
−1 argmaxt∈R(B(t)− |t|/2),

where λ̄ = β2ρ2c22/[(1 + ρ)c21]. This completes the proof of Theorem 2.2.

Generalized linear models. To extend Theorem 2.1 to the GLM setting we make

use of two well-known formulae from the theory of canonical exponential families:
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E(Y |X) = b′(X(θ)) and Var(Y |X) = a(φ)b′′(X(θ)). From the first of these formulae,

the criterion function M(θ) = E[mθ] satisfies

M(θ)−M(θ0) = E[(X(θ)−X(θ0))b
′(X(θ0))]− E[b(X(θ))− b(X(θ0))].

The first expectation above vanishes using the hypothesis about X in the statement

of the theorem. The second expectation requires an extra argument beyond that

needed for the proof of Theorem 2.1. From Itô’s formula,

b(X(θ))− b(X(θ0)) =

∫ θ

θ0

b′(X(u)) dX(u) +
1

2

∫ θ

θ0

b′′(X(u)) du,

and, since the Itô integral above has zero expectation (under mild conditions to ensure

that it exists), we obtain

M(θ)−M(θ0) = −1

2

∫ σ2

0

Eb′′(
√
uZ +X(θ0)) du ≡ −g(σ),

where σ =
√
|θ − θ0| ≥ 0 and Z ∼ N(0, 1). Note that g(0) = g′(0) = 0 and g′′(0) =

Eb′′(X(θ0)) = c2/a(φ), where c2 = E[Var(Y |X)]. The remaining steps to obtain the

rate of convergence are similar to the logistic regression case, except that Lemma 5.1

and (14) need to be extended. This can be done under mild conditions, by using Itô’s

formula, applying Theorem 2.1 of Revuz and Yor (2006), and bounding the higher-

order moments of the Itô integral using the Burkholder–Davis–Gundy inequality.

For the last part of the proof, the localized criterion function (16) now decomposes

as

M̃n(h) = Gn[Y Zn(h)]−
√
nGn[b(X(θ0) + Zn(h)/

√
n)− b(X(θ0))]
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−ng
(√
|h|/n

)
= Gn[Zn(h)(Y − b′(X(θ0))]− g′′(0)|h|/2 + op(1)

→d cB(h)− c2|h|/(2a(φ)),

where the second line is based on a first-order Taylor expansion of b around X(θ0),

and a second-order expansion of g around 0, and the last line uses the independence

of Zn and (b′(X(θ0)), Y ).
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