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In functional magnetic resonance images there are typically two 
sources of blurring. The first due to the fact that only a finite subset of 
k-space is sampled, and the second due to the fact that it is common to 
spatially smooth the acquired data prior to performing statistical 
analysis. The truncation of k-space is mathematically equivalent to 
convolving the underlying “true” image with a sinc function, whose 
width is inversely related to the amount of truncation. An appropriately 
chosen spatial smoothing kernel can minimize the effects of truncation. 
However, if it is too narrow it will not be able to completely eliminate 
the side-lobes of the sinc function (Fig. 1). The smoothed images may 
then contain significant ringing artifacts which can lead to a decrease 
in signal-to-noise ratio and power in the resulting statistical tests.  

To control for truncation artifacts, we suggest the use of a prolate
spheroidal wave function (PSWF - Slepian et al, 1961; Landau et al, 
1961, 1962) filter. This is the function, with compact support on a fixed 
subset of k-space, which maximizes the signal over a certain 
predefined subset of image-space. The attractive features of the PSWF 
spatial smoothing filter are discussed and data from a visual task is 
used to illustrate its efficiency when applied to fMRI data.
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The Prolate Spheroidal Wave Function Filter
The prolate spheroidal wave function (PSWF) filter is the function, 

with compact support on a fixed set of k-space, which maximizes the 
signal over a certain predefined subset of image-space. Consider a 
convex ROI, B, in image-space and the k-space sampling region, A. 
The PSWF is the function g(k), that satisfies the following two criteria: 
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It takes the value 0 for points outside of A. 

Its inverse Fourier transform, G(x), has maximal signal 
concentration in B, i.e. the ratio
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is maximized over all possible functions for which criterion 
1) holds.
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Simulation study
To more closely study the issues involved with truncation artifacts 

we performed a simulation study, in which a circular region of radius 
22.5mm was placed in the center of a blank image with FOV 240mm
(Fig. 4a). Using the simple geometry of the image, theoretical k-space 
measurements were calculated corresponding to a 64x64 region of k-
space. The image was then reconstructed using the FFT (Fig. 3b) and 
Gaussian smoothing with 4 and 12mm FWHM was applied to the 
resulting images. (Figs. 4 c and d).  It should be noted that each of the 
images (a-e) are plotted on the log-scale to better illuminate the ringing 
artifacts. It is apparent that significant ringing artifacts exist in the 
reconstructed non-smoothed image. It is also clear that the filter with 
4mm FWHM was able to minimize, but not completely eliminate, these 
artifacts. However, the filter with 12mm FWHM successfully eliminated 
these artifacts, at the price of decreased spatial resolution.  Next, we 
applied a PSWF filter with the same spatial coverage as the Gaussian 
with 4mm FWHM and applied this to the data as well (Fig. 4e). It is 
clear that the PSWF was able to effectively control the ringing artifacts, 
while still maintaining a similar spatial resolution as the 4mm
Gaussian. Fig. 4f shows a cross-section through the center of each 
image to better illustrate the ringing effects apparent in the various 
images. In particular note the smooth behavior of the PSWF compared 
the 4mm Gaussian.

FIGURE 1. A boxcar function 
(top left) is multiplied with a 
Gaussian kernel (top right). The 
red line under the Gaussian 
shows the frequency extent of 
the boxcar compared to the 
Gaussian. After performing the 
inverse Fourier transform on 
the product, the result is 
equivalent to convolving the 
point spread function (center 
left) with a Gaussian kernel 
(center right). The results of this 
convolution are shown in the 
bottom row. 

FIGURE 4. (a) A circular region of radius 22.5mm is placed in an 
image with FOV 240mm and theoretical k-space measurements 
are calculated corresponding to a 64x64 region of k-space. (b) The 
image is then reconstructed and smoothed using a Gaussian filter
with FWHM equal to (c) 4 mm and (d) 12mm, as well as with a 
PSWF with spatial coverage equivalent to a 4mm Gaussian (e). 
The images (a-e) are plotted on the log-scale. (f) A cross-section 
through the center of each image (a-e) illustrates the ringing 
effects apparent in each case.

FIGURE 5.  Maps from a representative subject (number 5) 
showing significant voxels (p-value<0.005) for each of the three 
different levels of smoothing (See Table 1 for group analysis). Red 
represents voxels that are significant for both data that was 
smoothed using the PSWF and Gaussian filter. Blue indicates 
voxels that were significant for the PSWF data only and yellow 
voxels that were significant for the Gaussian data only. 

Direct application of a filter to the image is equivalent, by the 
Fourier convolution theorem, to applying a truncated (in k-space) 
version of the filter to the k-space data. We refer to effective smoothing
as the blurring in the image due to the combination of the applied filter 
and the truncation effects. The effective smoothing kernel will thus be 
the convolution of the applied filter and the sinc function that arises due 
to finite sampling (Fig. 1 – last row). We measured the effects of 
ringing when applying a Gaussian filter, with varying FWHM, directly to 
the image. If no truncation effects were present we would expect
99.7% of the mass to lie within ±3σ (or ± 1.274FWHM) of the center of 
the filter. It is clear from Fig. 2a that the proportion of the effective 
smoothing kernel that lies in this range is greatly affected for filters with 
FWHM less than 8 mm. Further, according to Fig. 2b, the FWHM of the 
effective smoothing kernel deviates from the applied FWHM. It is clear 
that for narrow filters (FWHM < 8 mm) this deviation becomes rather 
significant. For example, when the FOV is equal to 240 mm, a 
Gaussian filter with FWHM of 4 mm applied directly in image-space will 
have an effective FWHM of 5.35 mm when the effects of finite 
sampling are included 

These conditions ensure that g(k) is the function with compact support 
on A, which has the least amount of signal leakage outside of the 
region B. Thus, it is the function with optimal control over ringing 
artifacts. The filter is obtained by finding the largest eigenvector of the 
integral,

(2)
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12mm
PSWF       Gauss

8mm
PSWF      Gauss

4mm
PSWF       Gauss

Subject

TABLE 1. The total number of significant voxels (p-value<0.005) 
found in the visual cortex for data smoothed using both PSWF and
Gaussian kernels for three different levels of smoothing (4, 8 and 
12mm). The results are shown for each of the 9 subjects included 
in the experiment. The last row show p-values from a sign test for 
matched pairs, which tests whether there is a significant difference 
in the number of active voxels between the two smoothing 
methods. The null hypothesis of no difference is rejected for both 4 
and 8 mm smoothing. 

for k, k ' ∈ A.  For simple regions B (e.g. circles, squares, rectangles) 
there exist simple analytical expressions for KA,B. The corresponding 
largest eigenvalue, λ, is equal to the fraction of the total signal intensity 
in B calculated according to Eq. [1] and provides a quantitative 
measure of the signal leakage that the eigenvector gives rise to. 

In our implementation, A is chosen to correspond to the sampled 
region of k-space (Fig, 3) and B is chosen to be a circular region with 
diameter 1.274FWHM to ensure a kernel with similar spatial coverage 
properties as a Gaussian filter of a given FWHM. By directly applying 
g(k) to the k-space data and taking the inverse Fourier transform, the 
resulting image will represent the true image convolved with the
function G(x). 

Experiment
The experimental data consisted of a visual paradigm conducted on  

9 subjects.  Blocked alternation of 11 s of full-field contrast-reversing 
checkerboards (16 Hz) with 30 s of open-eye fixation baseline. Data 
collected on 3T GE scanner with spiral GRE (developed by Doug Noll), 
TR = 0.5 s, 410 images. For each subject a Gaussian filter with a 
FWHM of 4, 8 and 12mm was applied to a slice of data. Thereafter, 
three PSWF filters, with equivalent spatial coverage were applied to 
the same data set, giving a total of 6 series of smoothed images for 
each subject. Next a standard GLM analysis was performed on each
of the 54 data sets.

Table 1 shows the number of significant voxels (p-value<0.005) in 
the visual cortex for each subject, obtained using both types of filter for 
each of the three different levels of smoothing. The p-values in the last 
row show the results of a sign test for matched pairs. The null 
hypothesis of no difference in the number of active voxels is rejected 
(p-value < 0.05) for both 4 and 8mm smoothing. The increase in the 
number of active voxels for the data smoothed using the PSWF voxel
is due to the increased SNR in the data and is consistent with the 
theoretical results. Fig. 5 shows the results for a representative subject 
(# 5) for each of the three levels of smoothing. It is clear that there is 
an increased number of active voxels in the PSWF-smoothed data for 
narrow (≤8mm) kernels. 

In this work a new spatial smoothing filter for fMRI is introduced. 
The filter is based on the use of prolate spheroidal wave functions, 
which provide optimal control of truncation artifacts present in MR 
images. The PSWF filter has the important property that any other 
choice of filter will give rise to a greater amount of signal leakage 
outside of the spatial coverage region. This property leads us to 
believe that it has excellent potential as a spatial smoothing filter in 
fMRI. Experimental data from a visual paradigm showed when 
smoothing with narrow filters (FWHM < 8mm) the PSWF filter gave rise 
to a significant increase in the number of active voxels in the visual 
cortex compared to data smoothed with a Gaussian kernel 
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FIGURE 2. (a) The proportion of the effective Gaussian smoothing 
kernel that lies within ±3σ (or ± 1.274FWHM) of the center of the 
filter when N=64 and the FOV is equal to 200 and 240 mm (green 
and red line respectively). (b)  The applied and effective FWHM 
plotted for a Gaussian filter when N=64 and the FOV is equal to 
200 and 240 mm (green and red line respectively). For comparison 
purposes the dotted line shows where the applied and effective 
FWHM coincide.

FIGURE 3. A boxcar function 
(top left) is multiplied with a 
PSWF kernel, g(k) (top right), 
designed to have the same 
frequency extent as the boxcar. 
After performing the inverse 
Fourier transform on the 
product, the result is equivalent 
to convolving the point spread 
function (center left) with G(x) 
(center right). The results of this 
convolution are shown in the 
bottom row. The PSWF filter 
effectively controls for the 
ringing artifacts.
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