
be the moving average of w consecutive observations 
starting at time t, where K(t) is a weighting function. Note that 
it is possible to use any kernel function here (e.g. Uniform or 
Gaussian) that sums to 1. Under H0: Γ=0, the statistic Yw
follows a normal distribution with mean 0 for all w, t. The 
window that yields the largest value, gives the strongest 
evidence of model misfit (See Fig. 2). This value is compared 
to the maximum that would be obtained if the residuals were 
iid Normal, as expected under the null hypothesis. 
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Scan Statistic
If there is model misfit (e.g. mis-specification of onset, 

duration, or response shape) residuals will be systematically 
larger in mis-modeled segments of the time series. To detect 
whether mis-modeling is present, we can study the residuals 
from the GLM analysis using scan statistics. The scan 
statistic is often used to detect clusters in time courses or 
images. 

Suppose r(i), i=1,…T are the whitened residuals obtained 
from a voxel-wise GLM analysis. Let, 

Figures 3A-E (top row) show the voxels found by the scan 
statistic to have significant mis-modeling. Red indicates 
voxels that show a cluster of mis-modeled points toward the 
end of the visual stimuli, while blue indicates voxels that 
show a cluster in the beginning of the stimuli. In each case 
the results are consistent with the error. Also, the number of 
significant voxels increase as the amount of mis-modeling 
increases. When the correct model is used, few significant 
voxels are present. 

We have also included bias and power-loss maps 
(Figures 3 A-E, second and third rows). These maps tell a 
similar story and allow us to determine regions where mis-
modeling has the greatest impact on statistical inference. 
These plots provide us with a means to judge the validity of 
the statistical parametric maps that are typically used to 
summarize the results of a GLM analysis. They indicate 
regions that we should study closer to check the model 
assumptions.

Figure 3. (Top) The experimental data is analyzed using a standard 
GLM where the onset of activation is purposefully mis-modeled so 
the difference in modeled and true onset time took the values -2, -1, 
0, 1 and 2 seconds. (First row of images A-E) The location in time of 
the scan statistic is shown for voxels where the scan statistic 
indicates significant mis-modeling. Red indicates voxels that show a 
cluster of mis-modeled points toward the end of the visual stimuli, 
while blue indicates voxels that show a cluster in the beginning of 
the stimuli. The results are consistent with the erroneous model
formulation. (Second row A-E) Bias maps show an increase in bias 
as the amount of mis-modeling increases. (Third row A-E) Power-
loss maps show a decrease in power as the amount of mis-modeling 
increase. 

Figure 2. The bold line shows a sample time course of independent, 
identically distributed (iid) residuals with mean 0 (except in a cluster 
of length 5 time units where it is equal to 1 – see red dashed line) 
and standard deviation 1. Using the scan statistic approach outlined 
in this work, we found a cluster of 5 points with mean significantly 
different from 0 which we denote using a blue box to indicate its 
location and width (Note its exact correspondence with the boxcar 
function). The p-value of 0.0280 indicates that the data inside this 
cluster is not consistent with the null hypothesis that all the data 
points have mean 0. Hence, the scan statistic approach can 
effectively discover systematic variation in the residual time-course. 

Figure 1. (A-B) Results of a simulation study. The solid and dashed 
lines in (A) and (B) show respectively the modeled and true 
activation. The difference between truth and model (delta) is allowed 
to vary from 0 to 5 seconds. The true activation paradigm is repeated 
4 times and convolved with a canonical HRF. Noise is then added 
corresponding to a Cohen’s d of 0.5. The GLM is fit using the 
modeled activation pattern (solid lines) convolved with the canonical 
HRF. This procedure is repeated 1000 times for both delayed onset 
(A) and prolonged width (B).  Receiver operating characteristic 
(ROC) curves in the bottom panels show the false positive rate (FPR) 
vs. the true positive rate (TPR) across statistical significance
thresholds.  The curves show a substantial decrease in power as a 
function of model mis-specification. 

The voxel-wise general linear model (GLM) approach has 
arguably become the dominant way to analyze fMRI data.  It 
is well-suited for testing how much of the variability in a 
voxel’s time course can be explained by a set of a priori
specified regressors. However, even a relatively small 
amount of mis-modeling can result in severe power loss (Fig. 
1), and inflate the false positive rate beyond the nominal 
value. Due to the massive amount of data, performing model 
diagnostics is challenging, and only limited attention has 
been given to this problem (e.g. [1]). 
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∆ ∆ • Identify the presence of systematic mis-modeling as a 
function of the experimental stimulus. This can be done 
by calculating the average residual value relative to the 
onset of activation using an FIR basis set.

• Make maps that show the bias and power loss 
attributable to the mis-specification (see Fig. 3).

Experimental Design
The experimental data consisted of a blocked alternation 

of 11 s of full-field contrast-reversing checkerboards (16 Hz) 
with 30 s of open-eye fixation baseline. Blocks of stimulation 
were presented on an in-scanner LCD screen. Spiral-out 
gradient echo images were collected on a GE 3T fMRI 
scanner. Seven oblique slices were collected through visual 
and motor cortex, 3.12 x 3.12 x 5 mm voxels, TR = 0.5 s, TE 
= 25 ms, flip angle = 90, FOV = 20 cm, 410 images. 

The data was analyzed using a standard GLM procedure, 
where the design matrix consisted of three regressors 
associated with a quadratic drift term and one regressor 
corresponding to the expected BOLD response. This 
regressor was calculated by convolving a boxcar function 
corresponding to the experimental design with SPMs 
canonical HRF. We performed this analysis five times, each 
time the onset of activation in the boxcar design was 
purposefully mis-modeled so the difference in modeled and 
true onset time took the values -2, -1, 0, 1 and 2 seconds. 
(Figure 3 top). For each of the five cases, the scan statistic 
approach was applied to the residuals to detect whether 
there was evidence of significant mis-modeling. Maps of the 
estimated bias and power-loss due to mis-modeling were 
computed for each case (Fig. 3 second and third row).

Mis-modeling in the GLM
In the GLM approach, the fMRI time series, Y, is modeled 

as a linear combination of a number of different signal 
components summarized in a design matrix X. The model 
can be written: 

Suppose we erroneously mis-model the design matrix, i.e. 
we use X = Π + Γ, where Π is the ‘true’ design matrix and Γ
is a matrix describing the error due to mis-modeling. The bias 
in the estimate of β can be expressed as:

Scan Statistic method at work

Effect of mis-specification on power
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In this work we: 

• provide expressions for power loss and bias, given a 
statistical model with some degree of mis-modeling and a 
hypothetical true model.

• develop a procedure based on the use of scan statistics [2] 
for identifying voxels or regions where model misfit may be 
present. 

• apply the procedure to detect systematic mis-modeling or 
artefacts in fMRI time courses.

The power-loss attributable to model mis-specification is the 
difference between the power to detect activation when mis-
modeling is present and when it is absent. Specifically this 
depends on the difference in the distribution of the regression 
variance under the two models. Under the correct model, 
Γ=0, it follows a χ2 distribution, otherwise, it follows a non-
central χ2 distribution, with non-centrality parameter

Details can be found in [3].

Follow-up Analysis
Once we have detected evidence of mis-modeling in a 

voxel, we can estimate the mis-modeling parameter Γ and 
then do the following:

CONCLUSIONSCONCLUSIONS
• Regression diagnostics are rarely performed when 

analysing fMRI data using the GLM. 

• Mis-modeling can result in a severe decrease in statistical 
power when using the GLM. It may also inflate the false 
positive rate beyond the nominal value

• In this work we suggest the use of scan statistics to detect 
the presence of mis-modeling. 

• Bias and power-loss maps can be constructed to indicate 
regions that are particularly influenced by mis-modeling.

Calculating p-values
The distribution of the maximum statistic under the null 

hypothesis, and p-values for this statistic, can be found using 
a Monte Carlo simulation. Alternatively, an upper bound for 
the p-values can be approximated using Sidak's inequality. 
This latter approach provides effective results at a fraction of
the computational cost.

If the weighting function is chosen to be a Gaussian, 
Gaussian random field theory can be used to determine the 
appropriate threshold and p-value. In addition, a 4D 
Gaussian random field can be used to correct for multiple 
comparisons over both space and time. This may ultimately 
be the most attractive approach.
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