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Advanced DifferentialAdvanced Differential
Expression AnalysisExpression Analysis

OutlineOutline
• Review of the basic ideas

• Introduction to (Empirical) Bayesian
Statistics

• The multiple comparison problem

• SAM

Quantifying DifferentiallyQuantifying Differentially
ExpressionExpression
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Two questionsTwo questions
• Can we order genes by interest? One

goal is to assign a one number
summary and consider large values
interesting. We will refer to this number
as a score

• How interesting are the most interesting
genes? How do their scores compare to
the those of genes known not to be
interesting?

ExampleExample
• Consider a case were we

have observed two genes
with fold changes of 2

• Is this worth reporting? Are
they both as interesting?
Some journals require
statistical significance. What
does this mean?

*

*

Repeated ExperimentRepeated Experiment
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RepeatedRepeated  ExperimentExperiment

Review of Statistical InferenceReview of Statistical Inference
• Let Y-X be our measurement representing differential expression.

• What is the typical null hypothesis?

• P-value is Prob(Y-X as extreme under null) and is a way to
summarize how interesting a gene is.

• Popular assumption: Under the null,Y-X follows a normal
distribution with mean 0 and standard deviation σ.

• Without σ we do not know the p-value.

• We can estimate σ by taking a sample and using the sample
standard deviation s.

Note: Different genes have different σ,

Sample SummariesSample Summaries
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The The t-statistict-statistic
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Properties of Properties of t-statistict-statistic
• If the number of replicates is very large the t-

statistic is normally distributed with mean 0
and and SD of 1

• If the observed data, i.e. Y-X,  are normally
distributed then the t-statistic follows a t
distribution regardless of sample size

• With one of these two we can compute p-
values with one R command

DataData  Show ProblemsShow Problems
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Data Show ProblemsData Show Problems

Data Show ProblemsData Show Problems

ProblemsProblems
• Problem 1: T-statistic bigger for genes

with smaller standard errors estimates
• Implication: Ranking might not be

optimal

• Problem 2: T-statistic not t-distributed.
• Implication: p-values/inference incorrect
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ProblemProblem  11
• With few replicates SD estimates are unstable

• Empirical Bayes methodology and Stein
estimators provides a statistically rigorous
way of improving this estimate

• SAM, a more ad-hoc procedure, works well in
practice

Note: We won’t talk about Stein estimators.
See a paper by Gary Churchill for details

Problem 2Problem 2
• Even if we use a parametric model to

improve standard error estimates, the
assumptions might not be good enough
to provide trust-worthy p-values

• We will describe non-parametric
approaches for obtaining p-values

Note: We still haven’t discussed the multiple
comparison problem. That comes later.

Introduction to EmpiricalIntroduction to Empirical
BayesBayes
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OutlineOutline
• General Introduction

• Models for relative expression

• Models for absolute expression
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Borrowing StrengthBorrowing Strength
• An advantage of having tens of thousands of

genes is that we can try to learn about typical
standard deviations by looking at all genes

• Empirical Bayes gives us a formal way of
doing this
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Modeling RelativeModeling Relative
ExpressionExpression

Courtesy of Gordon Smyth

Hierarchical ModelHierarchical Model
Normal Model Prior

Reparametrization of Lönnstedt and Speed 2002

Normality, independence assumptions are wrong but
convenient, resulting methods are useful

Posterior StatisticsPosterior Statistics

Moderated t-statistics

Posterior variance estimators

Eliminates large t-statistics merely from very small s
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Marginal DistributionsMarginal Distributions
The marginal distributions of the sample variances
and moderated t-statistics are mutually independent 

Degrees of freedom add!

Shrinkage of StandardShrinkage of Standard
DeviationsDeviations

The data decides whether

should be closer to tg,pooled  or to tg

Posterior OddsPosterior Odds

Posterior probability of differential expression for
any gene is

Reparametrization of Lönnstedt and Speed 2002

Monotonic function of for constant d
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Modeling theModeling the  AbsoluteAbsolute
ExpressionExpression

Courtesy of Christina
Kendziorski

Hierarchical Model for Expression Data (One
condition)
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Hierarchical Model for Expression Data (Two conditions)
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Hierarchical Mixture Model for Expression Data
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 Bayes rule determines threshold here; could target specific
FDR.
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Empirical Bayes methods make use all of the data to make
gene specific inferences.

DE: m1≠ m2EE: m1= m2

Odds plot: SCD knockout vs. SV129 (Attie lab)
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EBarrays: Contour Plots of Odds

 Hierarchical model is used to estimate posterior probabilities of
   patterns of expression. The model accounts for the measurement
   error process and for fluctuations in absolute expression levels.

 Multiple conditions are handled in the same way as two conditions
   (no extra work required!).

 Posterior probabilities of expression patterns are calculated for
    every transcript.

 Threshold can be adjusted to target a specific FDR.

In Bioconductor

Comments on Empirical Bayes Approach(EBarrays)

Empirical Bayes for Microarrays (EBarrays)

Journal of Computational Biology 8: 37-52, 2001.

On Differential Variability of Expression Ratios:
Improving Statistical Inference

About Gene Expression Changes from Microarray Data
by

M.A. Newton, C.M. Kendziorski, C.S. Richmond, F.R. Blattner, and K.W.
Tsui

On Parametric Empirical Bayes Methods for Comparing Multiple Groups
Using Replicated Gene Expression Profiles

by
C.M. Kendziorski, M.A. Newton, H. Lan and M.N. Gould

Statistics in Medicine, to appear, 2003.
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Inference and the MultipleInference and the Multiple
Comparison ProblemComparison Problem
Many slides courtesy of John

Storey

Hypothesis testingHypothesis testing
• Once you have a given score for each gene, how do

you decide on a cut-off?

• p-values are popular.

• But how do we decide on a cut-off?

• Are 0.05 and 0.01 appropriate?

• Are the p-values correct?

P-values by permutationP-values by permutation
• It is common for the assumptions used

to derive the statistics used to
summarize interest are not approximate
enough to yield useful p-values

• An alternative is to use permutations
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pp-values -values by permutationsby permutations
We focus on one gene only. For the bth iteration, b = 1, ⋅⋅⋅ , B;

1. Permute the n data points for the gene (x). The first n1 are
referred to as  “treatments”, the second n2 as “controls”.

2. For each gene, calculate the corresponding two sample
t-statistic, tb.

After all the B permutations are done;
3. Put p = #{b: |tb|  ≥  |tobserved|}/B   (p lower if we use >).

Multiple Comparison ProblemMultiple Comparison Problem
• If we do have useful approximations of

our p-values, we still face the multiple
comparison problem

• When performing many independent
tests p-values no longer have the same
interpretation

Hypothesis TestingHypothesis Testing
• Test for each gene null hypothesis: no

differential expression.

• Two types of errors can be committed
– Type I error or false positive (say that a gene is differentially

expressed when it is not, i.e., reject a true null hypothesis).

– Type II error or false negative (fail to identify a truly
differentially expressed gene, i.e.,fail to reject a false null hypothesis)
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Multiple Hypothesis TestingMultiple Hypothesis Testing
• What happens if we call all genes significant

with p-values ≤ 0.05, for example?

mm – RRTotal

m1m1 – SSAltern.True

m0m0 – VVNull True

TotalNot Called
Significant

Called
Significant

Null = Equivalent Expression; Alternative = Differential Expression

Other ways of thinking of P-valuesOther ways of thinking of P-values

• A p-value is defined to be the minimum
false positive rate at which an observed
statistic can be called significant

• If the null hypothesis is simple, then a
null p-value is uniformly distributed

Multiple Hypothesis TestMultiple Hypothesis Test
Error Controlling ProcedureError Controlling Procedure

• Suppose m hypotheses are tested with p-
values p1, p2, …, pm

• A multiple hypothesis error controlling
procedure is a function T(p; α) such that
rejecting all nulls with pi ≤ T(p; α) implies that
Error ≤ α

• Error is a population quantity (not random)
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Weak and Strong ControlWeak and Strong Control
• If T(p; α) is such Error ≤ α only when m0 = m,

then the procedure provides weak control of
the error measure

• If T(p; α) is such Error ≤ α for any value of m0,
then the procedure provides strong control of
the error measure – note that m0 is not an
argument of T(p; α)!

Error RatesError Rates
•Per comparison error rate (PCER): the expected value of the number
of Type I errors over the number of hypotheses

PCER = E(V)/m

•Per family error rate (PFER): the expected number of Type I errors
PFER = E(V)

•Family-wise error rate: the probability of at least one Type I error
FEWR = Pr(V ≥ 1)

•False discovery rate (FDR) rate that false discoveries occur
FDR = E(V/R; R>0) = E(V/R | R>0)Pr(R>0)

•Positive false discovery rate (pFDR): rate that discoveries are false
pFDR = E(V/R | R>0).

Bonferroni Bonferroni ProcedureProcedure

m
m

H
m

p

H
m

pV

m
ppT

m

i

i

i

C

ii

ii

!

!

!

!
!

"=

#
$

%
&
'

(
))

#
$

%
&
'

(
))*

+
,
-

.
/
0

)=

1
=

                

|Pr                

|minPr)1Pr(

:max);(

1

0

0

p

Provides strong control…..



18

Sidak Sidak ProcedureProcedure
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Holm ProcedureHolm Procedure
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Hochberg ProcedureHochberg Procedure
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Simes/BH Simes/BH ProcedureProcedure
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• Weak controls the FWER (Simes 1986)
• Strongly controls FDR (Benjamini & Hochberg

1995)
• Both require the null p-values to be

independent

False Discovery RateFalse Discovery Rate
• The “false discovery rate” measures the proportion of false

positives among all genes called significant:

• This is usually appropriate because one wants to find as
many truly differentially expressed genes as possible with
relatively few false positives

• The false discovery rate gives the rate at which further
biological verification will result in dead-ends
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False Positive RateFalse Positive Rate
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• False positive rate is the rate at which
truly null genes are called significant

• False discovery rate is the rate at which
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False Positive Rate False Positive Rate and and P-valuesP-values

• The p-value is a measure of significance
in terms of the false positive rate (aka
Type I error rate)

• P-value is defined to be the minimum
false positive rate at which the statistic
can be called significant

• Can be described as the probability a
truly null statistic is “as or more
extreme” than the observed one

False Discovery Rate False Discovery Rate and and Q-valuesQ-values

• The q-value is a measure of
significance in terms of the false
discovery rate

• Q-value is defined to be the minimum
false discovery rate at which the
statistic can be called significant

• Can be described as the probability a
statistic “as or more extreme” is truly
null
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Bayesian ConnectionsBayesian Connections
• This allows Bayesians to estimate FDR as well:

• This motivates the name “q-value” directly:

• All the estimation presented below can be viewed as
an “empirical Bayes” approach
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Possible FDR GoalsPossible FDR Goals
1. For some pre-chosen α, estimate a significance cut-off so

that on average FDR≤ α
2. For some pre-chosen significance cut-off, estimate FDR

so that

3. Estimate FDR so that it’s simultaneously conservative over
all significance cut-offs

4. Estimate q-values for all genes that are simultaneously
conservative! 

E F ˆ D R[ ] " FDR

Universal GoalUniversal Goal
1. The q-value, an FDR-based measure of

significance, is associated with each
gene

2. The estimated q-values are
conservative over all genes
simultaneously

In doing so, all four options will be met

• We begin by estimating FDR when
calling all genes significant with p-
values ≤ t

• Heuristic motivation:
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Estimate of Estimate of ππ00

• We first estimate the more easily
interpreted π0 = m0/m, the proportion of
truly null (non-differentially expressed)
genes:

• Then clearly
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Overall FDR EstimateOverall FDR Estimate
• The overall estimate of FDR(t) is

• The implicit estimate used in the original FDR
paper is a special case of the above estimate
with π0 estimated as 1.
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Numerical ExampleNumerical Example
• Suppose we call all genes significant

with p-values ≤ 0.03
• The estimate of the FDR is

• Could use any threshold 0 ≤ t ≤ 1
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Q-value EstimateQ-value Estimate
• The mathematical definition of the q-

value of gene i is

• Since pFDR≈FDR, we estimate the
q-value of gene i by
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Q-PlotsQ-Plots

Theoretical ResultsTheoretical Results
• Suppose that the empirical distribution functions of the null

statistics and of the alternative statistics converge as the number
of genes m gets large …

• The FDR estimates are asymptotically conservative …
simultaneously over all significance regions

• The estimated q-values are simultaneously conservative over all genes
• This is equivalent to controlling the FDR at all levels α

simultaneously
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Simulation StudySimulation Study
• Performed 3000 hypothesis tests of H0:N(0,1) versus

H1:N(2,1)
• The statistics had correlation 0.40 in blocks of 50
• Two conclusions:

1. The true q-values under this dependence structure are
the same as those given under the independence model

2. The estimated q-values are simultaneously conservative

3000 Dependent Tests of N(0,1) versus N(2,1)
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Power ComparisonPower Comparison

Power ComparisonPower Comparison
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What should one look for in aWhat should one look for in a
 multiple testing procedure? multiple testing procedure?

     As we will see, there is a bewildering variety of multiple testing procedures.
How can we choose which to use? There is no simple answer here, but each
can be judged according to a number of criteria:

Interpretation: does the procedure answer a relevant question for you?

Type of control: strong or weak?

Validity: are the assumptions under which the procedure applies clear and
definitely or plausibly true, or are they unclear and most probably not true?

Computability: are the procedure’s calculations straightforward to calculate
accurately, or is there possibly numerical or simulation uncertainty, or
discreteness?

Selected referencesSelected references
Westfall, PH and SS Young (1993) Resampling-based multiple testing: Examples and

methods for p-value adjustment, John Wiley & Sons, Inc

Benjamini, Y & Y Hochberg (1995) Controlling the false discovery rate: a practical and
powerful approach to multiple testing JRSS B 57: 289-300

J Storey  (2001): 3 papers (some with other authors), www-stat.stanford.edu/~jstorey/
The positive false discovery rate: a Bayesian interpretation and the q-value.
A direct approach to false discovery rates

Estimating false discovery rates under dependence, with applications to microarrays
Y Ge et al (2001) Fast algorithm for resampling based p-value adjustment for multiple
testing

Significance analysis ofSignificance analysis of
microarrays microarrays (SAM)(SAM)

• A clever adaptation of the t-ratio to
borrow information across genes

• In Bioconductor, siggenes pacakge is
available
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SAM-statisticSAM-statistic

• For gene i
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• Chosen to make signal-to-noise ratios
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• Computation
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Scatter plots of relative differenceScatter plots of relative difference

Random fluctuations
in the data, measured by 
balanced permutations
(for cell line 1 and 2)
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a permutation of the data
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en cell lines 1 and 2.
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The reference distributionThe reference distribution
• Order the values of       (could be any stat)

• Permute the treatment labels, and compute a
new set of ordered values

• Repeat step 2 for, say, 100 permutations:

• From these, compute the average largest,
average second largest etc.
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0.086464.01.0
0.1079410.10.7
0.12316019.80.5
0.17119633.60.4

0.25529475.10.3

False
discovery

rate

# called
significant

Ave #
falsely

significant
Delta

Delta is the half-width of the bar around the 45-degree line.

More general versions of SAMMore general versions of SAM
More than two groups
Paired data
Survival data, with censored response

Limitations of SAMLimitations of SAM
• Solutions for s_0 are often at the

extremes and sensitive to the
resolution of the quantile grid.

• Permutation analysis throws all
genes in the same bag

• Requires a monotone signal-to-
noise relationship


