Advanced Differential
Expression Analysis

Outline

+ Review of the basic ideas

« Introduction to (Empirical) Bayesian
Statistics

+ The multiple comparison problem

+ SAM

Quantifying Differentially
Expression




Two questions

- Can we order genes by interest? One
goal is to assign a one number
summary and consider large values
interesting. We will refer to this number
as a score

* How interesting are the most interesting
genes? How do their scores compare to
the those of genes known not to be
interesting?

Example

Consider a case were we
have observed two genes
with fold changes of 2

Is this worth reporting? Are
they both as interesting?
Some journals require i
statistical significance. What
does this mean?
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Review of Statistical Inference

Let Y-X be our measurement representing differential expression.
What is the typical null hypothesis?

P-value is Prob(Y-X as extreme under null) and is a way to
summarize how interesting a gene is.

Popular assumption: Under the null, Y-X follows a normal
distribution with mean 0 and standard deviation o.

Without ¢ we do not know the p-value.

We can estimate o by taking a sample and using the sample
standard deviation s.

Note: Different genes have different o,

Sample Summaries
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The t-statistic

t - statistic: Y _ )_(

Properties of t-statistic

+ If the number of replicates is very large the t-
statistic is normally distributed with mean 0
and and SD of 1

- If the observed data, i.e. Y-X, are normally
distributed then the t-statistic follows a t
distribution regardless of sample size

» With one of these two we can compute p-
values with one R command

Data Show Problems

t-statistic
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Data Show Problems

Histogram of tt$p.value
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Problems

- Problem 1: T-statistic bigger for genes
with smaller standard errors estimates

+ Implication: Ranking might not be
optimal

* Problem 2: T-statistic not t-distributed.
« Implication: p-values/inference incorrect




Problem 1

+ With few replicates SD estimates are unstable

+ Empirical Bayes methodology and Stein
estimators provides a statistically rigorous
way of improving this estimate

+ SAM, a more ad-hoc procedure, works well in
practice

Note: We won’t talk about Stein estimators.
See a paper by Gary Churchill for details

Problem 2

Even if we use a parametric model to
improve standard error estimates, the
assumptions might not be good enough
to provide trust-worthy p-values

We will describe non-parametric
approaches for obtaining p-values

Note: We still haven’t discussed the multiple
comparison problem. That comes later.

Introduction to Empirical
Bayes




Outline

- General Introduction
* Models for relative expression

* Models for absolute expression

BASIC TWO-STAGE SAMPLING
0~ G
Yo~ flylo)

o G is the prior
o f is the sampling distribution
o Use the “rules of probability” to get the:

Posterior Distribution

__ J(u|0)g(0)
9(0 | Y) = Lo

Marginal Distribution

fa(Y) = [ £y | w)g(u)du

THE BASIC GAUSSIAN/GAUSSIAN MODEL
Priorr G = N(u, 7%)
Sampling distn.:  f N (6, o?)
Marginal distn.: fo = N(u, 0% + 72)
Overdispersion

e If (11, 72, 0%) are known, the posterior is Gaussian:
E@|Y) = Bu+ (1 - B)Y
=p+ (1 —-B)(Y —pn)
V(0Y) = (1 — B)o?
o?
= oiin
e The Gaussian prior is conjugate
e Shrinkage and variance reduction

® Increasing o2 or decreasing 72 produces greater shrinkage




GAUSSIAN

DENSITY

UNKNOWN MEAN

GAUSSIAN

DENSITY

UNKNOWN MEAN

Borrowing Strength

» An advantage of having tens of thousands of
genes is that we can try to learn about typical
standard deviations by looking at all genes

+ Empirical Bayes gives us a formal way of
doing this




Modeling Relative
Expression

Courtesy of Gordon Smyth

Hierarchical Model

P(py=0)=p

ﬁy ~N(B,.c,0))
Byl B,#0 -N(O,cojcr:)

2,2 2 af 2 -1
Sg " OgXa, o-g~sﬂ(;rdu/d0)

Reparametrization of Lonnstedt and Speed 2002

Normality, independence assumptions are wrong but
convenient, resulting methods are useful

Posterior Statistics

Posterior variance estimators
2 2

@ s;d, +5od,

S ==
d, +d,

Moderated t-statistics

Eliminates large t-statistics merely from very small s




Marginal Distributions

The marginal distributions of the sample variances
and moderated t-statistics are mutually independent

"‘: ~ SSE%
_ L with prob 1- p
J1+c°/ctd]+d with prob p

Degrees of freedom add!

t&

Shrinkage of Standard
Deviations
8o t

SN

S I3

n g

The data decides whether ©

should be closerto 7,, . or to 7

Posterior Odds

Posterior probability of differential expression for
any gene is

1+d+d;
2
HB20/55) _ »p [ c ]”’ #1dtdy
tﬂ

pB=0]56) 1-plcte _“%Ad+¢v

Monotonic function of fz for constant d

Reparametrization of Lonnstedt and Speed 2002
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Modeling the Absolute
Expression

Courtesy of Christina
Kendziorski

Hierarchical Model for Expression Data (One
condition)

Voulttg ~ )

[ or |t~ 1 C|e )
‘ \ I ol ~ 1w, )
\ f

ML — .uL Mg

Hierarchical Model for Expression Data (Two conditions)

*Letx =[x,.x,] denote data (one gene) in conditions C1
and C2.
= Two patterns of expression:
PO (EE) : w =p,,
P1(DE): w, =W,
= For PO, x ~ ff(x\u)f(.u)dlu = fo(x)

= For P, x ~ [ F(x|ttoottes) F(1hootts) dit, i,

= ff(xu ‘M(»|)f(.u<-1)d‘“(»| ff(x(z‘.u(z)f(ﬂ(z)d/‘(z = fl(x)

fo(xrl) fa(xcz)
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Hierarchical Mixture Model for Expression Data

= Two conditions:
p,f(x‘Pl)

* pofo(5)+ A) = (Pl = e

= Multiple conditions:

X~ ) (x) = X =M
ZrAl) = (el

kek'

= Parameter estimates via EM

= Bayes rule determines threshold here; could target specific
FDR.

For every transcript, two conditions => two patterns (DE,
EE)

EE: my=m, DE: my= m,

__PEp) sy 10E)P0E)
© p@epy) 70, E8)PEE)

Empirical Bayes methods make use all of the data to make
gene specific inferences.

[¢]

Odds plot: SCD knockout vs. SV129 (Attie lab)
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EBarrays: Contour Plots of Odds
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Comments on Empirical Bayes Approach(EBarrays)

= Hierarchical model is used to estimate posterior probabilities of
patterns of expression. The model accounts for the measurement
error process and for fluctuations in absolute expression levels.

= Multiple conditions are handled in the same way as two conditions
(no extra work required!).

= Posterior probabilities of expression patterns are calculated for
every transcript.

= Threshold can be adjusted to target a specific FDR.

=In Bioconductor

Empirical Bayes for Microarrays (EBarrays)

On Differential Variability of Expression Ratios:
Improving Statistical Inference
About Gene Expression Changes from Microarray Data
by
M.A. Newton, C.M. Kendziorski, C.S. Richmond, F.R. Blattner, and K.W.
Tsui
Journal of Computational Biology 8: 37-52, 2001.

On Parametric Empirical Bayes Methods for Comparing Multiple Groups
Using Replicated Gene Expression Profiles
by
C.M. Kendziorski, M.A. Newton, H. Lan and M.N. Gould

Statistics in Medicine, to appear, 2003.
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Inference and the Multiple
Comparison Problem

Many slides courtesy of John
Storey

Hypothesis testing

* Once you have a given score for each gene, how do

you decide on a cut-off?

+ p-values are popular.
+ But how do we decide on a cut-off?
* Are 0.05 and 0.01 appropriate?

+ Are the p-values correct?

P-values by permutation

+ It is common for the assumptions used
to derive the statistics used to
summarize interest are not approximate
enough to yield useful p-values

+ An alternative is to use permutations

14



p-values by permutations

We focus on one gene only. For the bth iteration, b=1, -, B;

1. Permute the n data points for the gene (x). The first n, are
referred to as “treatments”, the second n, as “controls”.

2. For each gene, calculate the corresponding two sample
t-statistic, #,.

After all the B permutations are done;
3. Putp=#b: Ity = It,psened VB (p lower if we use >).

Multiple Comparison Problem

+ If we do have useful approximations of
our p-values, we still face the multiple
comparison problem

+ When performing many independent
tests p-values no longer have the same
interpretation

Hypothesis Testing

» Test for each gene null hypothesis: no
differential expression.

» Two types of errors can be committed

— Type | error or false positive (say that a gene is differentially
expressed when it is not, i.e., reject a true null hypothesis).

— Type Il error or false negative (ail to identify a truly
differentially expressed gene, i.e.,fail to reject a false null hypothesis)

15



Multiple Hypothesis Testing

» What happens if we call all genes significant
with p-values = 0.05, for example?

Called Not Called Total
Significant | gignificant
Null True 4 my—-V m,
Altern.True m-S m,
Total R m-R m

Other ways of thinking of P-values

+ A p-value is defined to be the minimum
false positive rate at which an observed

statistic can be called significant

+ If the null hypothesis is simple, then a
null p-value is uniformly distributed

Multiple Hypothesis Test
Error Controlling Procedure

» Suppose m hypotheses are tested with p-
values p;, p,, ..., Pp,

» A multiple hypothesis error controlling

procedure is a function T(p; a) such that
rejecting all nulls with p; = T{(p; o) implies that

Error=o.

» Erroris a population quantity (not random)

16



Weak and Strong Control

+ If T(p; a) is such Error = o only when m, = m,
then the procedure provides weak control of
the error measure

+ If T(p; a) is such Error = a for any value of m,,
then the procedure provides strong control of
the error measure — note that m, is not an
argument of T{p; a)!

Error Rates

«Per comparison error rate (PCER): the expected value of the number

of Type | errors over the number of hypotheses
PCER = E(V)/m

*Per family error rate (PFER): the expected number of Type | errors
PFER = E(V)

«Family-wise error rate: the probability of at least one Type | error
FEWR = Pr(V= 1)

*False discovery rate (FDR) rate that false discoveries occur
FDR = E(V/R; R>0) = E(V/R | R>0)Pr(R>0)

«Positive false discovery rate (pFDR): rate that discoveries are false
pFDR = E(V/R | R>0).

Bonferroni Procedure

T(p;a)=maX{pf P sg}
m

Provides strong control.....

Pr(V =1) = Pr(minf )2 sg| HUF)
m

EPr(p, SE\HS)
=1 m

m-

A

3R
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Sidak Procedure
T(p;a) = max{ui cpo=1-(1 _a)l/m}

Pr(V = 1) < Prlmin, p, < 1-(1-a)"" | HE )

=1-ﬁpr(p,, >1-(1-a)"" |H})

=0

Requires independence for strong control...

Holm Procedure
Order the p-values p, < p, << p,,

: a
T(p:x) = mm{pm ‘P > }
m-i+1
T(p;a) = min{)(i) Do > 1- (1 _a)/(m—m)}

Requires independence for strong control...

Hochberg Procedure

o
T(p;a)=maxyp,.:p.s——
(p;at) {P(l) Py m—i+1}

...the step-up analogue of Holm

18



Simes/BH Procedure

i'a
T(p;a) = max{p(i) Py = m}

Weak controls the FWER (Simes 1986)
Strongly controls FDR (Benjamini & Hochberg
1995)

Both require the null p-values to be
independent

False Discovery Rate

+ The “false discovery rate” measures the proportion of false

positives among all genes called significant:

#false positives vV Vv

#called significant VS B R

+ This is usually appropriate because one wants to find as

many truly differentially expressed genes as possible with
relatively few false positives

+ The false discovery rate gives the rate at which further

biological verification will result in dead-ends

False Positive Rate
versus False Discovery Rate

False positive rate is the rate at which
truly null genes are called significant

FPR = #false positives _ V/

#truly null N mf0

False discovery rate is the rate at which
significant genes are truly null

#false positives V.
#called significant R

19



False Positive Rate and P-values

+ The p-value is a measure of significance
in terms of the false positive rate (aka
Type | error rate)

 P-value is defined to be the minimum
false positive rate at which the statistic
can be called significant

+ Can be described as the probability a
truly null statistic is “as or more
extreme” than the observed one

False Discovery Rate and Q-values

* The g-value is a measure of
significance in terms of the false
discovery rate

+ Q-value is defined to be the minimum
false discovery rate at which the
statistic can be called significant

+ Can be described as the probability a
statistic “as or more extreme” is truly
null

Bayesian Interpretation .

eSuppose m hypothesis tests are performed with independent
statistics X1, ..., X,, and significance region I'.

eLet H; = 0 if null hypothesis i is true, and H; = 1 ifit is false.
Assume Pr(H; = 0) = mp and Pr(H; = 1) = 1.

eAssume each statistic comes from the mixture distribution,

X; ~ (1 — H;) - Fo + H; - Fy,where Fy is the null and F is the
alternative.

Theorem: (Storey 2001)

V()

pFDR(T) = E [R(F)

R > 0] = o

= Pr(H=0|X€T).

w0 - Pr(X € T|H = 0)

20



Power / Type I Error Decomposition .

eUnder the mixture model assumptions ...

w0 - Pr(X € T|H = 0)

FDR(T
PFDR(I') 7o -Pr(X €T|/H = 0) +m -Pr(X € [|H = 1)

7o - Type I error rate
7o - Type I error rate 4 m; - Power

eIn general, for a nested set of significance regions {I'}, the
p-value of an observed statistic « is defined to be

p-value(x) = 12§ Pr(X €T|H =0)
@

eLikewise, under the independent mixture model,

g-value(z) = inf pFDR(T') = inf Pr(H = 0|X €7T).
zel z€l

Bayesian Connections

This allows Bayesians to estimate FDR as well:
pFDR(T")= [Pr(H = 0] X =)/ (x| xED)dx
This motivates the name “g-value” directly:
p - value(x,) = Pr(\ X |2l x, H H= 0)
q - value(x,) = Pr(H = 0‘ | X || x, |)

All the estimation presented below can be viewed as
an “empirical Bayes” approach

21



Possible FDR Goals

For some pre-chosen a, estimate a significance cut-off so
that on average FDR= o

2. For some pre-chosen significance cut-off, estimate FDR
sothat plEDR |> FDR

3. Estimate FDR so that it’s simultaneously conservative over
all significance cut-offs

4. Estimate g-values for all genes that are simultaneously
conservative

Universal Goal

1. The g-value, an FDR-based measure of
significance, is associated with each
gene

2. The estimated g-values are
conservative over all genes
simultaneously

In doing so, all four options will be met

Estimate of FDR

* We begin by estimating FDR when
calling all genes significant with p-
values = t

» Heuristic motivation:
=mgt

FDR() ~ B O] Bl null p, < N4

ErRo]  E{p <1]




Estimate of m,

+ We first estimate the more easily

interpreted 7, = my/m, the proportion of
truly null (non-differentially expressed)

genes:

- Then clearly 771, = 7T, - m

# (A)=#{p,->?»}
°1 0 m-(1- 1)

Observed p-values

Choose A by Balancing Bias and Variance

- o

1 #,=0.67

(1)

065 070 075 080 085 090 095 1.00

0.0 0.2 0.4 0.6 0.8
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Overall FDR Estimate

» The overall estimate of FDR({) is

+ The implicit estimate used in the original FDR
paper is a special case of the above estimate
with m, estimated as 1.

Numerical Example

+ Suppose we call all genes significant
with p-values = 0.03

« The estimate of the FDR is

bR 2 0-67x3170x0.03 64 )
462 462

+ Could use any threshold 0 = t=< 1

Q-value Estimate

« The mathematical definition of the g-
value of gene i is

q-value(p,) = min,,, pFDR(?)

- Since pFDR=FDR, we estimate the
g-value of gene i by




20 €0 50

number of sqifcant genes

Theoretical Results

Suppose that the empirical distribution functions of the null

statistics and of the alternative statistics converge as the number

of genes m gets large ...

The FDR estimates are asymptotically conservative ...
simultaneously over all significance regions

The estimated qg-values are simultaneously conservative over all genes

This is equivalent to controlling the FDR at all levels a
simultaneously

The Estimates

— _ mo(A) -t
FDRA(t) = Py
o RN+t
Pra(H=0/P<t)= <

q-value, (p;) = min Pra(H = 0|P < t)
2Pi

eCan define a more robust estimate of q-value based on pF/]SR/\ (t)

eCan get rid of X by the technique mentioned earlier

25



Using q-\;a\lue and FDR in Four Scenarios I

(1) Suppose we call all p-values < t significant. Use F]/D\R,\(t) to
estimate FDR(t).

(2) To control the FDR at level «, reject all null hypothesis with
g-value, (p;) < a.

Note: This procedure with A = 0 is equivalent to the Benjamini
and Hochberg (1995) threshold Te = max{p) : pu) < ia}.
This follows because FDR x—o (p@)) = P2

i/m

Using q-;a\]ue and FDR in Four Scenarios I

(3) Suppose we want to estimate FDR(¢) over all thresholds
simultaneously. Examine FDR (t) over 0 < ¢ < 1. Estimating
the “simultaneous controlling curve.”

(4) To calculate a measure of significance for each test, form the
q-value estimates: q-v/aTue(pi). Estimate minimum FDR at
which each test can be called significant (in addition to
Bayesian interpretation).

Finite Sample Results .

eSuppose the null p-values are independent ... (No mixture model
or Bayesian assumptions!)

eThen
E[FDR,(t)] > FDR(t)
E[pFDR,)(t)] > pFDR(t).
(Storey 2001)
eStrong control:

FDR ({q-value, (p;) < o, pi S A}) <

(Storey, Taylor, Siegmund 2002)

eAre the null p-values independent in microarrays??

26



Dependence in Microarrays .

eSince measured expression levels of genes are dependent, the
statistics (p-values) are dependent:

(1) Genes in the same pathway will be dependent
(2) Genes near each other on the array will be dependent
(3) Genes with sequence similarity will be dependent

eEach of these dependencies is local. Probably occur in finite
clumps.

Empirical Distributions I

eRecall that:
V(t) _ #{nullp; : p; <t}
mio N mo ’
S(t) _ #{alternativep; : p; < t}
" my

eSuppose that with probability 1, we have for each ¢:
Vit
YO ke <t,
mo
S(t
L) — R (t)
my
eAlso suppose lim,,, o ™o /m = 7o exists.

eThen with probability 1...

Conservative Consistency I

eThen for any § > 0, we have that with probability 1 ...

(1) limy, 0o FDR ({q-v/;lue(pi) < a}) <o

(2) limy o0 inf; > [q-value(p:) — q-value(p;)| > 0

(3) limyp, o0 inf > 5 [FﬁR(t) - FDR(t)} >0

(Storey, Taylor, Siegmund 2002)

e Plausibly holds for microarray data.
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Translation: Given “clumpy microarray dependence” and large m ...

Bayesian interpretation holds

eFDR(t) ~ pFDR(t) — Pr*(H = 0|P < t)

bolds ci 7 7

Can look at all thr ly

oFT)\R(t) dominates FDR(t) over all t

The FDR is controlled

eSignificance rule q—v/:a]ue(p,-) < a controls the FDR at level «

The estimated q-values conservatively estimate the true q-values

-q-;a\lue(t) dominates q-value(t) over all t (event = p;!)

Simulation Study

+ Performed 3000 hypothesis tests of H,: N(0,1) versus
H,:N(2,1)

+ The statistics had correlation 0.40 in blocks of 50

+ Two conclusions:

1. The true g-values under this dependence structure are
the same as those given under the independence model

2. The estimated g-values are simultaneously conservative

3000 Dependent Tests of N(0,1) versus N(2,1)

06

qevalue

——  actual q-values
estimated q-values

0.0 0.2 04 0.6 08 1.0

pvalue
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Power Comparison

— Proposed S
BH 7~

1500 2000 2500 3000

Number of signigicant genes

1000

500

0

Power Comparison

FDR Level # Significant BH | # Significant PP
0.01 1 5
0.02 8 21
0.04 76 123
0.10 221 317
7w, =1 7, =0.67
SAM Version
B
ﬁoz #{iﬁb :d” < (M) or d = r(A)}B
FDR(A) = —
@) #4d.:d, < 0(A) or d,=r(A)}
_ 7, ~avg no. nulls called significant
no. observed called significant
[ #yd,:d, > l(A") or d, <r(A
PUTOP & ELAZ(CY @A)}

Z # {t;”’ :d” > (A" or d < r(A')}‘B
=1
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What should one look for in a
multiple testing procedure?

As we will see, there is a bewildering variety of multiple testing procedures.

How can we choose which to use? There is no simple answer here, but each
can be judged according to a number of criteria:

Interpretation: does the procedure answer a relevant question for you?
Type of control: strong or weak?

Validity: are the assumptions under which the procedure applies clear and
definitely or plausibly true, or are they unclear and most probably not true?

Computability: are the procedure’s calculations straightforward to calculate
accurately, or is there possibly numerical or simulation uncertainty, or
discreteness?

Selected references

Westfall, PH and SS Young (1993) Resampling-based multiple testing: Examples and
‘methods for p-value adjustment, John Wiley & Sons, Inc

ini, Y & Y I (1995) C: ing the false di: y rate: a ical and
powerful approach to multiple testing JRSS B 57: 289-300

J Storey (2001): 3 papers (some with other authors), www-stat.stanford.edu/~jstorey/
The positive false di: y rate: a Bayesian il pi ion and the g-value.
A direct approach to false discovery rates

Estimating false discovery rates under dependence, with applications to microarrays
Y Ge et al (2001) Fast algorithm for resampling based p-value adjustment for multiple
testing

Significance analysis of
microarrays (SAM)

+ A clever adaptation of the t-ratio to
borrow information across genes

+ In Bioconductor, siggenes pacakge is
available
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SAM-statistic

i

i
S+ 8

=l

y; = mean of Irradiated samples
X, = mean of Unirradiated samples

§; = Standard deviation of residuals for gene i a
assuming same variance

S, = Exchangeability factor estimated using all genes

The exchangeability factor

+ Chosen to make signal-to-noise ratios
independent of signal

+ Computation

— Let s“ be the a percentile of the s, values.
Let d =r/(s,+5%)

— Compute the 100 quantiles of the s; values,
denoted by ¢, <q, <'"<¢qy

a€(0,0.05,0.10,...,1.0)
- For
- Compute V; =mad(d |s, €l49,,9;.)).7 =12,....99,
where mad is the median absolute deviation from
the median, divided by 0.64
+ Compute c¥(@)= coefficient of variation of the

+ Choose @ =argmin[cv(a)]. 5, = s and v,

Scatter plots of relative difference

Relative difference for

x | apermutation of the data
that was balanced betwe
en cell lines 1 and 2.

relative difference d(i)

Random fluctuations

in the data, measured by
balanced permutations
(for cell line 1 and 2)

T 0 w0 w0 1 0 1w 1
genes specific scatter s(i)
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The reference distribution

Order the values of d;, (could be any stat)

dyysdg s-sd,

new set of ordered values
dy =d, s-=<d,

* Repeat step 2 for, say, 100 permutations:

D) 2 P)
+ From these, compute the average largest,

ms dgs o =4,

b - 5
dys< dgs - =d,

*100 *100 *10
dy’'= dy'= - =d;)

average second largest etc.

Permute the treatment labels, and compute a

observed relative difference d(i)

Selected genes

~
A e r/7 : c
s |
£, 5 -
2 g’ 8
4 £ &
4 g 2
& 3
V4 Eo < o
/s H H Fy
L £ 25 g
Yz 5 (] X
e = a
[ 10 I
G0 3 6 5 10 o 1000 s 0 s
expected relative difference dy(Q) gene specific scatter s(i) cube root of avg x;

SAM plot

abserved (i)

\ expected-dfi) T
o 5
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Ave #

falsely
significant
0.3 75.1 294 0.255
0.4 33.6 196 0.171
0.5 19.8 160 0.123
0.7 10.1 94 0.107
1.0 4.0 46 0.086

Delta is the half-width of the bar around the 45-degree line.

More general versions of SAM

More than two groups
Paired data
Survival data, with censored response

Limitations of SAM

 Solutions for s_0 are often at the
extremes and sensitive to the
resolution of the quantile grid.

+ Permutation analysis throws all
genes in the same bag

* Requires a monotone signal-to-
noise relationship
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