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Distances, Clustering, andDistances, Clustering, and
ClassificationClassification

HeatmapsHeatmaps



2

DistanceDistance
• Clustering organizes things that are close into

groups

• What does it mean for two genes to be close?

• What does it mean for two samples to be
close?

• Once we know this, how do we define groups?
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DistanceDistance
• We need a mathematical definition of

distance between two points

• What are points?

• If each gene is a point, what is the
mathematical definition of a point?

PointsPoints
• Gene1= (E11, E12, …, E1N)’
• Gene2= (E21, E22, …, E2N)’

• Sample1= (E11, E21, …, EG1)’
• Sample2= (E12, E22, …, EG2)’

• Egi=expression gene g, sample i

Most Famous DistanceMost Famous Distance

• Euclidean distance
– Example distance between gene 1 and 2:
– Sqrt of Sum of (E1i -E2i)2, i=1,…,N

• When N is 2, this is distance as we know it:
Baltimore

DC

Distance

Longitud

Latitude

When N is 20,000 you have to think abstractly
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SimilaritySimilarity

• Instead of distance, clustering can use
similarity

• If we standardize points then Euclidean
distance is equivalent to using absolute
value of correlation as a similarity index

• Other examples:
– Spearman correlation
– Categorical measures

The similarity/distanceThe similarity/distance
matricesmatrices
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K-meansK-means
• We start with some

data
• Interpretation:

– We are showing
expression for two
samples for 14 genes

– We are showing
expression for two
genes for 14 samples

• This is simplifaction Iteration = 0

K-meansK-means
• Choose K centroids
• These are starting

values that the user
picks.

• There are some data
driven ways to do it

Iteration = 0

K-meansK-means
• Make first partition

by finding the
closest centroid for
each point

• This is where
distance is used

Iteration = 1
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K-meansK-means
• Now re-compute the

centroids by taking
the middle of each
cluster

Iteration = 2

K-meansK-means
• Repeat until the

centroids stop
moving or until you
get tired of waiting

Iteration = 3

K-medoidsK-medoids
• A little different
• Centroid: The average of

the samples within a
cluster

• Medoid:  The
“representative object”
within a cluster.

• Initializing requires
choosing medoids at
random.
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K-means LimitationsK-means Limitations
• Final results depend on starting values

• How do we chose K? There are methods
but not much theory saying what is best.

• Where are the pretty pictures?

HierarchicalHierarchical
• Divide all points into 2. Then divide

each group into 2. Keep going until you
have groups of 1 and can not divide
further.

• This is divisive or top-down hierarchical
clustering. There is also agglomerative
clustering or bottom-up

DendrogramsDendrograms
• We can then make

dendrograms
showing divisions

• The y-axis
represents the
distance between
the groups divided
at that point

Note: Left and right is assigned arbitrarily.
Look at the height of division to find out distance.
For example, S5 and S16 are very far. 
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But how do we form actualBut how do we form actual
clusters?clusters?

We need to pick a height

How to make a hierarchical clusteringHow to make a hierarchical clustering

1. Choose samples and genes to include in
cluster analysis

2. Choose similarity/distance metric
3. Choose clustering direction (top-down or

bottom-up)
4. Choose linkage method (if bottom-up)
5. Calculate dendrogram
6. Choose height/number of clusters for

interpretation
7. Assess cluster fit and stability
8. Interpret resulting cluster structure
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1. Choose samples and genes to include1. Choose samples and genes to include

• Important step!
• Do you want housekeeping genes included?
• What to do about replicates from the same

individual/tumor?
• Genes that contribute noise will affect your results.
• Including all genes:  dendrogram can’t all be seen at

the same time.
• Perhaps screen the genes?

A:  450 relevant genes plus 
450 “noise” genes. B:  450 relevant genes.

Simulated Data with 4 clusters:  1-10, 11-20, 21-30, 31-40

2. Choose similarity/distance matrix2. Choose similarity/distance matrix

• Think hard about this step!
• Remember:  garbage in  garbage out
• The metric that you pick should be a valid measure

of the distance/similarity of genes.
• Examples:

– Applying correlation to highly skewed data will provide
misleading results.

– Applying Euclidean distance to data measured on
categorical scale will be invalid.

• Not just “wrong”, but which makes most sense
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Some correlations to choose fromSome correlations to choose from

• Pearson Correlation:

• Uncentered Correlation:

• Absolute Value of
Correlation:
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The difference is that, if you have two vectors X and Y with identical
shape, but which are offset relative to each other by a fixed value,
they will have a standard Pearson correlation (centered correlation)
of 1 but will not have an uncentered correlation of 1.

3. Choose clustering direction3. Choose clustering direction
(top-down or bottom-up)(top-down or bottom-up)

• Agglomerative clustering (bottom-up)
– Starts with as each gene in its own cluster
– Joins the two most similar clusters
– Then, joins next two most similar clusters
– Continues until all genes are in one cluster

• Divisive clustering (top-down)
– Starts with all genes in one cluster
– Choose split so that genes in the two clusters are most

similar (maximize “distance” between clusters)
– Find next split in same manner
– Continue until all genes are in single gene clusters
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Which to use?Which to use?

• Both are only ‘step-wise’ optimal:  at each step the
optimal split or merge is performed

• This does not imply that the final cluster structure is
optimal!

• Agglomerative/Bottom-Up
– Computationally simpler, and more available.
– More “precision” at bottom of tree
– When looking for small clusters and/or many clusters, use

agglomerative
• Divisive/Top-Down

– More “precision” at top of tree.
– When looking for large and/or few clusters, use divisive

• In gene expression applications, divisive makes more
sense.

• Results ARE sensitive to choice!

4. Choose linkage method (if bottom-up)4. Choose linkage method (if bottom-up)

• Single Linkage: join clusters
whose distance between closest
genes is smallest (elliptical)

• Complete Linkage: join clusters
whose distance between furthest
genes is smallest (spherical)

• Average Linkage:  join clusters
whose average distance is the
smallest.
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• In gene expression, we don’t see “rule-based”
approach to choosing cutoff very often.

• Tend to look for what makes a good story.
• There are more rigorous methods. (more later)
• “Homogeneity” and “Separation” of clusters can be

considered. (Chen et al. Statistica Sinica, 2002)
• Other methods for assessing cluster fit can help

determine a reasonable way to “cut” your tree.

5. Calculate dendrogram
6. Choose height/number of clusters for
interpretation

  7.  Assess cluster fit and stability  7.  Assess cluster fit and stability

• PART OF THE MISUNDERSTOOD!
• Most often ignored.
• Cluster structure is treated as reliable and precise
• BUT!  Usually the structure is rather unstable, at least at the

bottom.
• Can be VERY sensitive to noise and to outliers
• Homogeneity and Separation
• Cluster Silhouettes and Silhouette coefficient:  how similar

genes within a cluster are to genes in other clusters (composite
separation and homogeneity) (more later with K-medoids)
(Rousseeuw Journal of Computation and Applied Mathematics,
1987)

Assess cluster fit and stability (continued)Assess cluster fit and stability (continued)

• WADP:  Weighted Average Discrepant Pairs
– Bittner et al. Nature, 2000
– Fit cluster analysis using a dataset
– Add random noise to the original dataset
– Fit cluster analysis to the noise-added dataset
– Repeat many times.
– Compare the clusters across the noise-added datasets.

• Consensus Trees
– Zhang and Zhao Functional and Integrative Genomics, 2000.
– Use parametric bootstrap approach to sample new data

using original dataset
– Proceed similarly to WADP.
– Look for nodes that are in a “majority” of the bootstrapped

trees.
• More not mentioned…..
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Careful thoughCareful though……..
• Some validation approaches are more

suited to some clustering approaches
than others.

• Most of the methods require us to
define number of clusters, even for
hierarchical clustering.
– Requires choosing a cut-point
– If true structure is hierarchical, a cut tree

won’t appear as good as it might truly be.

Final ThoughtsFinal Thoughts
• The most overused statistical method in gene

expression analysis
• Gives us pretty red-green picture with patterns
• But, pretty picture tends to be pretty unstable.
• Many different ways to perform hierarchical clustering
• Tend to be sensitive to small changes in the data
• Provided with clusters of every size: where to “cut”

the dendrogram is user-determined

We should not use heatmaps to compare two 
Populations?
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PredictionPrediction

Common Types of ObjectivesCommon Types of Objectives

• Class Comparison
– Identify genes differentially expressed among

predefined classes such as diagnostic or
prognostic groups.

• Class Prediction
– Develop multi-gene predictor of class for a

sample using its gene expression profile
• Class Discovery

– Discover clusters among specimens or among
genes

What is the taskWhat is the task
• Given the gene profile predict the class

• Mathematical representation: find
function f that maps x to {1,…,K}

• How do we do this?
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PossibilitiesPossibilities
• Have expert tell us what genes to look

for being over/under expressed?
• Then we do not really need microarrrays

• Use clustering algorithms?
• Not appropriate for this taks…

Clustering is not a good tool

A:  450 relevant genes plus 
450 “noise” genes. B:  450 relevant genes.

Simulated Data with 4 clusters:  1-10, 11-20, 21-30, 31-40
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Problem with clusteringProblem with clustering
• Noisy genes will ruin it for the rest

• How do we know which genes to use

• We are ignoring useful information in
our prototype data: We know the
classes!

Train an algorithmTrain an algorithm
• A powerful approach is to train a

classification algorithm on the data we
collected and propose the use of it in
the future

• This has successfully worked in many
areas: zip code reading, voice
recognition, etc

Using multiple genesUsing multiple genes
• How do we combine information from various

genes to help us form our discriminant
function f ?

• There are many methods out there… three
examples are LDA, kNN, SVM

• Weighted gene voting and PAM were
developed for microarrays (but they can be
thought of as versions of DLDA)
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Weighted Gene Voting is DLDAWeighted Gene Voting is DLDA
With equal priors, DLDA is:

With two classes we select class 1 if

This can be written as

with

Weighted Gene Voting simply uses

Notice the units and scale fore sum are wrong!
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KNNKNN
• Another simple and useful method is K

nearest neighbors

• It is very simple

ExampleExample
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Too many genesToo many genes
• A problem with most existing

approaches: They were not developed
for p>>n

• A simple way around this is to filter
genes first: Pick genes that, marginally,
appear to have good predictive power

Beware of over-fittingBeware of over-fitting
• With p>>n you can always find a prediction

algorithm that predicts perfectly on the
training set

• Also, many algorithm can be made to me too
flexible. An example is KNN with K=1

ExampleExample
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Split-Sample EvaluationSplit-Sample Evaluation
• Training-set

– Used to select features, select model type, determine
parameters and cut-off thresholds

• Test-set
– Withheld until a single model is fully specified using the

training-set.
– Fully specified model is applied to the expression profiles in

the test-set to predict class labels.
– Number of errors is counted

Note: Also called cross-validation

ImportantImportant
• You have apply the entire algorithm,

from scratch, on the train set

• This includes the choice of feature
gene, and in some cases normalization!

ExampleExample

Number of misclassifications
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P
roportion of sim

ulated data sets
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Cross-validation: none (resubstitution method)

Cross-validation: after gene selection

Cross-validation: prior to gene selection
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Keeping yourself honestKeeping yourself honest
• CV

• Try out algorithm on reshuffled data

• Try it out on completely random data

ConclusionsConclusions
• Clustering algorithms not appropriate

• Do not reinvent the wheel! Many methods available…
but need feature selection (PAM does it all in one
step!)

• Use cross validation to assess

• Be suspicious of new complicated methods: Simple
methods are already too complicated.


