

- Normalization is needed to ensure that differences in intensities are indeed due to differential expression, and not some printing, hybridization, or scanning artifact.
- Normalization is necessary before any analysis which involves within or between slides comparisons of intensities, e.g., clustering, testing.
- Somewhat different approaches are used in twocolor and one-color technologies

- Platforms that use printing robots are prone to many systematic effects:
 - Dye
 - Print-tip
 - Plates
 - Print order
 - Spatial
- Some examples follow

What can we do?

- Throw away the data and start again? Maybe.
- Statistics offers hope:
 - Use control genes to adjust
 - Assume most genes are not differentially expressed
 - Assume distribution of expression are the same

Simplest Idea

- Assume all arrays have the same median log expression or relative log
 expression
- Subtract median from each array
- In two-color platforms, we typically correct the Ms. Median correction forces the median log ratio to be 0
 Note: We assume there are as many over-expressed as underexpressed genes)
- For Affymetrix arrays we usually add a constant that takes us back to the original range.
 - It is common to use the median of the medians
 Typically, we subtract in the log-scale
- Usually this is not enough, e.g. it will not account for intensity dependent bias

More Elaborate Solutions

· Proposed solutions

- Force distributions (not just medians) to be the same:
 Amaratunga and Cabrera (2001)
- Bolstad et al. (2003)
- Use curve estimators, e.g. loess, to adjust for the effect:
 - Li and Wong (2001) Note: they also use a rank invariant set
 Colantuoni et al (2002)
 - Dudoit et al (2002)
- Use adjustments based on additive/multiplicative model:
 Rocke and Durbin (2003)
 - Huber et al (2002)
 - Cui et al (2003)

Quantile normalization

- All these non-linear methods perform similarly
- Quantiles is my favorite because its fast and conceptually simple
- Basic idea:
 - order value in each array
 - take average across probes
 - Substitute probe intensity with average
 - Put in original order

- Quantile normalization is popular with high-density one channel arrays
- With two-color platforms we have many effects to worry about and seems we should take advantage of the paired structure

ANOVA

- One of the first approaches was to fit ANOVA models to log intensities with a global effect for each Dye
- This does not correct for the non-linear dependence on intensity
- Recent implementations subtract a constant from the original scale to remove the non-linear effect i

For references look at papers by Gary Churchill

Correcting M approaches

- Most popular approach is to correct M directly
- We assume that we observer M + Bias and that Bias depends on Intensity (A), print-tip, plate, spatial location, etc...
- Idea: Estimate bias and remove it
- For continuous variables we assume the dependence is smooth and use loess to estimate them
- The normalized M is M estimated Bias
- Most versatile method

For details look for papers by Terry Speed and Gordon Smyth

Error model approaches

- Error model approaches describe the need for normalization with an additive background plus stochastic multiplicative error model
- From this model an variance stabilizing transformation is obtained
- Log ratios are no longer the measure of differential expression

For details see papers by Wolfgang Huber and David Rocke

Error models

Describe the possible outcomes of a set of measurements

Outcomes depend on:

-true value of the measured quantity (abundances of specific molecules in biological sample)

-measurement apparatus

(cascade of biochemical reactions, optical detection system with laser scanner or CCD camera)

Parameterization		
$y = a + \varepsilon + b \cdot x \cdot (1 + \eta)$ $y = a + \varepsilon + b \cdot x \cdot e^{\eta}$		two practically equivalent forms (h<<1)
a systematic background	same for all probes (per array x color)	per array x color x print-tip group
e random background	iid in whole experiment	iid per array
b systematic gain factor	per array x color	per array x color x print-tip group
h random gain fluctuations	iid in whole experiment	iid per array

Important issues for model fitting

Parameterization

variance vs bias

- "Heteroskedasticity" (unequal variances)
- ⇒ weighted regression or variance stabilizing transformation
- Outliers

⇒ use a robust method

- Algorithm
- If likelihood is not quadratic, need non-linear optimization. Local minima / concavity of likelihood?

Variance-bias trade-off and shrinkage estimators

Shrinkage estimators:

pay a small price in bias for a large decrease of variance, so overall the mean-squared-error (MSE) is reduced.

Particularly useful if you have few replicates.

Generalized log-ratio:

= a shrinkage estimator for fold change

- There are many possible choices, we chose "variancestabilization":
- + interpretable even in cases where genes are off in some conditions

+ can subsequently use standard statistical methods (hypothesis testing, ANOVA, clustering, classification...) without the worries about low-level variability that are often warranted on the log-scale

"Single color normalization"

n red-green arrays (R₁, G₁, R₂, G₂, ... R_n, G_n) within/between slides for (i=1:n) calculate $M_i = \log(R_i/G_i)$, $A_i = \frac{1}{2} \log(R_i^*G_i)$ normalize M_i vs A_i normalize M₁...M_n all at once

normalize the matrix of (R, G)then calculate log-ratios or any other contrast you like

Concluding Remarks

- Notice Normalization and background correction are related
- Current procedures are based on assumptions
- Many new problems clearly violate these assumptions
- We will discuss this problem in another lecture