Normalization

- Normalization is needed to ensure that differences in intensities are indeed due to differential expression, and not some printing, hybridization, or scanning artifact
- Normalization is necessary before any analysis which involves within or between slides comparisons of intensities, e.g., clustering, testing.

Somewhat different approaches are used in two color and one-color technologies

Example of Replicate Data

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example of Replicate Data

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Most Common Problem

Intensity dependent effect: Different background level most likely culprit

Scatter Plot

Demonstrates importance of MA plot

Two-color platforms

- Platforms that use printing robots are prone to many systematic effects:
- Dye
- Print-tip
- Plates
- Print order
- Spatial
\qquad
- Some examples follow

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What can we do?

- Throw away the data and start again? Maybe.
- Statistics offers hope:
- Use control genes to adjust
- Assume most genes are not differentially expressed
- Assume distribution of expression are the same

Simplest Idea

Assume all arrays have the same median log expression or relative log expression

Subtract median from each array
In two-color platforms, we typically correct the Ms. Median correction forces the median log ratio to be 0

Note: We assume there are as many over-expressed as under expressed genes)

For Affymetrix arrays we usually add a constant that takes us back to the original range.

- It is common to use the median of the medians
- Typically, we subtract in the log-scale

Usually this is not enough, e.g. it will not account for intensity dependent bias

House Keeping Genes

I rarely find house keeping genes useful

More Elaborate Solutions

- Proposed solutions
- Force distributions (not just medians) to be the same:

Amaratunga and Cabrera (2001)
Bolstad et al. (2003)

- Use curve estimators, e.g. loess, to adjust for the effect: Li and Wong (2001) Note: they also use a rank invariant set Colantuoni et al (2002) Dudoit et al (2002)
- Use adjustments based on additive/multiplicative model:
- Rocke and Durbin (2003)
- Huber et al (2002)
- Cuiet al (2003)

Quantile normalization

- All these non-linear methods perform similarly
- Quantiles is my favorite because its fast and conceptually simple \qquad
- Basic idea:
- order value in each array
- take average across probes
- Substitute probe intensity with average
- Put in original order

Example of quantile normalization

Before Quantile Normalization

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

After Quantile Normalization

A worry is that it over corrects

Two-color Platforms

- Quantile normalization is popular with high-density one channel arrays
- With two-color platforms we have many effects to worry about and seems we should take advantage of the paired structure

ANOVA

- One of the first approaches was to fit ANOVA models to log intensities with a global effect for each Dye
- This does not correct for the non-linear dependence on intensity
- Recent implementations subtract a constant from the original scale to remove the non-linear effect i

For references look at papers by Gary Churchill

Different Background

Above is MA for $R=50+S, G=100+S$

Correcting M approaches

- Most popular approach is to correct M directly
- We assume that we observer M + Bias and that Bias depends on Intensity (A), print-tip, plate, spatial location, etc...
- Idea: Estimate bias and remove it
- For continuous variables we assume the dependence is smooth and use loess to estimtate them
- The normalized M is M - estimated Bias
- Most versatile method \qquad

For details look for papers by Terry Speed and Gordon Smyth

Example: Intensity Effect

- The most common problem is intensity dependent effects
- Probably due to different background
- Loess is used to estimate and remove this effects

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Print-tip Loess

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Error model approaches

- Error model approaches describe the need for normalization with an additive background plus stochastic multiplicative error model
- From this model an variance stabilizing transformation is obtained
- Log ratios are no longer the measure of differential expression

[^0]

Error models

Describe the possible outcomes of a set of measurements

Outcomes depend on:
-true value of the measured quantity (abundances of specific molecules in biological sample)
-measurement apparatus
(cascade of biochemical reactions, optical detection system with laser scanner or CCD camera)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

> Parameterization		
$\begin{aligned} & y=a+\varepsilon+b \cdot x \cdot(1+\eta) \\ & y=a+\varepsilon+b \cdot x \cdot e^{\eta} \end{aligned}$		two practically equivalent forms (h<<1)
a systematic background	same for all probes (per array x color)	per array x color x print-tip group
e random background	iid in whole experiment	iid per array
b systematic gain factor	per array x color	per array x color x print-tip group
h random gain fluctuations	iid in whole experiment	iid per array

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Important issues for model fitting

Parameterization
variance vs bias
"Heteroskedasticity" (unequal variances)
\Rightarrow weighted regression or variance stabilizing transformation
Outliers
\Rightarrow use a robust method
Algorithm
If likelihood is not quadratic, need non-linear optimization. Local minima / concavity of likelihood?

variance stabilizing transformations

X_{u} a family of random variables with
$E X_{u}=u, \operatorname{Var} X_{u}=v(u)$. Define
$f(x)=\int^{x} \frac{1}{\sqrt{v(u)}} d u$
\qquad
\qquad
\qquad
\qquad
\qquad
derivation: linear approximation
$\Rightarrow \operatorname{var} f\left(X_{u}\right) \approx$ independent of u
\qquad
\qquad

variance stabilizing transformations

$$
f(x)=\int^{x} \frac{1}{\sqrt{v(u)}} d u
$$

\qquad
\qquad
1.) constant variance ('additive') $v(u)=s^{2} \Rightarrow f \propto u$
2.) constant $C v$ (multiplicative') $v(u) \propto u^{2} \Rightarrow f \propto \log u$
3.) offset $\quad v(u) \propto\left(u+u_{0}\right)^{2} \Rightarrow \quad f \propto \log \left(u+u_{0}\right)$
\qquad
\qquad
\qquad
4.) additive and multiplicative

$$
v(u) \propto\left(u+u_{0}\right)^{2}+s^{2} \Rightarrow f \propto \operatorname{arsinh} \frac{u+u_{0}}{s}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

the transformed model

$$
\begin{aligned}
\operatorname{arsinh} \frac{Y_{k i}-a_{s i}}{b_{s i}} & =\mu_{k}+\varepsilon_{k i} \\
\varepsilon_{k i} & : N\left(0, c^{2}\right)
\end{aligned}
$$

s: probe strata (e.g. print-tip, region)

profile log-likelihood

$$
\operatorname{pll}(a, b)=\sup _{c, \mu} l l(a, b, c, \mu)
$$

Here:

$$
\begin{aligned}
& \operatorname{pll}\left(a_{1}, b_{1}, \ldots, a_{d}, b_{d}\right)= \\
& =-n d \log \hat{\sigma}+\sum_{k=1}^{n} \sum_{i=1}^{d} \log h_{i}^{\prime}\left(y_{k i}\right) \\
& =-\frac{n d}{2} \log \left(\sum_{k=1}^{n} \sum_{i=1}^{d}\left(h_{i}\left(y_{k i}\right)-\hat{\mu}_{k}\right)^{2}\right)+\sum_{k=1}^{n} \sum_{i=1}^{d} \log h_{i}^{\prime}\left(y_{k i}\right)
\end{aligned}
$$

"usual" log-ratio $\log \frac{x_{1}}{x_{2}}$
'glog' (generalized \log-ratio) $\log \frac{x_{1}+\sqrt{x_{1}^{2}+c_{1}^{2}}}{x_{2}+\sqrt{x_{2}^{2}+c_{2}^{2}}}$
\mathbf{c}_{1}, c_{2} are experiment specific parameters (~level of background noise)

Variance-bias trade-off and shrinkage estimators
Shrinkage estimators:
pay a small price in bias for a large decrease of variance,
so overall the mean-squared-error (MSE) is reduced.
Particularly useful if you have few replicates.
Generalized log-ratio:
= a shrinkage estimator for fold change
There are many possible choices, we chose "variance-
stabilization":
+ interpretable even in cases where genes are off in some
conditions
+ can subsequently use standard statistical methods
(hypothesis testing, ANOVA, clustering, classification...)
without the worries about low-level variability that are often
warranted on the log-scale

"Single color normalization"

\qquad
n red-green arrays $\left(R_{1}, G_{1}, R_{2}, G_{2}, \ldots R_{n}, G_{n}\right)$ \qquad
within/between slides
for ($\mathrm{i}=1: n$) \qquad
calculate $M_{i}=\log \left(R_{i} / G_{i}\right), A_{i}=\frac{1}{2} \log \left(R_{i}^{*} G_{i}\right)$
normalize M_{i} vs A_{i}
normalize $M_{1} \ldots M_{n}$
all at once
normalize the matrix of (R, G)
then calculate log-ratios or any other
contrast you like

\qquad

Concluding Remarks

- Notice Normalization and background correction are related
- Current procedures are based on assumptions
- Many new problems clearly violate these assumptions
- We will discuss this problem in another lecture

[^0]: For details see papers by Wolfgang Huber and David Rocke

