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NormalizationNormalization

• Normalization is needed to ensure that differences
in intensities are indeed due to differential
expression, and not some printing, hybridization, or
scanning artifact.

• Normalization is necessary before any analysis
which involves within or between slides
comparisons of intensities, e.g., clustering, testing.

• Somewhat different approaches are used in two-
color and one-color technologies

Example of Replicate DataExample of Replicate Data

Here different scanners were used

Example ofExample of  Replicate DataReplicate Data
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MostMost  Common ProblemCommon Problem

Intensity dependent effect: Different
background level most likely culprit

Scatter PlotScatter Plot

Demonstrates importance of MA plot

Two-color platformsTwo-color platforms
• Platforms that use printing robots are

prone to many systematic effects:
– Dye
– Print-tip
– Plates
– Print order
– Spatial

• Some examples follow
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Print-tip EffectPrint-tip Effect

spotting pin quality decline

after delivery of 3x105 spots

after delivery of 5x105 spots

H. Sueltmann DKFZ/MGA

Plate effectPlate effect
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Bad Plate EffectBad Plate Effect

Bad Plate EffectBad Plate Effect

Print Order EffectPrint Order Effect
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Spatial EffectSpatial Effect

Spatial EffectsSpatial Effects

R    Rb R-Rb
color scale by rank

spotted cDNA arrays, Stanford-type

another
array:

print-tip
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What can we do?What can we do?
• Throw away the data and start again? Maybe.
• Statistics offers hope:

– Use control genes to adjust
– Assume most genes are not differentially

expressed
– Assume distribution of expression are the

same

Simplest IdeaSimplest Idea
• Assume all arrays have the same median log expression or relative log

expression

• Subtract median from each array

• In two-color platforms, we typically correct the Ms. Median correction
forces the median log ratio to be 0
– Note: We assume there are as many over-expressed as under-

expressed genes)

• For Affymetrix arrays we usually add a constant that takes us back to
the original range.
– It is common to use the median of the medians
– Typically, we subtract in the log-scale

• Usually this is not enough, e.g. it will not account for intensity
dependent bias

House Keeping GenesHouse Keeping Genes

I rarely find house keeping genes useful
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More Elaborate SolutionsMore Elaborate Solutions
• Proposed solutions

– Force distributions (not just medians) to be the same:
• Amaratunga and Cabrera (2001)
• Bolstad et al. (2003)

– Use curve estimators, e.g. loess, to adjust for the effect:
• Li and Wong (2001) Note: they also use a rank invariant set
• Colantuoni et al (2002)
• Dudoit et al (2002)

– Use adjustments based on additive/multiplicative model:
• Rocke and Durbin (2003)
• Huber et al (2002)
• Cui et al (2003)

Quantile Quantile normalizationnormalization
• All these non-linear methods perform similarly
• Quantiles is my favorite because its fast and

conceptually simple
• Basic idea:

– order value in each array
– take average across probes
– Substitute probe intensity with average
– Put in original order

Example of Example of quantile quantile normalizationnormalization
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Before Before Quantile Quantile NormalizationNormalization

After After Quantile Quantile NormalizationNormalization

A worry is that it over corrects

Two-color PlatformsTwo-color Platforms
• Quantile normalization is popular with

high-density one channel arrays

• With two-color platforms we have many
effects to worry about and seems we
should take advantage of the paired
structure
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ANOVAANOVA
• One of the first approaches was to fit

ANOVA models to log intensities with a
global effect for each Dye

• This does not correct for the non-linear
dependence on intensity

• Recent implementations subtract a
constant from the original scale to
remove the non-linear effect i

For references look at papers by Gary Churchill

Different BackgroundDifferent Background

Above is MA for R=50+S, G=100+S

Correcting M approachesCorrecting M approaches
• Most popular approach is to correct M directly
• We assume that we observer M + Bias and

that Bias depends on Intensity (A), print-tip,
plate, spatial location, etc…

• Idea: Estimate bias and remove it
• For continuous variables we assume the

dependence is smooth and use loess to
estimtate them

• The normalized M is M - estimated Bias
• Most versatile method

For details look for papers by Terry Speed and Gordon Smyth 
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Example: Intensity EffectExample: Intensity Effect
• The most common problem is intensity

dependent effects
– Probably due to different background

• Loess is used to estimate and remove
this effects

LoessLoess
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Print-tip LoessPrint-tip Loess

Error model approachesError model approaches
• Error model approaches describe the

need for normalization with an additive
background plus stochastic
multiplicative error model

• From this model an variance stabilizing
transformation is obtained

• Log ratios are no longer the measure of
differential expression

For details see papers by Wolfgang Huber and David Rocke
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FollowingFollowing  Slides ProvidedSlides Provided
by Wolfgang Huberby Wolfgang Huber

  Error modelsError models
Describe the possible outcomes of a set of
measurements

Outcomes depend on:
-true value of the measured quantity
(abundances of specific molecules in biological sample)

-measurement apparatus
(cascade of biochemical reactions, optical detection
system with laser scanner or CCD camera)

!= +
iik ik

a a

ai per-sample offset

eik ~ N(0, bi
2s1

2)
  “additive noise”

bi per-sample
   normalization factor

bk sequence-wise
   probe efficiency

hik ~ N(0,s2
2)

   “multiplicative noise”

exp( )iik k ikb b b !=

ik ik ik ky a b x= +

 The two component model

measured intensity  =  offset  +       gain   × true abundance
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 The two-component model The two-component model

raw scale log scale

“additive” noise

“multiplicative” noise

B. Durbin, D. Rocke, JCB 2001

  ParameterizationParameterization
(1 )y a b x

y a b x e!

" !

"

= + + # # +

= + + # #

two practically
equivalent forms

(h<<1)

iid per arrayiid in whole
experiment

h random gain
fluctuations

per array x color
x print-tip group

per array x colorb systematic gain
factor

iid per arrayiid in whole
experiment

e random
background

per array x color
x print-tip group

same for all probes
(per array x color)

a systematic
background

 Important issues for model fitting Important issues for model fitting
Parameterization

variance vs bias

"Heteroskedasticity" (unequal variances)
⇒ weighted regression or variance stabilizing

transformation
Outliers
⇒ use a robust method
Algorithm
If likelihood is not quadratic, need non-linear

optimization. Local minima / concavity of
likelihood?
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  variance stabilizing transformationsvariance stabilizing transformations

Xu a family of random variables with

EXu=u, VarXu=v(u). Define

⇒ var f(Xu ) ≈ independent of u

1
( )

v( )

x

f x du
u

= !
derivation: linear approximation
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  variance stabilizing transformationsvariance stabilizing transformations

f(
x)

x

  variance stabilizing transformationsvariance stabilizing transformations
1

( )
v( )

x

f x du
u

= !

1.) constant variance (‘additive’)
2( ) sv u f u= ! "

2.) constant CV (‘multiplicative’) 2( ) logv u u f u! " !

4.) additive and multiplicative

2 2 0
0( ) ( ) arsinh

u u
v u u u s f

s

+
! + + " !

3.) offset
2

0 0( ) ( ) log( )v u u u f u u! + " ! +
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  the the ““glogglog”” transformation transformation

- - - f(x) = log(x)

——— hs(x) = asinh(x/s)

( )
( )

2arsinh( ) log 1

arsinh log log 2 0lim
x

x x x

x x
!"

= + +

# # =

P. Munson, 2001

D. Rocke & B. Durbin,
ISMB 2002

W. Huber et al., ISMB
2002

raw scale log glog

difference

log-ratio

generalized

log-ratio

constant part
variance:

proportional part

 glog

  the transformed modelthe transformed model

2

Y
arsinh

(0, )

siki
k ki

si

ki

a

b

N c

µ !

!

"
= +

:

i: arrays
k: probes
s: probe strata (e.g. print-tip, region)
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  profile log-likelihoodprofile log-likelihood

,

( , ) sup ( , , , )
c

pll a b ll a b c
µ

µ=

Here:

Least trimmed sum of squares regressionLeast trimmed sum of squares regression
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( )
2n/2

( ) ( )
i=1

( )i iy f x!"

minimize

- least sum of squares
- least trimmed sum of squares

P. Rousseeuw, 1980s

“usual” log-ratio

'glog'
(generalized
log-ratio)

+ +

+ +

1

2

2 2
1 1 1

2 2
2 2 2

log

log

x

x

x x c

x x c

c1, c2 are experiment specific parameters
(~level of background noise)
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  Variance Bias Trade-OffVariance Bias Trade-Off
Es
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log
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  Variance-bias trade-off and shrinkage estimatorsVariance-bias trade-off and shrinkage estimators

Shrinkage estimators:
pay a small price in bias for a large decrease of variance,
so overall the mean-squared-error (MSE) is reduced.

Particularly useful if you have few replicates.

Generalized log-ratio:
= a shrinkage estimator for fold change

There are many possible choices, we chose “variance-
stabilization”:
+ interpretable even in cases where genes are off in some
conditions
+ can subsequently use standard statistical methods
(hypothesis testing, ANOVA, clustering, classification…)
without the worries about low-level variability that are often
warranted on the log-scale

  ““Single color normalizationSingle color normalization””
n red-green arrays (R1, G1, R2, G2,… Rn, Gn)
within/between slides

for (i=1:n)
calculate Mi= log(Ri/Gi), Ai= ½ log(Ri*Gi)
normalize Mi vs Ai

normalize M1…Mn
all at once

normalize the matrix of (R, G)
 then calculate log-ratios or any other 

contrast you like
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Back to you Back to you RafaRafa!!

Concluding RemarksConcluding Remarks
• Notice Normalization and background

correction are related
• Current procedures are based on

assumptions
• Many new problems clearly violate

these assumptions
• We will discuss this problem in another

lecture


