Affymetrix Probe Level Analysis

Rafael A. Irizarry and Zhijin Wu Department of Biostatistics, JHU Johnson and Johnson, 12/5/3

Contact Information

- e-mails: <u>rafa@jhu.edu</u>, <u>zwu@jhsph.edu</u>
- Personal webpages:
- http://www.biostat.jhsph.edu/~ririzarr
- http://www.biostat.jhsph.edu/~zwu

Acknowledgements

- Paco Martinez-Murillo, Forrest Spencer (JHU)
- Felix Naef (Rockefeller)
- Ben Bolstad, Sandrine Dudoit, Terry Speed (Berkeley)
- Jean Yang (UCSF)
- Robert Gentleman (Harvard)
- Wolfgang Huber (Germany)
- Johnson & Johnson

Outline

- Quick review of technology
- Overview of Issues
- Previous Work
- RMA
- Improvements to RMA

Applications of microarrays

- Measuring transcript abundance
- Differential Expression
- Classifying samples
- Detecting expression pattern
- Other applications:
- Genotyping
- TAG arrays

How they work

Before Labelling

Before Hybridization

After Hybridization

Scanner Image

Quantification

Microarray Image

Case Study: Preprocessing Affymetrix GeneChip Arrays

Compliments of D. Gerhold

GeneChip[®] Expression Array Design

Figure 1-3 Expression tiling strategy

Before Hybridization

More Realistic

Non-specific Hybridization

GeneChip[®] Expression Array Design

Figure 1-3 Expression tiling strategy

Statistical Problem

- Each gene is represented by 11-20 pairs (PM and MM) of probe intensities
- Each array has 8K-20K genes
- Usually there are various arrays
- Obtain measure for each gene on each array:

Summarize probeset data

 Background adjustment and normalization are issues

Default until 2002 (MAS 4.0)

GeneChip[®] software used Avg.diff

$$Avg.diff = \frac{1}{|\mathsf{A}|} \sum_{j \in \mathsf{A}} (PM_j - MM_j)$$

- with A a set of "suitable" pairs chosen by software.
- Obvious Problems:
 - Many negative expression values
 - No log transform

Why use log?

Original scale

Log scale

Current default (MAS 5.0)

GeneChip[®] new version uses something else

 $signal = TukeyBiweight\{\log(PM_{i} - MM_{i}^{*})\}$

- with *MM** a version of MM that is never bigger than PM.
- Ad-hoc background procedure and scale normalization are used.

Can this be improved?

Α

Log-scale scatter plot

Can this be improved?

Α

Precision/Accuracy

• It appears precision can be improved. How does it relate to accuracy?

Spike-in experiments (Affymetrix and GeneLogic)

Dilution Study (GeneLogic)

Use Spike-In Experiment

First academic alternative: dChip

Li and Wong fit a model

$$PM_{ij} - MM_{ij} = \theta_i \phi_j + \varepsilon_{ij}, \varepsilon_{ij} \propto N(0, \sigma^2)$$

Here θ_i represents expression on chip *i* and ϕ_i represents the *probe effect*

A non-linear normalization technique is used and the model assumptions are used to remove outliers.

dChip is better but still room for improvement

Α

Three steps

From the spike-in data we learn that:

- We need to background adjust
- Normalize
- Summarize appropriately (in the log-scale)

PM

Why normalize?

Density of PM probe intensities for Spike-In chips

log(PM)

compriments of Den Bolstad
Why correct for non-specific hyb?

One MM not enough? Look for more!

RMA

- Robust Multiarray Analysis (RMA) is a 3-step approch:
 - ignores MM and remove global background
 - quantile normalize
 - use median polish to estimate log expression robustly
- Irizarry et al: Biostatistics (2003)
- Irizarry et al: NAR (2003)
- affy R package (<u>www.bioconductor.org</u>)

Background adjustment

Deterministic Model

PM = B + N + SMM = B + N

PM - MM = S

Do MMs measure non-specific binding? Look at Yeast DNA hybridized to Human Chip(HGU95) log (PM-B) v log (MM-B)

Not perfectly: This explains large variance

Stochastic Model (Additive background/multiplicative error)

 $PM = B_{PM} + N_{PM} + S,$ $MM = B_{MM} + N_{MM}$

log (N_{PM}), log (N_{MM}) ~ Bivariate Normal ($\rho \approx 0.7$) S = exp ($\Theta + \alpha + \varepsilon$) Θ is the quantity of interest (log scale expression)

E[PM - MM] = S, butVar[log(PM - MM)] ~ 1/exp(Θ) (can be very large)

Can we just ignore background?

PM is a biased estimate of Θ

Alternative Approach

Predict log(S) from PM,MM

For example: 1) *E[log(S)* | *PM, MM]*

2) Estimate O and obtain standard error:Formal hypothesis testing

Quantile normalization

Summarization

- Do it in the log-scale
- Account for the probe effect
- Use robust procedure

Probe-effect

- Li and Wong (2001) first observed the very strong probe effect
- Within the same probeset, a large range of intensities (orders of magnitude) is observed. But across arrays, variance of intensities, for the same probe, is relatively small
- This probe effect explains high correlation between replicate arrays

Expression from 2 replicate arrays

Correlation is higher than 0.99

Expression from probesets divided into 2 (at random)

Correlation drops to 0.55

Probe effect seen in spike-ins

Why fit log scale additive model?

concentration

RMA

- Instead of subtracting MM,
 Assume PM = B + S
- To estimate S, use expectation: E[S|B+S], with B normal and S exponential
- After quantile normalization, assume:

$$log_2 S_{ij} = \Theta_i + \alpha_j + \varepsilon_{ij}$$

- Estimate Θ_i using robust procedure (median polish)
- We call this procedure RMA
- Does it make a difference?

Does it make a difference?

Perfect

MAS 5.0

RMA

3

Can RMA be improved?

Global Accuracy and Precision

	Slope	Median SD	Percentile	Rank
MAS 5.0	0.69	0.63	82.43	2188
RMA	0.61	0.11	99.96	4

Can RMA be improved?

Current Work

 Incorporate MM and sequence information to build an improved model and estimate

• Find alternative, faster, approaches to posterior mean

• Preliminary work: GCRMA

Predict NSB with sequence info

Naef's model

- Assume that being an A,T,G or C has a position dependent effect on probe effect
- Assume that this effect is a smooth function of position (Naef uses cubic polynomials we use splines)
- Use training data to get affinities

Naef uses these to predict probe effect

We use them to predict NSB too

Problems with MM

a) PM 8

Also they take up half the space on the chip (\$250)

More problems with MM

More problems with MM

Our model predicts this

Adjustment options

 Define a loss function, assume S is random variable, find empirical Bayes esimtate, e.g. for log ratio based loss the solution is:

E[log(S) | PM, MM]

 GCRMA assumes S follows power-law or log(S) is uniform

Does it help?

Global Accuracy and Precision

	Slope	Median SD	Percentile	Rank
MAS 5.0	0.69	0.63	82.43	2188
RMA	0.61	0.11	99.96	4
GCRMA	0.85	0.08	99.98	2

Local slopes also improve

Does it help?

ROC for FC=2 spikes

ROC for low concentration spikes

Local Ranks

	-2:-1	-1:0	0:1	1:2	2:3	3:4	4:5	5:6	6:7	7:8	8:9	9:10
MAS_5.0	1715	2736	2282	1998	1898	1935	1887	2051	2352	2633	3976	4128
RMA	380	360	27	5	3	3	3	3	5	10	76	408
GCRMA	15	8	4	2	3	3	3	4	9	18	86	161
% of data	25	16	18	17	11	6	2	1	1	0	0	0

Conclusion

- Data exploration useful tool for quality assessment and motivating models
- Statistical thinking helpful for interpretation
- Statistical models may help find signals in noise
- Physical models help improve accuracy

Supplemental Slide

Local Ranks

	-2:-1	-1:0	0:1	1:2	2:3	3:4	4:5	5:6	6:7	7:8	8:9	9:10
MAS_5.0	1715	2736	2282	1998	1898	1935	1887	2051	2352	2633	3976	4128
dChip	961	907	200	113	61	52	52	75	102	192	477	962
RMA	380	360	27	5	3	3	3	3	5	10	76	408
GCRMA	15	8	4	2	3	3	3	4	9	18	86	161
% of data	25	16	18	17	11	6	2	1	1	0	0	0