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Applications of microarrays

Measuring transcript abundance  Brain
—  Differential Expression
—  Classifying samples J( '
— Detecting expression pattern
« Other applications:

—  Genotyping

— TAG arrays




How they work

DMNA is denatured
by heating Renaturation
on conling

ENA strand DhA strand

Nucleic Acid Hybridization




Before Labelling




Before Hybridization




After Hybridization
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Quantification




Microarray Image




Case Study:
Preprocessing Affymetrix GeneChip Arrays

Hybridized Probe Cell
GeneChip Probe Array |

Single stranded,
‘O

labeled RNA target
1.28cm

Oligonucleotide probe —

Millions of copies of a specific
oligonucleotide probe

>200,000 different
complementary probes
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Image of Hybridized Probe Array

Compliments of D. Gerhold



GeneChip® Expression Array Design

mRNA reference sequence
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Spaced DNA probe pairs

e =

Reference sequence *

- TGTGATGGTGGGAATGGGTCAGAAGGACTCCTATGTGGGTGACGAGGCC ---

I_TTACCCAGTCTTEC; TGAGGATACACCCAC Perfect Match Oligo
[ TTACCCAGTCTTBICTGAGGATACACCCAC  Mismatch Oiigo

' Perfect match probe cells
Fluorescence Intensity Image

Mismatch probe cells

Figure 1-3 Expression tiling strategy




Before Hybridization




More Realistic




Non-specific Hybridization
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Statistical Problem

Each gene is represented by 11-20 pairs
(PM and MM) of probe intensities

Each array has 8K-20K genes
Usually there are various arrays
Obtain measure for each gene on each array:

Summarize probeset data

Background adjustment and normalization
are issues



Default until 2002 (MAS 4.0)

« GeneChip® software used Avg.diff
|

Avg diff =
\A

« with A a set of “suitable” pairs chosen by
software.

> (PM,-MM )

JeA

* Obvious Problems:
— Many negative expression values
— No log transform



Why use log?

Original scale Log scale

I T I
5000 10000 20000




Current default (MAS 5.0)

« GeneChip® new version uses something else

signal = TukeyBiweight{log(PM ; — MM j )}

« with MM*a version of MM that is never bigger
than PM.

« Ad-hoc background procedure and scale
normalization are used.



Can this be improved?




Log-scale scatter plot
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MvA Plot
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Can this be improved?




Precision/Accuracy

* |t appears precision can be improved. How
does it relate to accuracy?

* Spike-in experiments (Affymetrix and
Genelogic)

 Dilution Study (GenelLogic)



Use Spike-In Experiment




First academic alternative: dChip

Li and Wong fit a model

lj’

PM,—MM,=0¢ +¢,,6, <N0,c°)

Here . represents expression on chip /
and ¢, represents the probe effect

A non-linear normalization technique is used and
the model assumptions are used to remove

outliers.



dChip is better

but still room for improvement




Three steps

From the spike-in data we learn that:

* We need to background adjust
 Normalize
« Summarize appropriately (in the log-scale)



Why background correct?

Concentration of 0 pM o ) Concentration of 0.5 pM
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Why background correct?




Why background correct?

a) Original scale
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b) Log (base 2) scale

Nominal log concentrations



Why normalize?

Density of PM probe intensities for Spike-In chips

s After Quantile Mormalization

log(Ph)




Why correct for non-specific hyb?

One MM not enough? Look for more!



RMA

Robust Multiarray Analysis (RMA) is a 3-step
approch:

— ignores MM and remove global background

— quantile normalize

— use median polish to estimate log expression robustly

Irizarry et al: Biostatistics (2003)
Irizarry et al: NAR (2003)

affy R package (www.bioconductor.org)




Background adjustment



Deterministic Model

PM=B+N+S
MM =B + N

PM - MM =S



Do MMs measure non-specific binding?

Look at Yeast DNA hybridized to Human Chip(HGU95)
log (PM-B) v log (MM-B)
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Not perfectly: This explains large variance



Stochastic Model
(Additive background/multiplicative error)
PM = Bp,, + Npy, + S,
MM = B, ,,,+ Ny

log (Npy,), log (N,,,) ~ Bivariate Normal (p = 0.7)
S=exp(©+a+c¢)
© is the quantity of interest (log scale expression)

E[PM—- MM ] =S, but
Var[ log( PM — MM ) | ~ 1/exp(©) (can be very large)



Can we just ignore background?

a) Accuracy b) Precision

— PM

= = PM-MM

+ + Adjusted for O
+ = Adjusted for N,O

Log (base 2) Standard Deviation
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Alternative Approach

Predict log(S) from PM,MM

For example:
1) E[ log(S) | PM, MM ]

2) Estimate © and obtain standard error:
Formal hypothesis testing



Quantile normalization

Density of PM probe intensities for Spike-In chips

— After Quantile Normalization

10

log(PM)




Summarization

* Do itin the log-scale
* Account for the probe effect
* Use robust procedure



Probe-effect

* Liand Wong (2001) first observed the very
strong probe effect

* Within the same probeset, a large range of
intensities (orders of magnitude) is
observed. But across arrays, variance of
intensities, for the same probe, is relatively
small

* This probe effect explains high correlation
between replicate arrays



Expression from 2 replicate arrays
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Correlation is higher than 0.99



Expression from probesets divided
into 2 (at random)

D
w
o
©
<
-
=
]
o
o]
w
£
S
p -
E
|
o
w
7]
0]
E
o
>
L

2 4 6 8 10 12 14

Expression from first half-set

Correlation drops to 0.55



INn spike-ins

Probe effect seen
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Why fit log scale additive model?

concentration




RMA

 |nstead of subtracting MM,
Assume PM =B + S

* To estimate §, use expectation: E/S|B+S/, with B
normal and S exponential

 After quantile normalization, assume:
log,S; = ©;+a; +¢;

« Estimate ©; using robust procedure (median
polish)

* We call this procedure RMA

* Does it make a difference?
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Does it make a difference?
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MAS 5.0
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RMA
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Can RMA be improved?

Global Accuracy and Precision

Slope Median SD Percentile Rank
MAS 5.0 0.69 0.63 8243 2188
RMA 0.61 0.11 99.96 4



Can RMA be improved?

Accuracy
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Current Work

* Incorporate MM and sequence information
to build an improved model and estimate

* Find alternative, faster, approaches to
posterior mean

* Preliminary work: GCRMA



Predict NSB with sequence info
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Naef’'s model

* Assume that being an A,T,G or C has a
position dependent effect on probe effect

* Assume that this effect is a smooth
function of position (Naef uses cubic
polynomials we use splines)

» Use training data to get affinities



Naef uses these to predict probe effect

spike-in Concentration= 64
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We use them to predict NSB too
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More problems with MM
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More problems with MM
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Our model predicts this

a) Empirical PM vs. MM b) Simulated PM vs. MM
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Adjustment options

» Define a loss function, assume S is
random variable, find empirical Bayes
esimtate, e.g. for log ratio based loss the
solution is:

E[ log(S) | PM, MM ]

« GCRMA assumes S follows power-law or
log(S) is uniform



Does it help?

Global Accuracy and Precision

Slope Median SD Percentile Rank

MAS 5.0 0.69 0.63 82.43 2188
RMA 0.61 0.11 99.96 4
GCRMA 0.85 0.08 99.98 2

Local slopes also improve



Does it help?

Accuracy

MAS 5.0
RMA

GC-RMA (MLE)
GC-RMA (EB)
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ROC for FC=2 spikes
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ROC for low concentration spikes
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Local Ranks

-2.-1 -1:0 0:1 1:2 2:3 34 4:5 5:6 6:7 7:8 8:9 9:10

MAS_5.0 1715 2736 2282 1998 1898 1935 1887 2051 2352 2633 3976 4128
RMA 380 360 27 5 3 3 3 3 5 10 76 408

GCRMA 15 8 4 2 K 3 3 4 9 18 86 161

% of data 25 16 18 17 11 §) 2 1 1 0 0 0



Conclusion

Data exploration useful tool for quality
assessment and motivating models

Statistical thinking helpful for interpretation
Statistical models may help find signals in noise

Physical models help improve accuracy
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Local Ranks

-2.-1 -1:0 0:1 1:2 2:3 34 4:5 56 6:7 7:8 8:9 9:10

MAS_5.0 1715 2736 2282 1998 1898 1935 1887 2051 2352 2633 3976 4128

dChip 961 907 200 113 61 52 52 75 102 192 477 962
RMA 380 360 27 5 3 3 3 3 S) 10 76 408
GCRMA 15 8 4 2 3 3 3 4 9 18 86 161

% of data 25 16 18 17 11 §) 2 1 1 0 0 0




