
Chapter 11

Classification Algorithms and
Regression Trees

The next four paragraphs are from the book by Breiman et. al.

At the university of California, San Diego Medical Center, when a heart attack
patient is admitted, 19 variables are measured during the first 24 hours. They in-
clude BP, age and 17 other binary covariates summarizing the medical symptoms
considered as important indicators of the patient’s condition.

The goal of a medical study can be to develop a method to identify high risk
patients on the basis of the initial 24-hour data.
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Figure 11.1: Ad-hoc decision tree for risk.

The next figure shows a picture of a tree structured classification rule that was
produced in the study. The letter F means no high and the letter G means high
risk.

How can we use data to construct trees that give us useful answers. There is a
large amount of work done in this type of problem. We will give an introductory
description in this section.
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The material here is based on lectures by Ingo Ruczinski.

11.1 Classifiers as Partitions

Notice that in the example above we predict a positive outcome if both blood pres-
sure is highand age is higher than 62.5. This type of interaction is hard to describe
by a regression model. If you go back and look at the methods we presented you
will notice that we rarely include interaction terms mainly because of the curse of
dimensionality. There are too many interactions to consider and too many ways to
quantify their effect. Regression trees thrive on such interactions. What is a curse
for parametric and smoothing approaches is a blessing for regression trees.

A good example is the following olive data:

• 572 olive oils were analyzed for their content of eight fatty acids (palmitic,
palmitoleic, stearic, oleic, linoleic, arachidic, linolenic, and eicosenoic).

• There were 9 collection areas, 4 from Southern Italy (North and South Apu-
lia, Calabria, Sicily), two from Sardinia (Inland and Coastal) and 3 from
Northern Italy (Umbria, East and West Liguria).

• The concentrations of different fatty acids vary from up to 85% for oleic
acid to as low as 0.01% for eicosenoic acid.

• See Forina M, Armanino C, Lanteri S, and Tiscornia E (1983).Classifi-
cation of olive oils from their fatty acid composition. In Martens H and



11.1. CLASSIFIERS AS PARTITIONS 249

Figure 11.2: Olive data.

Russwurm Jr H, editors, Food Research and Data Analysis, pp 189-214.
Applied Science Publishers, London.

The data look like this:

Notice that we can separate the covariate space so that we get perfect prediction
without a very complicated “model”.
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Figure 11.3: Simple partition with 0 training errors.
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Figure 11.4: Tree that goes with previous plot.

The tree representation of this picture is

Partition such as this can also handle data where linear methods work well. A
good (and very famous) example is Fisher’s Iris Data:

However, none of the methods that we have describe permit a division of the space
without using many parameters.
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Figure 11.5: Iris Data.
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Figure 11.6: Simple partition with almost no training errors.
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Figure 11.7: Tree for the previous plot.



11.2. TREES 255

11.2 Trees

These data motivates the approach of partitioning the covariate spaceX into dis-
joint setsA1, . . . , Aj with Ĝ = j for all x ∈ Aj. There are too many ways of
doing so we ways to make the approach more parsimonious. Notice that linear
regression restricts divisions to certain planes.

Trees are a completely different way of partitioning. All we require is that the
partition can be achieved by successive binary partitions based on the different
predictors. Once we have a partition such as this we base our prediction on the
average of theY s in each partition. We can use this for both classification and
regression.

11.2.1 Example of classification tree

Suppose that we have a scalar outcome,Y , and ap-vector of explanatory variables,
X. AssumeY ∈ K = {1, 2, . . . , k}



256CHAPTER 11. CLASSIFICATION ALGORITHMS AND REGRESSION TREES

&%
'$

&%
'$

&%
'$

&%
'$

1 2 1

2 3

�
�

�
��

@
@

@
@@

�
�

�
�

�
�

A
A
A
A
A
A

�
�

�
�

�
�

A
A
A
A
A
A

�
�

�
�

�
�

A
A
A
A
A
A

x1

x2 x3

x2

< 5 ≥ 5

> 3 ≤ 3 = 2 6= 2

> 1 ≤ 1

The subsets created by the splits are callednodes. The subsets which are not split
are called terminal nodes.

Each terminal nodes gets assigned to one of the classes. So if we had 3 classes
we could getA1 = X5 ∪ X9, A2 = X6 andA3 = X7 ∪ X8. If we are using the
data we assign the class most frequently found in that subset ofX . We call these
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classification tress.

A classification tree partitions theX-space and provides a predicted value, per-
haps arg maxs Pr(Y = s|X ∈ Ak) in each region.

11.2.2 Example of regression tree

Again, suppose that we have a scalar outcome,Y , and ap-vector of explanatory
variables,X. Now assumeY ∈ R.
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A regression tree partitions theX-space into disjoint regionsAk and provides a
fitted value E(Y |X ∈ Ak) within each region.
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Figure 11.8: Comparison of CART and Linear Regression

11.2.3 CART versus Linear Models

See Figure 11.8.
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11.3 Searching for good trees

In general the idea the following:

1. Grow an overly large tree using forward selection. At each step, find the
bestsplit. Grow until all terminal nodes either

(a) have< n (perhapsn = 1) data points,

(b) are “pure” (all points in a node have [almost] the same outcome).

2. Prune the tree back, creating a nested sequence of trees, decreasing in com-
plexity.

A problem in tree construction is how to use the training data to determine the
binary splits ofX into smaller and smaller pieces. The fundamental idea is to
select each split of a subset so that the data in each of the descendant subsets are
“purer” than the data in the parent subset.

11.3.1 The Predictor Space

Suppose that we havep explanatory variablesX1, . . . , Xp andn observations.

Each of theXi can be
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a) a numeric variable:−→ n− 1 possible splits.

b) an ordered factor:−→ k − 1 possible splits.

b) an unordered factor:−→ 2k−1 − 1 possible splits.

We pick the split that results in the greatest decrease inimpurity. We will soon
provide various definitions of impurity.

11.3.2 Deviance as a measure of impurity

A simple approach to classification problems is to assume a multinomial model
and then use deviance as a definition of impurity.

AssumeY ∈ G = {1, 2, . . . , k}.

• At each nodei of a classification tree we have a probability distributionpik

over thek classes.

• We observe a random samplenik from the multinomial distribution speci-
fied by the probabilitiespik.

• GivenX, the conditional likelihood is then proportional to
∏

(leavesi)

∏
(classesk) pnik

ik .

• Define a devianceD =
∑

Di , where Di = −2
∑

k nik log(pik).

• Estimatepik by p̂ik = nik

ni.
.
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For the olive that we get the following values:

Root n11 = 246 n12 = 74 n13 = 116 n1 = 436 D = 851.2

p̂11 = 246
436

p̂12 = 74
436

p̂13 = 116
436

Split 1 n11 = 246 n12 = 0 n13 = 0 n1 = 246 D = 254.0

n21 = 0 n22 = 74 n23 = 116 n2 = 190

p̂11 = 1 p̂12 = 0 p̂13 = 0

p̂21 = 0 p̂22 = 74
190

p̂23 = 116
190

Split 2 n11 = 246 n12 = 0 n13 = 0 n1 = 246 D = 0

n21 = 0 n22 = 74 n23 = 0 n2 = 74

n31 = 0 n32 = 0 n33 = 116 n3 = 116

11.3.3 Other measures of impurity

Other commonly used measures of impurity at a nodei in classification trees are
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• the entropy:
∑

pik log(pik).

• the GINI index:
∑

j 6=k pijpik = 1−
∑

k p2
ik.

For regression trees we use the residual sum of squares:

D =
∑

casesj

(
yj − µ[j]

)2

whereµ[j] is the mean of the values in the node that casej belongs to.

11.3.4 Recursive Partitioning

INITIALIZE All cases in the root node.
REPEAT Find optimal allowed split.

Partition leaf according to split.
STOP Stop when pre-defined criterion is met.

11.4 Model Selection

• Grow a big treeT .

• Consider snipping off terminal subtrees (resulting in so-called rooted sub-
trees).
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• Let Ri be a measure of impurity at leafi in a tree. DefineR =
∑

i Ri.

• Define size as the number of leaves in a tree.

• Let Rα = R + α× size.

The set of rooted subtrees ofT that minimizeRα is nested.

11.5 General Points

What’s nice:

• Decision trees are very “natural” constructs, in particular when the explana-
tory variables are categorical (and even better, when they are binary).

• Trees are very easy to explain to non-statisticians.

• The models are invariant under transformations in the predictor space.

• Multi-factor response is easily dealt with.

• The treatment of missing values is more satisfactory than for most other
model classes.

• The models go after interactions immediately, rather than as an afterthought.

• The tree growth is actually more efficient than I have described it.
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• There are extensions for survival and longitudinal data, and there is an ex-
tension called treed models. There is even a Bayesian version of CART.

What’s not so nice:

• The tree-space is huge, so we may need a lot of data.

• We might not be able to find the “best” model at all.

• It can be hard to assess uncertainty in inference about trees.

• The results can be quite variable (the tree selection is not very stable).

• Actual additivity becomes a mess in a binary tree.

• Simple trees usually do not have a lot of predictive power.

• There is a selection bias for the splits.

11.6 CART References

• L Breiman.
Statistical Modeling: The Two Cultures.
Statistical Science, 16 (3), pp 199-215, 2001.

• L Breiman, JH Friedman, RA Olshen, and CJ Stone.
Classification and Regression Trees.
Wadsworth Inc, 1984.
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• TM Therneau and EJ Atkinson.
An Introduction to Recursive Partitioning Using the RPART Routines.
Technical Report Series No 61, Department of Health Science Research,
Mayo Clinic, Rochester, Minnesota, 2000.

• WN Venables and BD Ripley.
Modern Applied Statistics with S.
Springer NY, 4th edition, 2002.

11.7 Bagging

• Bagging predictors is a method for generating multiple versions of a predic-
tor and using these to get an aggregated predictor.

• The aggregation averages over the versions when predicting a numerical
outcome and does a plurality vote when predicting a class.

• The multiple versions are formed by making bootstrap replicates of the
learning set and using these as new learning sets.

• The vital element is the instability of the prediction method. If perturbing
the learning set can cause significant changes in the predictor constructed,
then bagging can improve accuracy.

Bagging =BootstrapAggregating

Reference: Breiman L (1996):Bagging Predictors, Machine Learning, Vol 24
(2), pp 123-140.
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Figure 11.9: Two bagging examples.

• Generate a sample of sizeN = 30 with two classes andp = 5 features, each
having a standard Gaussian distribution with pairwise correlation 0.95.

• The response was generated asY ∼ N
(
µ = 2− 4× I[X1>0.5] , σ2 = 1

)
A test sample of size 2000 was also generated from the same population.

Note:

• Bagging can dramatically reduce the variance of unstable procedures such
as trees, leading to improved prediction.
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Figure 11.10: Bagging example.
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• A simple argument can show why bagging helps under squared error loss:
averaging reduces variance and leaves bias unchanged.

Reference: Hastie T, Tibshirani R, and Friedman J (2001):The Elements of Sta-
tistical Learning, Springer, NY.

However:

• The above argument breaks down for classification under 0-1 loss.

• Other tree-based classifiers such as random split selection perform consis-
tently better.

Reference: Dietterich T (2000):An Experimental Comparison of Three Methods
for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Random-
ization, Machine Learning 40:139-157.

11.8 Random Forests

• Grow many classification trees using a probabilistic scheme.−→ A random
forest of trees!

• Classify a new object from an input vector by putting the input vector down
each of the trees in the forest.

• Each tree gives a classification (i. e. the tree votes for a class).
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Figure 11.11: boost grid 1
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Figure 11.12: bagg.grid.1000.stump
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Figure 11.13: bagg.grid.1000.tree
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• The forest chooses the classification having the most votes over all the trees
in the forest.

Adapted from:Random Forestsby Leo Breiman and Adele Cutler.http://www.math.usu.edu/ ∼adele/forests/

Each tree is grown as follows:

1. If the number of cases in the training set is N, sample N cases at random
- but with replacement, from the original data. This sample will be the
training set for growing the tree.

2. If there are M input variables, a number m<< M is specified such that at
each node, m variables are selected at random out of the M and the best split
on these m is used to split the node. The value of m is held constant during
the forest growing.

3. Each tree is grown to the largest extent possible. There is no pruning.

Two very nice properties of Random Forests:

• You can use the out of bag data to get an unbiased estimate of the classifi-
cation error.

• It is easy to calculate a measure of “variable importance”.

The forest error rate depends on two things:
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1. The correlation between any two trees in the forest. Increasing the correla-
tion increases the forest error rate.

2. The strength of each individual tree in the forest. A tree with a low error rate
is a strong classifier. Increasing the strength of the individual trees decreases
the forest error rate.

−→ Reducing m reduces both the correlation and the strength. Increasing it in-
creases both. Somewhere in between is an ”optimal” range of m - usually quite
wide. This is the only adjustable parameter to which random forests is somewhat
sensitive.

Reference: Breiman L.Random Forests. Machine Learning, 45(1):5-32, 2001.
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Figure 11.14: Random Forrest rf.grid.tree
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11.9 Boosting

Idea: Take a series of weak learners and assemble them into a strong classifier.

Base classifier:G(X)→ {−1, +1}

Training data:(xi, yi), i = 1, . . . , N .

The most popular version is Adaboost.

−→
Create a sequence of classifiers, giving higher influence to more accurate classifiers. During
the iteration, mis-classified observations get a larger weight in the construction of the next
classifier.

Reference: Freund Y and Schapire RE (1996):Experiments with a New Boosting
Algorithm, Machine Learning: Proceedings of the Thirteenth International Con-
ference, pp 148-156.

1. Initialize the observation weightswi = 1/N, i = 1, . . . , N .

2. For m = 1, . . . ,M

(a) Fit a classifierGm(x) to the training data using the weightswi.

(b) Compute

εm =

∑
i wi × I[yi 6=Gm(xi)]∑

i wi

.
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(c) Computeαm = log
(

1−εm

εm

)
.

(d) Set wi ← wi × exp
{
αmI[yi 6=Gm(xi)]

}
, i = 1, . . . , N .

3. Output G(x) = sign[
∑

m αmGm(x)] .

• Generate the featuresX1, . . . , X10 as standard independent Gaussian.

• The targetY is defined as1 if
∑

X2
j > χ2

10(0.5), and −1 otherwise.

• There are 2000 training cases with approximately 1000 cases in each class,
and 10,000 test observations.

11.10 Miscellaneous

• There are many flavors of boosting - even many flavors of Adaboost!

• What we talked about today also goes under the name Arcing:Adaptive
Reweighting (orResampling) andCombining.

• There are R packages on CRAN for Random Forests (randomForest) and
boosting (gbm).

• Find more details about the issues discussed in Hastie T, Tibshirani R, and
Friedman J (2001),The Elements of Statistical Learning.
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Figure 11.15: Boosting scores



11.10. MISCELLANEOUS 279

Figure 11.16: Boosting grid 1
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Figure 11.17: Boosting grid 2


