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Experimental DesignExperimental Design

Credit for some of today’s materials:
Jean Yang, Terry Speed, and Christina
Kendziorski

Experimental designExperimental design
• Choice of platform
• Array design

– Creation of probes
– Location on the array
– Controls

• Target samples

OutlineOutline
• General recommendations
• Types of replicates
• Layouts for two color platforms
• Pooling
• How many replicates
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Experimental designExperimental design

Proper experimental design is needed to
ensure that questions of interest can be
answered and that this can be done
accurately and precisely, given
experimental constraints, such as cost of
reagents and availability of mRNA.

Avoidance of biasAvoidance of bias
• Conditions of an experiment; mRNA extraction and

processing, the reagents, the operators, the scanners
and so on can leave a “global signature” in the
resulting expression data.

• Balance

• Randomization

Preparing mRNA samples:
Mouse model
Dissection of

tissue

RNA
Isolation

Amplification

Probe
labelling

Hybridization
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Preparing mRNA samples:
Mouse model
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Biological Replicates

Preparing mRNA samples:
Mouse model
Dissection of

tissue

RNA
Isolation

Amplification

Probe
labelling

Hybridization

Technical replicates

Preparing mRNA samples:
Mouse model
Dissection of

tissue

RNA
Isolation

Amplification

Probe
labelling

Hybridization

Technical replicates
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Technical replication - amplificationTechnical replication - amplification
Olfactory bulb experiment:
• 3 sets of two different samples performed on different days
• #10 and #12 were from the same RNA isolation and

amplification
• #12 and #18 were from different dissections and amplifications
• All 3 data sets were labeled separately before hybridization

Data provided by
Dave Lin (Cornell)

Layouts for two colorLayouts for two color
platformsplatforms

Graphical representationGraphical representation
For two color platforms it is assumed that the size of
the spot/probe effect is too big to trust the absolute
intensites. Thus we always use relative measurements

Vertices: mRNA samples; Edges: hybridization;
Direction: dye assignment.

Cy3
sample

Cy5 
sample
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Graphical representationGraphical representation
• The structure of the graph determines which effects

can be estimated and the precision of the estimates.
– Two mRNA samples can be compared only if there is a path

joining the corresponding two vertices.
– The precision of the estimated contrast then depends on the

number of paths joining the two vertices and is inversely
related to the length of the paths.

• Direct comparisons within slides yield more precise
estimates than indirect ones between slides.

• Experiments studying more than one effect can get
complicated if we optimize variance

Common reference Common reference designdesign

• Experiment for which the common reference design is appropriate
Meaningful biological control (C) Identify genes that responded differently  /
similarly across two or more treatments relative to control.

     Large scale comparison.  To discover tumor subtypes when you have many
different tumor samples.

• Advantages:
Ease of interpretation.
Extensibility - extend current study or to compare the results from current
study to other array projects.

T1

Ref

T2 Tn-1 Tn

T2 T3 T4T1

Ref
T2 T3 T4T1

T2 T3 T4T1 T2 T3 T4T1

Experiment for which a numberExperiment for which a number
of designs are suitable for useof designs are suitable for use

Time Series
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4 samples4 samples

C

A.BBA

B

C

A.B

A

B

C

A.B

A

B

C

A.B

A

Experiment for which a number ofExperiment for which a number of
designs are suitable for usedesigns are suitable for use

Comparing 2 classes ofComparing 2 classes of
estimatesestimates

direct direct vsvs  indirect estimatesindirect estimates

The simplest design question:The simplest design question:
Direct versus indirect comparisonsDirect versus indirect comparisons

Two samples (A vs B)
e.g.  KO vs. WT or mutant vs. WT

A B
A

B
R

Direct Indirect

σ2 /2 2σ2 

average (log (A/B)) log (A / R) – log (B / R )

These calculations assume independence of replicates: the reality is not so simple.
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Experimental resultsExperimental results
• 5 sets of experiments with

similar structure.

• We compare two methods, A
and B, and compate SE
obtained from replicates.

• Theoretical ratio of (A / B) is 1.6
(assuming independence)

• Experimental observation is 1.1
to 1.4.

SE

CaveatCaveat
• The advantage of direct over indirect comparisons was first

pointed out by Churchill & Kerr, and in general, we agree with
the conclusion. However, you can see in the last MA-plot that the
difference is not a factor of 2, as theory predicts.

• Why? Possibly because mRNA from the same extractions - and
pools of controls or reference material are the norm - give
correlated expression levels. In other words, the assumption of
independence between log(T/Ref) and log(C/Ref) is not valid.

Preparing mRNA samples:
Mouse model
Dissection of

tissue

RNA
Isolation

Amplification

Probe
labelling

Hybridization
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Extreme technical replicationExtreme technical replication
• 3 sets of self – self hybridization: (cerebellum vs cerebellum)
• Data 1 and Data 2 were labeled together and hybridized on two slides

separately.
• Data 3 was labeled separately.
• Comparing log-ratios between the 3 experiments

Data 1 Data 1

D
at

a 
2

D
at

a 
3

Data provided by
Elva Diaz (UC Davis)

Data provided by Grant Hartzog
and

Todd Burcin from UCSC

A B
A’ B’ Technical

replicatesa= log2A and b = log2B

Pairs plot of log-intensity

Looking only at constantly
 expressed genes only

a = log2A and b = log2B
a’= log2A’ and b’ = log2B’
t 2= var(a) ; variance of log signal

g1= cov(a, b);  covariance between measurements on
samples on the same slide.

g2= cov(a, a’); covariance between measurements on
technical replicates from different slides.

g3= cov(a, b’); covariance between measurements on
samples which are not technical replicates and not on
the same slide.

A B
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Implication for design
s2 = var(a-b) = 2(t 2 – g1)
c0 = cov(a – b, c – d) = 0
c1 = cov(a – b, a’ – b) = g2 – g3
c2 = cov(a – b, a’ – b’) = 2(g2 – g3) = 2c1

A B
A B

C D
A

B

C

Direct Direct vs vs Indirect - revisitedIndirect - revisited

A B
A

B
R

Direct Indirect

y = (a – b) + (a’ – b’)

Var(y/2) = σ2 /2 + c 1

y = (a – r) - (b – r’)

Var(y) = 2σ2  - 2c 1

Two samples (A vs B)
e.g.  KO vs. WT or mutant vs. WT

σ2  = 2c 1    efficiency ratio (Indirect / Direct) = 1
χ1  = 0  efficiency ratio (Indirect / Direct) = 4

SummarySummary
• Create highly correlated reference

samples to overcome inefficiency in
common reference design.

• Not advocating the use of technical
replicates in place of biological
replicates for samples of interest.
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Gene Specific Variance:Gene Specific Variance:
Pooling and PowerPooling and Power

CalculationsCalculations

Most common applicationsMost common applications
• Class prediction: In general, do not pool
• Class comparison?

– Pool everything is generally a bad idea
– But, other strategies exists

Common question inCommon question in
experimental designexperimental design

• Should I pool mRNA samples across
subjects in an effort to reduce the effect
of biological variability?
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Pooling samples...increases precision by reducing the variability
of the experimental material itself. When variability between
individual samples is large and the units are not too costly,
it may be worthwhile to pool samples.

-Churchill, Nature Genetics, 2002.

...if genetically identical, inbred mice are not used, then it is
necessary to do more experiments or to pool mice to effectively
average out differences due to genetic inhomogeneity...the same
considerations apply when using any other animal or human tissue.

       -Lockhart and Barlow, Nature Reviews, 2001.

Sample pooling can be a powerful, cost-effective, and rapid means
of identifying the most common changes in a gene expression
profile. We identified osteopontin as a clinically useful marker of
tumor progression by use of gene expression profiling on pooled
samples.           - Agrawal,..Quackenbush.. et al., JNCI, 2001.

 With regard to pooling RNA samples, this is one possible
approach,
 and obviously means you require fewer arrays. Genes that are
 consistently highly expressed should show up clearly against a
 background of moderately expressed genes. However, pooling
 samples can also have the effect of averaging out the less
 significant changes in expression.

    http://www.hgmp.mrc.ac.uk

Whether animals should be grouped together as a pool or analyzed
individually represents one issue in the design of toxicogenomics
studies. Some investigators advocate pooling...However, pooling
may cause misinterpretation of data if one animal shows a
remarkably distinct response, or lack of response.

        -Hamadeh, et al.,  Toxicological Sciences, 2002.

Two simple designsTwo simple designs
• The following two designs have roughly

the same cost:
– 3 individuals, 3 arrays
– Pool of three individuals, 3 technical

replicates
• To a statistician the second design

seems obviously worst. But, I found it
hard to convince many biologist of this.
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Cons of Pooling EverythingCons of Pooling Everything
• You can not measure within class variation
• Therefore, no population inference possible
• Mathematical averaging is an alternative way of

reducing variance. The standard error of the mean of
three numbers is 58% of the variance of each
individual measurement

• Pooling may have non-linear effects
• You can not take the log before you average
• You can not detect outliers

*If the measurements are independent and identically distributed

Cons specific to Cons specific to microarraysmicroarrays
• For now, forget about inference. Let us

concentrate on ranking correctly
• Different genes may have different

within class biological variances
• Not measuring this variance will result

in genes with larger biological variance
having a better chance of being
considered more important

Higher variance: larger fold changeHigher variance: larger fold change

In a three versus three comparison we compute fold change for each gene
From 12 individuals we estimate gene specific variance
If we pool we never see this variance
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CDFs of Sample Variances

Fold Change False PositivesFold Change False Positives

T-test from 12 versus 12 gives different answer than fold change from 3 versus 3

Problem with pooling everythingProblem with pooling everything

1) You can not measure variability
2) You can not take log before “averaging”
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Alternative pooling strategyAlternative pooling strategy
• Instead of pooling everything, how about

pooling groups?
• For example, will I obtain the same results

with 12 individuals on 12 chips as with 12
individuals on 4 chips ?

Design I

Subject mRNA Pool Array

Design II

Subjects mRNA Pool Array
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Individual
s

Pools of 2

A2

A3

B2

B3

A8

A9

B8

B9

A10
A11

B10
B11

A12

A14

B12

B14

A4
A7

B13
B15

Pools of 3
A2
A3
A5

B2
B3
B5

A5

A6

B5

B6
A6
A8
A9

B6
B8
B9

A10
A11
A4

B10
B11
B13

Tech RepsPools of12
AQ=
A2
A3
A5
A6
A8
A9
A10
A11
A12
A14
A4
A7

BQ=
B2
B3
B5
B6
B8
B9
B10
B11
B12
B14
B13
B15

A3 B3

A3 B3

AQ BQ

AQ BQ

AQ BQ

A12
A14
A7

B12
B14
B15

A2

A3

B2

B3

A10

A11

B10

B11

A12

A14 B14

B12

A8

A9

B8

B9

A5

A6

B5

B6

A1 B1

A4 B4

A7 B7

A13 B13

A15 B15
Thanks to NCI R03 CA103522 - 01

Pooling experiment

CDFs of Sample Variances

More on poolingMore on pooling
• In Kendziorski (2003) some technical

details are worked out to determine the
best pooling strategy

• These are based on assumptions that
can only be checked empirically

• For example, are mathematical and
biological averages the same?
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Notation

q : nominal level of expression.

rs : number of subjects that go into one pool.

ra : number of arrays that probe one pool.

np : number of pools.

For a given gene, one experiment results in np x ra observed
expression levels, denoted by Xij (i = 1,2,...,np),  j = 1,2,...,ra.

X estimates q

Some IssuesSome Issues
• Are the expectations in the previous slide really the

same? I.e. is mathematical averaging the same as
biological averaging?

• One problem is that the additive error and normality
assumptions may only hold if you take the log. But if
you take the log then the above assumption certainly
doesn’t hold because :

  E[log(X+Y)] ≠E[log(X)] + E[log(Y)]

Empirical evidence of thisEmpirical evidence of this
inequality probleminequality problem
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Some IssuesSome Issues
• Some published definition of equivalency are based

on gene-specific power calculations. But:
• We are interested in false positives and false negative

rates of lists. Various papers describe better
approaches, but

• How do we put cost into the equation? Biological
samples are usually much cheaper than arrays.

Bottom lineBottom line
• To certain extent we do not care if the

assumption hold perfectly
• More important is that we obtain similar

lists of interesting genes
• In this regarding some pooling

strategies work pretty well (but not
pooling everything)

Not much of a worry when looking atNot much of a worry when looking at
differential expressiondifferential expression
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Bottom line resultBottom line result

Conclusions and Future WorkConclusions and Future Work
• In general, pooling everything is not a

good idea
• When many samples are available but

arrays are scarce it might make sense
to pool

•  Is 100 on 10 better than 25 on 25? It is
still hard to answer

ReferencesReferences
• Pooling vs Non-Pooling

– Han, E.-S., Wu, Y., Bolstad, B., and Speed, T. P. (2003). A study of the effects
of pooling on gene expression estimates using high density oligonucleotide
array data. Department of Biological Science, University of Tulsa, February
2003.

– Kendziorski, C.M., Y. Zhang, H. Lan, and A.D. Attie. (2003). The efficiency of
mRNA pooling in microarray experiments. Biostatistics 4, 465-477. 7/2003

– Xuejun Peng, Constance L Wood, Eric M Blalock, Kuey Chu Chen, Philip W
Landfield, Arnold J Stromberg (2003). Statistical implications of pooling RNA
samples for microarray experiments. BMC Bioinformatics 4:26. 6/2003

– Kendziorski, C.M et al. (2005) Title TBA. To appear in PNAS.
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Power Calculations are HardPower Calculations are Hard
• What do we mean by power?
• Are we really doing inference?
• Different tissues will have different

variance distributions
• Some papers:

– Mueller, Parmigiani et al. JASA (2004)
– Rich Simon’s group Biostatistics (2005)

ConclusionsConclusions
• Spend your money on Biological replicates not

technical replicates
• Perform direct comparisons when you can but don’t

underestimate the logistical advantages of reference
designs

• Do not pool everything!
• Don’t trust rules of thumb regarding number of

replicates: different problems will need different
sample sizes

Sample sizeSample size

Data provided by Matt Callow
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 Design 1: Each subject’s mRNA is probed individually.
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