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  Genotyping with SNPGenotyping with SNP
chipschips

Contributors to this lecture: Benilton
Carvalho and Terry Speed

What are What are SNPsSNPs??
• SNPs make up 90% of all human genetic

variations, and SNPs with a minor allele
frequency of ≥ 1% occur every 100 to 300
bases along the human genome, on average.

• Variations in the DNA sequences of humans
can affect how humans develop diseases,
respond to pathogens, chemicals, drugs, etc.
As a consequence SNPs are of great value to
biomedical research and in developing
pharmacy products.

From Wikipedia

RememberRemember
• You have two alleles: From mom and

from dad
• Each one is either A or B, so you can be

AA, AB, BB
• Our task is to use microarrays to know

genotype for 1000s SNPs at a time
• Remember: DNA has to strands: sense

(+) and antisense (-)
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The The Affymetrix Affymetrix genotypinggenotyping
microarraymicroarray

Whole Genome Sampling Assay

1. Fractionate total genomic DNA with a restriction enzyme        ( e.g.
XBaI)

2. Ligate a single generic adaptor to the ends of all fragments
3. Use the generic adaptor as primer pair to carry out the PCR,

amplifying  fragment sizes (250 bp - 2,000 bp) such that the
• PCR is reliable and reproducible, and the
• Total PCR product is small enough to hybridize efficiently
4…. Fragment, label, hybridize, stain, wash, scan, analyse image, then

analyse data to call genotypes (our task).

Single primer assay:Single primer assay:
complexity reductioncomplexity reduction

250 ng Genomic  DNA
RE digestionXba XbaXba

Adapter 
ligation

Single Primer
Amplification

Fragmentation
and Labeling

Hyb & Scan on
Standard Hardware

Single primer assay: overviewSingle primer assay: overview
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TAGCCATCGGTANGTACTCAATGAT
Genomic DNA

ATCGGTAGCCATTCATGAGTTACTAPerfect Match probe for Allele A

ATCGGTAGCCATCCATGAGTTACTAPerfect Match probe for Allele B

A SNP

G
TAGCCATCGGTA   GTACTCAATGAT

Affymetrix SNP chip terminology

Genotyping: answering the question about the two 
copies of the chromosome on which the SNP is located:

Is a person AA , AG or GG at this 
Single Nucleotide Polymorphism?

Tiling strategyTiling strategy

TAGCCATCGGTA  N

SNP position 0

A / G
GTACTCAATGAT

ATCGGTAGCCAT  T

ATCGGTAGCCAT  C
ATCGGTAGCCAT  G

ATCGGTAGCCAT  A
CATGAGTTACTA
CATGAGTTACTA
CATGAGTTACTA
 CATGAGTTACTA

PM
MM

PM
MM

A
A

B
B

0 Allele
0 Allele

0 Allele
0 Allele

Central probe quartet

Tiling strategy, 2Tiling strategy, 2

TAGCCATCGGTA  N

SNP Position +4 

A / G
GTA C TCAATGATCAGCT

GTAGCCAT  T

GTAGCCAT  C
GTAGCCAT  C

GTAGCCAT  T
CAT G AGTTACTAGTCG
CAT C AGTTACTAGTCG
CAT G AGTTACTAGTCG
CAT C AGTTACTAGTCG

PM
MM

PM
MM

A
A

B 
B

+4 Allele
+4 Allele

+4 Allele
+4 Allele

+4 offset probe quartet
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In summary: probe level dataIn summary: probe level data
• Two alleles

• Two directions

• Two types (PM,MM)

• Up to 7 locations of the SNP in the probe

Affymetrix SNP probe tilingAffymetrix SNP probe tiling
strategy, 3strategy, 3

MMBMMBMMBMMBMMBMMBMMB

PMBPMBPMBPMBPMBPMBPMB

MMAMMAMMAMMAMMAMMAMMA

PMAPMAPMAPMAPMAPMAPMA

7654321

Repeated on the opposite strand: 56 probes for 10K.
More recently, 40: just 4 offset quartets instead of 6.

Central quartetOffset quartets Offset quartets

Probe IntensitiesProbe Intensities

Sample1
Genotype=AA

Sample2
Genotype=AB

Sample3
Genotype=BB

Fake (idealized) image for 3 samples on one SNP

Fake, as the probes are not all adjacent on the chip
Idealized, as all the probes are high or low as they
should be.
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Calling genotypes:Calling genotypes:
A modular approachA modular approach
MPAM: the first Affymetrix

SNP-calling algorithm,
used on the 10K SNP chip

Generalities concerningGeneralities concerning
MPAMMPAM

• Derive a reasonable though ad hoc summary statistic, here RAS
(feature extraction)

• Clusters the statistic in a sensible way, here using MPAM
(classification)

• Generates new calls by cluster membership, here using elliptical
regions, cf. bivariate normal (modelling).

     Ref: Liu, WM et al, Bioinformatics Dec 2003

MPAM: detection filterMPAM: detection filter
i  ∈ {S,T}  Sense or anTisense strand
j  ∈ {A,B}  allele
k  ∈ {1,…,7}  position of interrogation

Dijk = (PMijk – MMijk) / (PMijk + MMijk)

Dij  = median(Dijk)

D   = max(min(DSA,DTA), min(DSB,DTB))

SNPs with low D (<0.03) are not called.
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MPAM: feature extractionMPAM: feature extraction
i  ∈ {S,T}  Sense or anTisense strand (also +, - or 1,2)
j  ∈ {A,B}  allele
k  ∈ {1,…,7} position of interrogation

MMik = (MMiAk + MMiBk)/2

sik = Relative Allele Signal of kth quartet of strand i

sijk = max(PMijk – MMik,,0)

sik = siAk / (siAk + siBk)

si = median(sik)

si = Relative Allele Signal of strand i

Clustering and modelingClustering and modeling

MPAM: classification algorithmMPAM: classification algorithm
• Partitioning Around Medoids PAM
Kauffman and Rousseeuw, 1987

• Work with Relative Allele Signal RAS (sS, sT),  2-dim
feature space from both forward and reverse strands

• n points in feature space: x1, x2, …, xn
Assuming there are k = 2 and 3 groups
minimize fPAM = ∑i=1

n(min(d(xi, mt), t=1:k)

• MPAM (modified PAM): minimize
 fMPAM = fPAM - l ∑j=1

k(min(d(xa, xb), xa ∈ Gj, xb ∉ Gj)
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Plot courtesy of Chris Neff

Difference between PAM andDifference between PAM and
MPAMMPAM

The result of using
PAM with 3 groups on
the data for one SNP

The penalty used on 
MPAM is designed to
avoid just this situation.

Genotyping using robustGenotyping using robust
modelsmodels

MPAM ClassificationMPAM Classification
quality metricsquality metrics

Silhouette width for xi
a(i) is the av w/i group distance to xi
b(i) is the av bet group distance to xi

w(i) = (b(i) – a(i))/max(b(i), a(i))
w = average{w(i): i=1…n}.

Separation of the groups
sepf=median{|x_aa-x_ab|, |x_ab-x_bb|}
sepr=median{|y_aa-y_ab|, |y_ab-y_bb|}
 sep = min{sepf,sepr},
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Worked fine for the 10KWorked fine for the 10K

• 99.5% accuracy
• 99.998% reproducibility
• 97% call rate

Why not MPAM for 100K?Why not MPAM for 100K?
• Large sample size is needed for clustering
• Hard to handle SNPs with low minor allele

frequency: estimating location for missing
genotypes is difficult.

• Visual inspection is impossible
• Models are empirical, hard to make further

improvements after product launch -any
changes including experimental conditions,
scanner settings etc., will force  rerun of
experiments and rebuilding of models

Gentle critique of MPAMGentle critique of MPAM

• RAS ad hoc…why this rather than another measure?
(Possible answer: it works!)

• The procedure makes no use of many features of the
data, most importantly the known genotypes, and
repeatable probe behaviour

• Fails to exploit the massive parallelism inherent in the
100K SNP chip.
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Unified approach: theUnified approach: the
Dynamic model-basedDynamic model-based

algorithm, DMalgorithm, DM
Until recently the vendor-supplied genotype-calling algorithm.
Seeks the best fitting pattern of the above kind, including no
call (NC). It is a mix of normal likelihood-based model selection
and a Wilcoxon test, leading to a final p-value which is a form of
confidence statement about the call.

There is no training, and it is a single chip procedure.

However, the SNPs on the chip have been selected so that the
algorithm works on them.

DMDM
• Look at quartets individually and produce a score

under normal theory assumptions
• Combine scores across quartets to produce a

classification into genotypes (resistant to cross-
hybridization and model failure)

• Provides a “p-value”/goodness of classification metric

Ref: Di, X. et al, Bioinformatics May 2005

ni = number of pixels for feature i;  xi,j = measured value of pixel j
      µi = unknown mean pixel intensity;  σi = unknown SD of pixel
intensities, all for feature i ∈ {A,C,G,T}, x’ denotes reverse strand.

Null model (B for background)
  µA =  µC =  µG =  µT =  µB; µ’A =  µ’C =  µ’G =  µ’T =  µB

Illustrative homozygote model: CC (S for signal)
   µC =  µS; µA =  µG =  µT = µB; µ’C =  µS; µ’A =  µ’G =  µ’T =  µB

Illustrative heterozygote model: CT
   µC =  µT =  µS; µA =  µG =  µB; µ’C =  µ’T =  µS; µ’A =  µ’G =  µB

Likelihood, intensity scale, for each
quartet
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DM: combining quartet-levelDM: combining quartet-level
informationinformation

• Start with N probe quartets qi  i=1,...,N, N typically 10 or 14
• For each probe quartet qi evaluate log-likelihood LL of the 4 possible

models:
– LL(AA,i), LL(AB,i), LL(BB,i), LL(NC,i), NC=No Call

• For each probe quartet, transform log-likelihoods to scores:
– s(AA,i) = LL(AA,i) – max{LL(m,i), m ≠ AA}
– s(AB,i), s(BB,i), s(N,i) computed similarly

• Combine quartet-level results to a SNP-level result:
–  for each model m ∈ {AA,AB,BB,NC} use Wilcoxon signed rank test

on {s(m,i); i=1,…,N}
– Yields 4 p-values, the call and score for the SNP corresponds to

the model with the most significant p-value

DM on 30 CEPH trios: DM on 30 CEPH trios: HapMap HapMap Concordance &Concordance &
Mendelian Mendelian InheritanceInheritance

Why attempt an improvementWhy attempt an improvement
over DM?over DM?

• Perhaps the error rate is too high?

• There is reason to believe it can be improved by
– a) using the training/test set paradigm;
– b) carrying out multi-chip analyses, which identify and exploit

probe behaviour;  and
– c) exploiting the massive parallelism across SNPs.

• The 100K SNPs were selected from a much larger
screening set using DM. For the 500K and >1M SNP
chips, a higher yield is desirable, and perhaps a better
genotype-calling algorithm could achieve this.
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Robust Linear Model with theRobust Linear Model with the
Mahalanobis distance classifierMahalanobis distance classifier

• RLMM pronounced  pronounced ““REALMREALM””
• Based on an RMA-like model

– Uses PM only
– Linear additive multi-chip model on log scale
– A- and B-probe and chip effects
– Robustly estimated parameters

•  Classification using Mahalanobis’ distance
• Morphed into BRLMM; CRLMM coming up!

NotationNotation
• Once we are done with first part of

preprocessing we have the following:

θA and θB proportional to log of the amount of
fragments from allele A and B respectively

In principal these can only be (log of) 0, x, or 2x, but we
know better than to believe this.. In fact we know not
to expect the same cut-off to work for all SNPs

ItIt’’s nots not  easyeasy

This picture shows that most the information is in the left
right diagonal direction, i.e. in the log-ratios
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LabLab  EffectEffect

Why is this?Why is this?
• Our guess is that the PCR step introduces a

lot of SNP to SNP variation

• We have proxies for measuring PCR effect:
fragment sequence and fragment length

• We can examine the fragment sequence via
the probe sequence

Sequence effectSequence effect
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Sequence Effect Sequence Effect ctdctd

M

Different LabsDifferent Labs

Need for NormNeed for Norm

Lab 1 Lab 2 Lab 3
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NormalizationNormalization
• We normalize/summarize using RMA

(no BG correction) after correcting for
sequence and length effects on the log
intensities

• We then examine log-ratios
• We keep sense and antisense separate

““BrokenBroken”” probes (BRLMM) probes (BRLMM)

““BrokenBroken”” probes? probes?



15

Log-ratio biases persistLog-ratio biases persist

Different arrays, differentDifferent arrays, different  cut-offscut-offs

Length effect on MLength effect on M
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Intensity effect on MIntensity effect on M

Use mixture model to fix thisUse mixture model to fix this

• SNP denoted with I

• Z is true, so k = AA, AB or BB

• X are covariates that cause bias

After fixAfter fix
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After our normalizationAfter our normalization

General Improved SeparationGeneral Improved Separation

Fragment length effectFragment length effect
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““BrokenBroken”” probes (RLMM) probes (RLMM)

Preprocessing modelPreprocessing model
motivates genotype algorithmmotivates genotype algorithm

•Array denoted with j
•Shift in cluster center denoted with m
•Assume m are bivairate normal and
•Use training data to estimate
•Use empirical bayes approach for cases
with few data points

Predicting regionsPredicting regions
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ExampleExample


