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Types and features of microarray
time course experiments
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Types/features

• Typically short series:  k = 4-10 time points for
shorter,and 11-20 time points for  longer series; often
irregularly spaced; with no or few (< 5) replications.

• Can be periodic, as in the cell cycle: Cho et al.
(1998), Spellman et al.,(1998), or circadian rhythms,
Storch et al. (2002),

       OR
• May have no particular pattern, as in developmental

time courses: Chu et al. (1998), Wen et al. (1998),
Tamayo et al. (1999).
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Types/features, cont.

• May be longitudinal, where mRNA samples at
different times are extracted from the same unit (cell
line, tissue or individual), but more commonly cross-
sectional, where mRNA samples are from different
units.

• Gene expression values at different time points may
be correlated, especially in a longitudinal study, or
when a common reference design is used for a cross-
sectional study. At other times, the experimental
design induces correlations in cross-sectional studies.
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Types/features, completed.

• Two general types of hypotheses of interest:
   the one-sample (or one-class) problem: which genes

are changing in time?   and the 2 or >2 sample (or
class) problem: which genes are changing differently
in time across the samples (or classes)?

•  Two broad types of mRNA samples: from cells or cell
lines which give reasonably repeatable responses
within classes, and whole organism (mice, humans),
where there is a lot of response variability within
classes.
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Design of microarray time
course experiments
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Most important issues

The first issue is: longitudinal or cross-sectional? The question
revolves on whether it is important to measure change within
units.

For two-channel (cDNA or long oligo) arrays, a major question is
whether or not to use a reference design. Most frequently, the
answer is yes.

For very short two-channel time courses, the possibility arises of
optimizing the design for contrasts of interest.

Important design issues include not just assignment of mRNA to
arrays, but also the actual conduct of the experiment, including
preparation of the sample mRNA, the times of hybridizations,
and the equipment, reagents and personnel used.

9

First illustrative example:
A plant’s response to a pathogen.

.

Healthy Arabidopsis thaliana (mustard weed) plant
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A. thaliana response to infection by E. orontii

• Two lines of plants: Columbia, Col-0 = wildtype (wt),
and an enhanced disease susceptibility line eds16
(mutant).

• Objective: to identify genes whose temporal
expression patterns following infection differ between
wt (Col-0) and mutant (eds16).
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BOX (12 Plants)

FLAT (6 Boxes)
•  Plants are evenly positioned
•  Wild type and mutant intermixed
•  Same numbered leaves sampled each time point (leaves 5, 6, 7) 
•  “Random” sampling of plants from two flats for each time point
•  New plants used for each time point (can’t resample)
•  Sampling occurs at same time of day (with exception of 6hr)
•  Each RNA sample contains leaves from 2 plants

Layout of the At experiments, I
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1616

1616

1616

Layout of the At experiments, II

•  Plants are grown in environmental chambers: Temp, Rel Hum, Light Intensity

•  4 week old plants were infected with heavy innoculum of powdery mildew
(spores from 3 heavily infected leaves per box)

•  Infection was performed using a 3 ft settling tower with mesh

•  Uninfected plants were kept in similar environmental chambers

•  Three separate experiments were performed

•  Triplicate samples were harvested for each experiment at each time point

•  Samples-0 (uninfected), 6 hr, 1 d, 3 d, 5d, 7dpi, 7d (uninfected)
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Kandel, Schwarz, and Jessel; 1991

Second illustrative example
Oligodendrocytes (OL) myelinate Central Nervous System
axons……and develop from migrating oligodendrocyte
precursor cells (OPC)
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The development from OPC to OL in vitro

We study 
this phase
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Purpose of OPC/OL experiment

• Broad purpose: to examine gene regulation in cultured
oligodendrocyte precursor cells (OPC) as they develop into
oligodendrocytes (OL).

• Narrower purpose: to identify a subset of genes with
up-regulated timecourses. Candidate genes predicted
to be secreted will be assayed for their ability to cluster
sodium channels along cultured retinal ganglion axons.



6

16

Day 0 Proliferation media

Purified
OPC
prep
from P7
rat pups

Day 1*
Differentiation
media

mRNA collected

Day 2*

mRNA collectedDay 3*

mRNA collected

Day 4*

mRNA collected

Differentiation
media Day 6*

 mRN collected

Day 8*

mRNA collected

Day 10*

mRNA collected

Day 13*

mRNA collected

Day
7

Differentiation
media

Differentiation
media

OPC/OL experiment: RNA sample preparation
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Back to generalities: Replication
We can have biological, technical and probe set (spot) replicates
Replication is a good thing. With it we get estimates of variability

relative to which temporal changes and/or condition
differences can be assessed.

Biological replicates are best, as they permit conclusions to be
extrapolated, something not possible with tech. reps.

With unreplicated experiments, inference to a wider population
is not possible, and analysis is less straightforward, being
dependent on unverifiable assumptions, as no estimate of
pure error is available.

When we do have replicates, it is better to use the variation
between them in the analysis, and not simple average them.

Today I will discuss only replicated time course experiments.
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Replication in the At experiments

• Three experiments - effectively biological replicates - were
conducted using the wt and mutant lines, and within each, 3
technical replicate series. Not all have been hybridized to
chips. Later we use one series from experiments I and III, and
two from experiment II.

• These experiments are longitudinal at the level of experiment,
but cross-sectional at the level of mRNA sample (from
separate leaves). The blurring of these distinctions is not
unusual.
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d0    d1*    d2*    d3*    d4*     d5     d6*     d7     d8*     d9     d10*     d11     d12     d13*

mRNA samples at the 8 *-d time points were collected

4 independent preparations were performed, each of which
generated mRNA for every time point. We view this as 4
biological replicates of a longitudinal study. Again it is not
clearcut. For each biological replicate, a dye-swap pair of
technical replicates was done.

Proliferation media
differentiation media

differentiation media

differentiation media

differentiation media

Replication in the OPC/OL experiment
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Hybridizations for the At experiments

• Initially we hybridized mRNA from just one of the technical
replicate series from experiments I and III, and two from
experiment II.

• The Affymetrix Arabidopsis 24K GeneChip® was used. In all
2(genotypes)x6(times)x4(experiments) = 48 chips were
hybed.

    In addition, data from 2(genotypes)x4(experiments) = 8 chips
for day 7 uninfected samples are plotted.

• Low level analysis (background, normalization, probe set
summarization) done by RMA.
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Pooling in the OPC/OL experiment

d1 d2 d3 d4 d6 d8 d10 d13

Reference pool
samples for this prep

Individual
time point
samples

pooling

Each prep has its own reference pool, which is the pool of
all the individual time point mRNA samples of that prep.
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Statistical question for At experiments:

 Find genes whose expression profiles differ between genotypes?

Profiles differ
log2intensity

days

wt

mutant

Extra dots at day 7 from uninfected samples.

23Change over time No change over time

Statistical question for the OPC/OL experiment

Find genes whose expression levels change over time?

M M

day day

Identifying the genes of interest

Clustering
Pairwise comparisons

ANOVA with time as a factor
Empirical Bayes methods



9

25

Clustering with time-course data:
brief literature review

Clustering methods have been widely used in this context to find
groups of  genes with interesting  and similar patterns.

Hierarchical clustering: Eisen et al (1998)

Self-organizing maps: Tamayo et al (1999), Saban et al (2001),
Burton et al (2002).

k-means clustering: Tavazoie et al (1999)

Bayesian model-based clustering: Bar-Joseph et al (2002, 2003),
Ramoni et al (2002)

HMM clustering: Schliep et al (2003).

26

Some drawbacks of clustering methods

          They make no explicit use of the replicate information. They
either use all the slides or means of the replicates.

       Clustering does not provide a ranking for the individual genes
based on the magnitude of change in expression levels over
time.

       When the number of genes becomes large, clustering
methods may not provide clear group patterns.

       Cluster analysis may fail to detect changing genes that
belong to clusters for which most genes do not change
(Bar-Joseph et al. 2003).

       There is the perennial question: How many clusters?

27

Hierarchical clustering of the top 500 genes
OPC/OL expt, filtered by their variance
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Cluster 6 One gene from the cluster

dayday

M M
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Cluster 7 One gene from the cluster
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Pairwise comparisons

One strategy is to make many or all univariate pairwise
comparisons, e.g. of consecutive times: days

   1 vs 2, 2 vs 3, 3 vs 4, 4 vs 6, 6 vs 8, 8 vs 10, 10 vs 13

Illustration on the OPC/OL data: t-tests, univariate
posterior odds : e.g. the LOD statistic, Lönnstedt and
S (2002), Smyth (2004), the moderated t statistic,
Smyth (2004),
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Use of moderated t and posterior odds (LOD)
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| M |>1

|t|>3

LOD>-2

| M|>1 & |t|>3 & LOD>-2

OPC/OL experiment: day 6 vs. day 4

LOD

M

33

The 14 highlighted genes
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Pairwise comparisons: some drawbacks

As the previous slide shows, the strategy works, but….

• It involves a large number of tests for each gene, and there are
over 10,000 genes in a typical microarray experiment: a two-
way multiple testing problem.

• Merging all the lists of genes can be a tricky problem.

• We still cannot rank the genes according to the overall amount
of change, which is often felt to be desirable.
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ANOVA with time as a factor

At experiment: treat time and genotypes as factors with 6
and 2 levels, resp., and form the ratio of  the times x
genotypes MS to residual MS, giving an F5,d under the null,
where d = 2×6×(4-1) = 36 are the residual d.f. Since there is
pairing of wt and mutant, we should include that too, giving
a kind of split-plot anova with 3 d.f. for reps, and 33 residual
d.f., with times, genotypes and times x genotypes as before.

OPC/OL experiment: here we simply regard the 8 times as
defining 8 “groups”, and use anova to test the hypothesis of
all times means being equal, 4 replicate measurements for
each time (“group”).
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Drawbacks with ANOVA

First, this approach does not deal adequately with
correlations across time, if the experiment have a
longitudinal component.

Second, just as with the t-statistic we illustrated in the
pariwise comparisons, an element of moderation is
desirable.

Despite these reservations, anova can and does provide
an adequate analysis, although we feel it can be
improved by attempting to deal with the above two
issues.

One further point is this: with cross-sectional data, we can
include regression modelling under the heading of
anova, see later.
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In general, what do we want?

   We prefer a formula to rank genes, in order to

•    find those changing or not similarly expressed
•    provide a cut off for clustering

      We feel that this formula should be

•   t-like or F-like,
i.e. involve standardized measures of effects,
•   multivariate, where appropriate, and
•   moderated.

38

Why moderation?

•    We seek genes with large absolute or relative
amounts of change over time, in relation to their
replicate variances, and covariances where
relevant.

•    Variances and covariances are poorly estimated
in this context.

•    Some sort of smoothing, borrowing strength, or
empirical Bayes approach is called for.
Simulations show that this helps, i.e. doing so
improves the identification of genes of interest.

•    We use multivariate normals with conjugate
priors, as we want usable formulae, and not to
have to use MCMC.

Multivariate approaches for
longitudinal time course experiments

Here we treat one entire series
as a random k-vector
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Notation and models

   We denote by Xg,1,…, Xg,n  the replicate random k-vectors
representing the observed time series for a single gene.

   For the At data, n = 4 and k = 6, and the Xg,i,t are differences
of log intensities, i.e. log ratios of mutant to wt.

   For the OPC/OL data, n = 4  and k = 8, and the Xg,i,t are
log ratios of experimental to reference pool intensities.

    Our underlying model is that these Xg,i  are i.i.d. N(µg,Σg),
and we make different assumptions about µg and Σg.

41

Hypotheses

• With the At data, we are interested in testing the null
hypothesis Hg: µg = 0, Σg  > 0, against the alternative
Kg: µg ≠ 0, Σg > 0.

• With the OPC/OL data, we are interested in testing the
null hypothesis Hg: µg = constant, Σg  > 0, against the
alternative Kg: µg not constant, Σg > 0.
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Notation and models, cont.

    For our empirical Bayes (EB) approach, we have priors for
µg and Σg reflecting the indicator status I = Ig of the gene,
where Ig = 1 if Hg is true, and Ig = 0 otherwise, i.e. if Kg is
true.

   We suppose that  Pr(Ig =1) = p, independently for every
gene, for a hyperparameter p, 0 <p <1.

   From now on, we drop the subscripts g wherever possible.
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Notation and models, completed
    With this background, our prior for Σ is inverse Wishart with

degrees of freedom ν and matrix parameter (νΛ)-1, where Λ
> 0 is positive definite. When we are dealing with a variance
σ2, we use an inverse Gamma prior with analogous
parameters λ2 and ν.

    Our priors for µ will be different depending on whether I=0 or
I=1, but in all cases are multivariate normal, and will involve
Λ (or λ2 ). We omit the details.

   Finally, the data X1,…, Xn   are supposed i.i.d. given I, Σ  and
µ,  with Xi | I, Σ, µ ~ N(µ , Σ ).

    The multivariate normality assumption is reasonable, but not
precise. However, we judge our results by their utility, not on
goodness-of-fit of the models.
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Summary of results for the At experiment; formulae
for the OPC/OL experiment are similar.

   Our moderated S is

    our moderated t-statistic is

    Finally,
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Hotelling's statistic. In our case, n < k and S is 

singular. If we plug in ˜ S ,  our moderated S,  we get 

the moderated Hotelling statistic, ˜ T 
2,  just seen. 

 Likelihood Ratio statistic

   For the likelihood ratio (LR) test, we simply test
the null H against the alternative K in the usual
way. We calculate:
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Hyperparameter estimation

   There are k(k+1)/2 + 3 parameters in the prior: Λ, p, ν, and η.

    We simply choose p = 0.02, although clearly more could be
done here. Neither p nor η enter into      .

    Estimates of the hyperparameters ν  and η  are developed
using the  univariate approach of Smyth (2004): η using the
p/2 genes with the highest     values, and ν using all the
genes.    We omit the details.

    Λ  is estimated by the method of moments using the formula
                                E(S) = (ν-k-1)-1νΛ.! 

˜ T 
2! 

˜ T 
2

Illustrative results for our At experiment
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Estimate of Λ for the At experiment

100×SD: 14, 17, 15, 13, 16, 16.

Correlation matrix
     1.00
       .15    1.00
      -.01      .15   1.00
       .12      .07     .13   1.00
      -.09     -.01     .02   -.02   1.00
       .05      .06     .02     .15   -.16   1.00
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Top
ranked
genes

50

Illustrative results for our OPC/OL experiment
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     Evidence of autocorrelation

            One gene’s sample covariance matrix:

              2.67  2.40  2.36  1.31  1.63 0.04 -0.11 -0.69
               2.40  2.17  2.14  1.20  1.48 0.05 -0.10 -0.61
               2.36  2.14  2.18  1.25  1.57 0.07 -0.04 -0.53
               1.31  1.20  1.25  0.74  0.93 0.06  0.00 -0.26
               1.63  1.48  1.57  0.93  1.19 0.07  0.02 -0.31
               0.04  0.05  0.07  0.06  0.07 0.01  0.02  0.02
              -0.11 -0.10 -0.04  0.00  0.02 0.02  0.05  0.08
              -0.69 -0.61 -0.53 -0.26 -0.31 0.02  0.08  0.25

If S=UDV’,  D= diag(8.88, 0.37, 0.02, 0, 0, 0, 0, 0)
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        Another gene’s sample covariance matrix:

               .83  .10  -.04  -.05   .19   .24 1.02  .69
               .10  .03   .01   .03   .00   .01   .14   .04
              -.04  .01   .05   .09  -.04  -.03   .00  -.07
              -.05  .03   .09   .17  -.08  -.06   .04  -.11
               .19  .00  -.04  -.08   .09   .09   .19   .21
               .24  .01  -.03  -.06   .09   .11   .27   .26
             1.02  .14   .00   .04   .19   .27  1.31  .80
               .69  .04  -.07  -.11   .21   .26   .80   .66

If S=UDV’, D= diag(2.80,0.37,0.07,0, 0, 0, 0, 0)

Further evidence of autocorrelation
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            .10  .06  .05  .04  .03  .03  .03  .02
                .06  .11  .06  .05  .04  .04  .04  .03
                .05  .06  .11  .05  .04  .04  .04  .03
                .04  .05  .05  .09  .04  .04  .04  .03
    S   =    .03  .04  .04  .04  .09  .04  .04  .03
                .03  .04  .04  .04  .04  .10  .05  .04
                .03  .04  .04  .04  .04  .05  .09  .04
                .02  .03  .03  .03  .03  .04  .04  .07

               14.6 -4.6   -3.1  -1.5   -0.7  -0.3   -0.1  -0.3
            -4.6 15.8   -3.3  -3.0   -1.4  -1.1   -1.3  -0.4
            -3.1  -3.3  16.4  -3.1   -1.4  -1.5   -1.4  -1.7
            -1.5  -3.0   -3.1 18.3   -3.0  -2.1   -2.1  -1.5
S-1  =   -0.7  -1.4  -1.4   -3.0  16.9  -2.5   -3.0  -1.0
            -0.3  -1.1  -1.5   -2.11 -2.5  17.6  -4.8  -4.2
            -0.1  -1.3  -1.4   -2.1   -3.0  -4.8  21.0  -5.9
            -0.3  -0.4  -1.7   -1.5   -1.0  -4.3  -5.9   22.1

If S=UΛVT,  Λ = diag(.38 .09 .06 .05 .05 .05 .04 .04),
                  u1 =        (.34 .41 .40 .37 .32 .37 .34 .27)T

Average single gene covariance matrix
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Observations on autocorrelation

The correlation structure exhibited in the average
covariance matrix resembles that of a slow moving
average process, which is perhaps not surprising
given the way in which the samples of cells were
taken and the use of a common reference mRNA
source.

56

Top
ranked
genes

Note that TC1 (red) does stand out

57
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Conclusions

• Methods which rank genes (e.g. the MB statistic or the
moderated Hotelling T2) perhaps provide easier access to
genes whose absolute or relative expression varies over
time, than do multi-gene methods (e.g. cluster analysis).

• Among the single-gene methods, MB performs no worse
than other methods in both real data and simulated data
comparisons, and better than the F.

• The Hotelling T2 statistic is a viable alternative to MB,
but we still need the moderated S.

• The MB statistic may be able to select interesting genes
which are missed by other methods.

An important new paper

A Significance method for time Course
Microarray Experiments Applied to Two
Human Studies,
JD Storey, JT Leek, W Xiao, JY Dai and
RW Davis.

University of Washington Biostatistics
Working Paper Series Paper 232, 2004.

60

Brief Summary, 1

    Method developed for two human studies, both using the Affymetrix
human U133A and 133B chips.

   Endotoxin study, monitoring gene expression responses to bacterial
endotoxin in blood leukocytes.  Four subjects were administered
endotoxin, another four a placebo, and blood samples were taken at 2,
4, 6, 9, and 24 hours after infusion.

    Kidney aging study, to investigate changes in gene expression in the
human kidney across different agess. Samples from normal kidney
tissue removed at nephrectomy or renal transplant biopsy from 72
patients with ages ranging from 27 to 92 years.
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Brief Summary, 2

• The model used on each case has the following form for
gene i on individual j at time t:

                   yij(t) = µi(t) + γij(t) + εij(t).

    where the population average curve is µi(t) , individuals
deviate from the population average curve by γij(t), and
measurement error and the remaining sources of variation
are modelled by the εij(t).  It is the γij(t) which distinguishes
this model from the ones we previously considered for model
organisms with more repeatable expression profiles.

    The observations are at times tij, and the µi(t) term is
modeled by cubic splines.

Software availability

Programs implementing our multivariate methods
will go into the open source R-based Bioconductor

package before the end of this summer.
Available programs for some other approaches are
listed in the handout for this afternoon’s workshop.
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Hybridizations for the OPC/OL experiments

The cDNA slides were made in the Ngai lab, UC Berkeley,
using the RIKEN clone set, and the hybs done in ‘02/’03.

19,200 spots/slide, in 8x4 print-tip groups of size 25x24.
Some genes were replicated: their M = log2R/G were averaged.
Two dye-swap technical replicate slides run on mRNA from

each biological replicate: their M and -M were averaged.
Time course (TC) 1 was done using slides from one batch,

while TC 2-4 used slides from another batch.
The raw intensities were from an Axon scanner; the image

analysis was done by Spot using a morph background.
Normalization was by print-tip lowess , followed by between

array MAD scale normalization for TC1, as there was a lot
of variation across time in this replicate.
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OPC/OL experiment: hybridization dates

2/8/03
Cy5=time, Cy3=pool

2/6/03
Cy5=pool, Cy3=time

TC4

2/10/03
Cy5=pool, Cy3=time

12/10/02
Cy5=time, Cy3=pool

TC3

1/14/03
Cy5=time, Cy3=pool

12/3/02
Cy5=pool, Cy3=time

TC2

4/11/02
Cy5=time, Cy3=pool

4/4/02
Cy5=pool, Cy3=time

TC1

Rep2Rep1
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After NormalizationBefore Normalization

MA-plot for one hybridization in the
OPC/OL experiment

vertical axis: M = log2R/G , horizontal axis: A = log2 √RG
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QA/QC in the At experiments

In the At experiment, we checked the quality of all
chips using fitPLM() in AffyExtensions. We
found that 5 chips were of low quality, and these
were repeated.

 In addition the log2 intensities of replicate 1-3 wt
day 3 sample were inconsistent with those from
the other wt experiments for that day, despite
having no obvious QC problems with the chips.
These were “adjusted” using median polish on
all the wt data.
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QA/QC in the OPC/OL experiments

Here quality was a greater concern, no doubt as a
result of the wide spread of times over which the
hybridizations were conducted. Also, the analysis
was done some time later, and there was no
possibility of repeating any of the hybridizations.

It turned out TC1 (data from a different chip batch)
did stand out from the rest, but omitting this
replicate was not an option, as there were
concerns about aspects of the other hybridizations
as well: attenuated response range.

In the end, we relied on visual examination of
consistency of responses, and qrt-pcr follow-up to
give us confidence in our conclusions.


