
The NMMAPSdata Package

Roger D. Peng Leah J. Welty

Department of Biostatistics
Johns Hopkins Bloomberg School of Public Health

Introduction

The NMMAPSdata package for R contains daily mortality, air pollution, and weather data that were origi-
nally assembled for the National Morbidity, Mortality, and Air Pollution Study (NMMAPS). NMMAPS was
a large multi-city time series study of the short-term effects of ambient air pollution on daily mortality and
morbidity in the United States. The analyses of the original 90 city, 8 year database can be found in Samet
et al. (2000a), Samet et al. (2000b), Dominici et al. (2003), and Daniels et al. (2004). The database has since
been updated to contain data on 108 U.S. cities for 14 years (1987–2000). While the original study examined
morbidity outcomes such as hospital admissions, the NMMAPSdata package does not include those data.

The NMMAPSdata package can be downloaded from http://www.ihapss.jhsph.edu/data/NMMAPS/R/.
The package does not currently reside on CRAN, although it passes all R CMD check quality control tests.
A source package as well as a Windows binary package are available for download. All comments that follow
pertain to version 0.3-3 of the package.

In this article we provide a very brief introduction to the data and to the R functions provided in the
NMMAPSdata package. As an example of how one may use the package, we present a a small multi-
city time series analysis of daily non-accidental mortality and PM10. A more detailed description of the
NMMAPSdata package and additional examples of time series models for air pollution and mortality are
available in a technical report (Peng et al., 2004).

A Brief Summary of the Data

The data are divided into 108 separate dataframes, one per city. Each dataframe has 15,342 rows and 291
columns. Although there are only 14 years of daily observations (5,114 days), the mortality data are split
into three age categories, resulting in each of the weather and pollution variables being repeated three times.
The dataframes are set up in this manner so that they can be used immediately in a regression analysis
function such as lm or glm to fit models similar to those used in NMMAPS. Those not interested in using the
separate age categories can collapse the outcome counts with the collapseEndpoints preprocessing function
included in the package (see the next section for how to do this).

The measured pollutants in NMMAPSdata are PM10, PM2.5, SO2, O3, NO2, and CO. These are the six
“criteria pollutants” defined by the U.S. Environmental Protection Agency. Most cities have measurements
for the gases (SO2, O3, NO2, CO) every day and measurements for PM10 once every six days. Only a handful
of cities have daily measurements of PM10. Beginning in 1999, most cities have daily PM2.5 measurements.

The meteorological variables included in the database are temperature, relative humidity, and dew point
temperature. We also include as separate variables in the dataframes three day running means of temperature
and dew point temperature.

General information about the data and how they were assembled can be found in Samet et al. (2000a).
Interested readers are also encouraged to visit the Internet-based Health and Air Pollution Surveillance
System (IHAPSS) website at http://www.ihapss.jhsph.edu/ which contains more details about how the
data were originally processed.

1

Overview of NMMAPSdata

The NMMAPSdata package can be loaded into R in the usual way.

> library(NMMAPSdata)

NMMAPS Data (version 0.3-3)
Type ’?NMMAPS’ for a brief introduction to the NMMAPS database.
Type ’NMMAPScite()’ for information on how to cite ’NMMAPSdata’ in
publications. A short tutorial vignette is available and can be
viewed by typing ’vignette("NMMAPSdata")’

Some introductory material regarding the database can be found by typing ?NMMAPS at the command line.
The primary function in NMMAPSdata is buildDB, which can be used to build custom versions of the

full NMMAPS database. In particular, most users will not need to use the entire database (291 variables for
each of 108 cities) at any given time. The custom versions of the database may also contain transformations
of variables or newly created/derived variables. Possible new variables include:

• Exclusions: Remove days with extreme pollution, mortality, or temperature

• Fill in occasional/sporadic missing data

• Create seasonal indicators

• Compute running means of variables

There are, of course, many other possibilities.
The function buildDB has one required argument, procFunc, a processing function (or function name)

which will be applied to the city dataframes. By default, buildDB applies the processing function to all
cities in the NMMAPS package. However, if a character vector with abbreviated city names is supplied to
argument cityList, the processing function will be applied only to the cities in that list.

> args(buildDB)

function (procFunc, dbName, path = system.file("db", package = "NMMAPSdata"),
cityList = NULL, compress = FALSE, verbose = TRUE, ...)

NULL

By default, buildDB builds a new database in the package installation directory. If installing the new
database in this location is not desirable, one can specify another directory via the path argument.

The function specified in the procFunc argument should return a (possibly modified) dataframe or NULL.
If procFunc returns NULL when it is applied to a particular city, buildDB will skip that city and not include
the dataframe in the new database. This is useful for excluding cities that do not contain observations for a
particular pollutant without having to directly specify a list of cities to include.

Once a database is constructed using buildDB, it is registered via call to registerDB. When registerDB
is called with no arguments it sets the full (unprocessed) NMMAPS database as the currently registered
database. The argument dbName can be used to register other previously built databases, however, only one
database can be registered at a time. The processing function used to create the new database is always
stored with the newly created database, ensuring that all of the transformations to the original data are
documented with code.

> registerDB()

> showDB()

Currently using full NMMAPS database

Each of the city dataframes can be loaded, read, or attached using loadCity, readCity, or attachCity,
respectively. For example we can load, read, or attach the full New York City dataframe.

2

> loadCity("ny")

> ny[1:5, 1:10]

city date dow agecat accident copd cvd death inf pneinf
1 ny 19870101 5 1 10 3 22 73 0 3
2 ny 19870102 6 1 4 4 20 68 0 1
3 ny 19870103 7 1 5 0 17 56 0 3
4 ny 19870104 1 1 5 1 18 55 0 2
5 ny 19870105 2 1 2 2 14 60 0 2

> dframe <- readCity("ny")

> identical(dframe, ny)

[1] TRUE

> attachCity("ny")

> search()

[1] ".GlobalEnv" "ny" "package:NMMAPSdata"
[4] "package:tools" "package:methods" "package:stats"
[7] "package:graphics" "package:utils" "Autoloads"
[10] "package:base"

We can print the first 10 days of death counts from cardiovascular disease and non-accidental deaths for
people < 65 years old:

> cvd[1:10]

[1] 22 20 17 18 14 18 17 16 25 20

> death[1:10]

[1] 73 68 56 55 60 80 64 63 64 65

The function attachCity will mostly likely only be useful for interactive work. Furthermore, only one city
dataframe can be usefully attached at a time since all of the variables in the most recently attached dataframe
will mask the variables in previously attached dataframes.

Example: Analysis of PM10 and Mortality

In this section we illustrate how to fit models similar to those used in Dominici et al. (2002a,b, 2003). The
basic NMMAPS model for a single city is an overdispersed Poisson model of the following form

Yt ∼ Poisson(µt)
log µt = DOWt + AgeCat

+ns(tempt, df = 6) + ns(tempt,1−3, df = 6)
+ns(dewptt, df = 3) + ns(dewptt,1−3, df = 3)
+ns(t, df = 7× # years) + ns(t, df = 1× # years)×AgeCat
+βPMt

Var(Yt) = φµt

(1)

where Yt is the number of non-accidental deaths on day t for a particular age category, AgeCat is an indicator
for the age category, tempt is the average temperature on day t, tempt,1−3 is a running mean of temperature
for the previous 3 days, and PMt is the PM10 level for day t. The variables dewptt and dewptt,1−3 are
current day and running mean of dew point temperature. The age categories used here are ≥ 75 years old,
65–74, and < 65. Each of the temperature and dewpoint temperature variables are related to mortality

3

in a flexible manner via the smooth function ns(·, df), which indicates a natural spline with df degrees of
freedom.

To process the data in preparation for fitting model (1) to PM10 and mortality data, one can use the built-
in basicNMMAPS function as the argument to procFunc in buildDB. The function first checks the dataframe
to see if it contains any PM10 data. If there is no PM10 data, then NULL is returned and buildDB skips the
city. For cities with PM10 data, days with extreme mortality counts are set to NA (missing) using an indicator
variable included in the dataframe. Then the function coerces the day-of-week and age category variables to
factor type and creates some age category indicators. Finally, a subset of the pollution (seven lags of PM10),
weather (temperature and dewpoint), and mortality (total non-accidental deaths, deaths from cardiovascular
disease, and deaths from respiratory diseases) variables are retained and the reduced dataframe is returned.

In order to illustrate how basicNMMAPS works, we use it outside buildDB to build a customized dataframe
for New York. After looking at the body of basicNMMAPS, we register the full NMMAPS database, load the
database for New York specifically, then using basicNMMAPS create the customized dataframe called ny2.

> body(basicNMMAPS)

{
if (all(is.na(dataframe[, "pm10tmean"])))

return(NULL)
is.na(dataframe[, "death"]) <- as.logical(dataframe[, "markdeath"])
is.na(dataframe[, "cvd"]) <- as.logical(dataframe[, "markcvd"])
is.na(dataframe[, "resp"]) <- as.logical(dataframe[, "markresp"])
Age2Ind <- as.numeric(dataframe[, "agecat"] == 2)
Age3Ind <- as.numeric(dataframe[, "agecat"] == 3)
dataframe[, "dow"] <- as.factor(dataframe[, "dow"])
dataframe[, "agecat"] <- as.factor(dataframe[, "agecat"])
varList <- c("cvd", "death", "resp", "tmpd", "rmtmpd", "dptp",

"rmdptp", "time", "agecat", "dow", "pm10tmean", paste("l",
1:7, "pm10tmean", sep = ""))

data.frame(dataframe[, varList], Age2Ind = Age2Ind, Age3Ind = Age3Ind)
}

> registerDB(NULL)

> loadCity("ny")

> ny2 <- basicNMMAPS(ny)

> str(ny2)

‘data.frame’: 15342 obs. of 20 variables:
$ cvd : num 22 20 17 18 14 18 17 16 25 20 ...
$ death : num 73 68 56 55 60 80 64 63 64 65 ...
$ resp : num 6 5 3 3 4 3 5 2 5 3 ...
$ tmpd : num 34.5 36.5 35.8 30.2 31.8 ...
$ rmtmpd : num NA NA NA 2.970 0.567 ...
$ dptp : num 33.2 29.8 23.3 20.4 21.6 ...
$ rmdptp : num NA NA NA 9.70 4.28 ...
$ time : num -2556 -2556 -2554 -2554 -2552 ...
$ agecat : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
$ dow : Factor w/ 7 levels "1","2","3","4",..: 5 6 7 1 2 3 4 5 6 7 ...
$ pm10tmean : num NA NA -17.1 NA NA ...
$ l1pm10tmean: num NA NA NA -17.1 NA ...
$ l2pm10tmean: num NA NA NA NA -17.1 ...
$ l3pm10tmean: num NA NA NA NA NA ...
$ l4pm10tmean: num NA NA NA NA NA ...
$ l5pm10tmean: num NA NA NA NA NA ...
$ l6pm10tmean: num NA NA NA NA NA ...

4

$ l7pm10tmean: num NA NA NA NA NA ...
$ Age2Ind : num 0 0 0 0 0 0 0 0 0 0 ...
$ Age3Ind : num 0 0 0 0 0 0 0 0 0 0 ...

For building a multi-city database, the steps above may be avoided by directly using buildDB.
As an example, we use buildDB with processing function basicNMMAPS to build a small four city database

that includes New York City, Los Angeles, Chicago, and Seattle. Each of the city dataframes are processed
with the basicNMMAPS function.

> buildDB(procFunc = basicNMMAPS, cityList = c("ny", "la", "chic",

+ "seat"))

Creating directory /home/rpeng/R-local/lib/NMMAPSdata/db/basicNMMAPS
Creating database: basicNMMAPS
Processing cities...
+ ny ---> /home/rpeng/R-local/lib/NMMAPSdata/db/basicNMMAPS/ny.rda
+ la ---> /home/rpeng/R-local/lib/NMMAPSdata/db/basicNMMAPS/la.rda
+ chic ---> /home/rpeng/R-local/lib/NMMAPSdata/db/basicNMMAPS/chic.rda
+ seat ---> /home/rpeng/R-local/lib/NMMAPSdata/db/basicNMMAPS/seat.rda
Saving city information
Registering database location: /home/rpeng/R-local/lib/NMMAPSdata/db/basicNMMAPS

> showDB()

basicNMMAPS in /home/rpeng/R-local/lib/NMMAPSdata/db

The database created with a given processing function need only be built once for each city. When buildDB
is finished building the database it automatically calls registerDB to make the newly built database the
currently registered one and therefore ready for analysis. To use a database for subsequent analyses not
immediately following its creation, the database need only be registered using registerDB.

buildDB returns (invisibly) an object of class NMMAPSdbInfo which has a show method. This object is
also stored with the database and can be retrieved with the getDBInfo function.

> getDBInfo()

NMMAPS Database with cities:
ny la chic seat

Call:
buildDB(procFunc = basicNMMAPS, cityList = c("ny", "la", "chic",

"seat"))

The NMMAPSdbInfo object currently contains slots for the processing function, the list of cities included in
the database, the full path to the database, the environment of the processing function, and the original call
to buildDB. A character vector containing the abbreviated names of the cities included in the new database
can be retrieved with the listDBCities function. listDBCities always lists the names of the cities in the
currently registered database.

> listDBCities()

[1] "chic" "la" "ny" "seat"

The file simple.R contains the code for fitting model (1) and can be downloaded from the IHAPSS
website or sourced directly:

> source(url("http://www.ihapss.jhsph.edu/data/NMMAPS/R/scripts/simple.R"))

5

It contains a function fitSingleCity which can be used for fitting NMMAPS-style time series models to
air pollution and mortality data. There are number of arguments to fitSingleCity; the default values fit
model (1) to a city dataframe.

> registerDB("basicNMMAPS")

> loadCity("la")

> fit <- fitSingleCity(data = la, pollutant = "l1pm10tmean", cause = "death")

One can examine the formula for fit to see the exact model fit to the data by fitSingleCity.

> formula(fit)

death ~ dow + agecat + ns(time, 98) + I(ns(time, 15) * Age2Ind) +
I(ns(time, 15) * Age3Ind) + ns(tmpd, 6) + ns(rmtmpd, 6) +
ns(dptp, 3) + ns(rmdptp, 3) + l1pm10tmean

The primary difference between using fitSingleCity and calling glm directly is that fitSingleCity will
adjust the number of degrees of freedom for the smooth function of time if there are large contiguous blocks
of missing data

The full summary output from the model fit is lengthy, but we can examine the estimate of the pollution
effect (and its standard error) via:

> summary(fit)$coefficients["l1pm10tmean",]

Estimate Std. Error t value Pr(>|t|)
0.0003722357 0.0001874975 1.9852832959 0.0472094754

The estimated effect is 0.0003722, which can be interpreted as approximately a 0.37% increase in mortality
with a 10 µg/m3 increase in PM10.

For a single city analysis, returning the entire glm object from fitSingleCity is not too burdensome
with respect to memory usage. However, in a multi-city analysis, with possibly up to 100 cities, it may
not be desirable to store 100 glm objects at once, each of which can be 10–20 MB large. The function
fitSingleCity has an argument extractors, which by default is NULL. One can pass a list of hook functions
via the extractors argument and these functions will be applied to the object returned from the call to
glm. This way, one can obtain relevant quantities (coefficients, standard errors, etc.) from the model fit and
discard the rest.

> extractFun <- list(coef = function(x) summary(x)$coeff["l1pm10tmean",

+ 1], std = function(x) summary(x)$coeff["l1pm10tmean", 2])

> fit <- fitSingleCity(data = la, pollutant = "l1pm10tmean", cause = "death",

+ extractors = extractFun)

> fit

$coef
[1] 0.0003722357

$std
[1] 0.0001874975

We can now run our multi-city analysis by calling cityApply with fitSingleCity and the list of extractor
functions in extractFun.

> results <- cityApply(fitSingleCity, extractors = extractFun)

By default, cityApply applies the function specified in the FUN argument on all of the city dataframes in
the currently registered database.

The effect estimates from the 4 cities can be pooled using a simple fixed effects model:

6

> beta <- sapply(results, "[[", "coef")

> std <- sapply(results, "[[", "std")

> weighted.mean(beta, 1/std^2) * 1000

[1] 0.2005406

> sqrt(1/sum(1/std^2)) * 1000

[1] 0.07230552

Future Directions

The NMMAPSdata package is a data package and we purposely omit any code for time series modeling.
We are currently developing a separate package specifically designed for fitting time series models to air
pollution and health data. For now, we hope that users will find the NMMAPSdata package useful for
either reproducing results from previous studies or for implementing their own methods. Comments and
suggestions are welcome.

References

Daniels, M. J., Dominici, F., Zeger, S. L., and Samet, J. M. (2004), The National Morbidity, Mortality,
and Air Pollution Study, Part III: Concentration-Response Curves and Thresholds for the 20 Largest US
Cities, Health Effects Institute, Cambridge MA.

Dominici, F., Daniels, M., Zeger, S. L., and Samet, J. M. (2002a), “Air Pollution and Mortality: Estimating
Regional and National Dose-Response Relationships,” Journal of the American Statistical Association, 97,
100–111.

Dominici, F., McDermott, A., Daniels, M., Zeger, S. L., and Samet, J. M. (2003),“Mortality Among Residents
of 90 Cities,” in Revised Analyses of Time-Series Studies of Air Pollution and Health, The Health Effects
Institute, Cambridge, MA, pp. 9–24.

Dominici, F., McDermott, A., Zeger, S. L., and Samet, J. M. (2002b), “On the Use of Generalized Additive
Models in Time-Series Studies of Air Pollution and Health,” American Journal of Epidemiology, 156,
193–203.

Peng, R. D., Welty, L. J., and McDermott, A. (2004), “The National Morbidity, Mortality, and Air Pol-
lution Study Database in R,” Tech. Rep. 44, Johns Hopkins University Department of Biostatistics,
http://www.bepress.com/jhubiostat/paper44/.

Samet, J. M., Dominici, F., Zeger, S. L., Schwartz, J., and Dockery, D. W. (2000a), The National Morbidity,
Mortality, and Air Pollution Study, Part I: Methods and Methodological Issues, Health Effects Institute,
Cambridge MA.

Samet, J. M., Zeger, S. L., Dominici, F., Curriero, F., Coursac, I., Dockery, D. W., Schwartz, J., and
Zanobetti, A. (2000b), The National Morbidity, Mortality, and Air Pollution Study, Part II: Morbidity
and Mortality from Air Pollution in the United States, Health Effects Institute, Cambridge, MA.

7

