BST 140.753
Problem Set 2
Due Feb. 24th 11:59PM 2011

Should X be included in a regression model?

Building on the example in the lecture stream, for $i = 1, \ldots, n; j = 1, 2$ let

$$[Y_{ij} \mid \alpha, \beta, \sigma] = \alpha + \beta X_j + \epsilon_{ij} \tag{1}$$

ϵ_{ij} iid $N(0, 1)$

$X_1 = -1$

$X_2 = +1$

Part i: Let $(\hat{\alpha}, \hat{\beta})$ be the least squares estimates.
Show that irrespective of whether X is included in the model:

$$\hat{\alpha} = \bar{Y} = Y_+ = \frac{Y_++}{2n}, \text{ the overall mean}$$

and if X is included,

$$\hat{\beta} = (\bar{Y}_2 - \bar{Y}_2)/2 = (Y_2 - Y_1)/2.$$

Part ii: Separately, for the cases when X is/(is not) included in the model, compute \hat{Y}_{ij}.

Part iii: Consider using the prediction model that uses $a\hat{\beta}$ rather than $\hat{\beta}$. That is, use $\hat{Y}_{ij} = \hat{\alpha} + a\hat{\beta}X_j$.
The MSE of $\hat{\alpha} + a\hat{\beta}$ for estimating $(\alpha + \beta)$ (and since $|X| = 1$ for predicting the Y_{ij}) is:

$$MSE(\hat{\alpha} + a\hat{\beta}) = (1 + a^2)\frac{\sigma^2}{2n} + (1 - a)^2\beta^2.$$

If you are choosing between not including X ($a = 0$) or including X ($a = 1$) show that you should use $a = 1$ iff $\beta^2 > \frac{\sigma^2}{2n}$.

Part iv: More generally, show that the optimal a is:

$$a(\sigma^2, \beta, n) = \frac{\beta^2}{\frac{\sigma^2}{2n} + \beta^2} = \frac{2n\beta^2}{\sigma^2 + 2n\beta^2} = \frac{t^2}{1 + t^2} \tag{2}$$

$$t^2 = \frac{(2n)\beta^2}{\sigma^2}.$$

Note that t^2 has the form of the square of the t-statistic testing $\beta = 0$.

Part v: Simulation
Conduct a simulation to study performance of various candidate rules for including/excluding/(partially including) X. Write up your results into a nice report.

Scenarios: Without loss of generality (wlog), in generating data set $\alpha = 0, \sigma^2 = 1$. Use $n = 10$ for a total sample size of 20 and simulate for 4 βs chosen so that the optimal $a = (0, 0.25, 0.50, 0.90)$ ($a = 0$ produces $\beta = 0$). Use $nreps = 500$.
Dataset generation: For each of the \textit{nreps} datasets, generate the 20 values for the \(\epsilon_{ij} \) as independent \(\mathcal{N}(0,1) \) and then \(\tilde{Y}_{ij} = \beta X_j + \epsilon_{ij} \). Reuse the the \(\epsilon_{ij} \) for each of the 4 \(\beta \) values. This is efficient, but more importantly, makes the performance for the different \(\beta \)s more comparable.

Decision rules: Study the performance of the following rules. Each starts by producing the LSE estimates of \((\alpha, \beta) \) and the estimate of \(\sigma^2 \). Each decision rule always uses \(\hat{\alpha} \), the LSE. For each dataset each decision rule produces an estimated \(\beta \). For rules that either include or exclude \(X \), the estimated \(\beta \) is either the LSE or 0. For the attenuation rules, it is the attenuated LSE.

\textbf{Full knowledge}: Use the true \((\alpha, \beta) \). This rule is the best case and included to calibrate the simulation.

\textbf{P-value based (6 rules)}: Include \(X \) if the two-sided P-value for testing \(H_0 : \beta = 0 \) versus \(H_1 : \beta \neq 0 \) is less than \((0, .05, .10, .32, .50, 1.00) \). The first and last rules are “never add \(X \)” and “always add \(X \).”

\textbf{MSE based}: Add \(X \) if the MSE from the regression with \(X \) included is less than the MSE when \(X \) is excluded. (This is equivalent to adding \(X \), if the \(R^2_{adj} \) is smaller when \(X \) is included that when excluded).

\textbf{Partial inclusion (semi-full knowledge)}: Let \(a(\beta) = a(\sigma^2 = 1, \beta, n = 20) \). For the slope on \(X \) use \(a(\beta)\hat{\beta} \). Note that this rule uses the true \(\beta \) in \(a(\beta) \), multiplying \(\hat{\beta} \), the LSE estimate.

\textbf{Partial inclusion (fully empirical)}: Use \(a(\hat{\sigma}^2, \hat{\beta}, n = 20)\hat{\beta} \) for the slope on \(X \). This is equivalent to computing the t-statistic (you need this for the P-value rules anyway) and using \(a = \frac{t^2}{1 + t^2} \).

Assessments: For each of the scenarios and each of the decision rules, summarize performance of the \(nreps = 500 \) estimates (\(\beta_{est} \) is a generic estimate):

- bias = \(\text{avg}(\beta_{est} - \beta) \)
- variance = sample variance of the \(\beta_{est} \)
- \(\text{MSE} = \text{avg}(\beta_{est} - \beta)^2 \) \((= \text{variance} + (\text{bias})^2) \)

Also, report the histogram of the \(\beta_{est} \) for \(\hat{\beta} \) (the LSE), for the P-value based with \(P = .05 \) and for the partial inclusion (fully empirical) attenuated slope estimate.

Discuss your results and include your recommendation on how to decide on including/excluding/(partially including \(X \)).

\textbf{End note}: The Prediction Sum of Squares(PRESS) criterion is a very attractive alternative to other include/exclude rules. For the model without \(X \) and then for the model with \(X \), PRESS successively excludes a case, re-estimates the regression based on the reduced dataset, predicts the \(Y \) for the excluded case and averages the squared errors. \(X \) is included if its PRESS is smaller that the intercept-only model. Though the PRESS computation is closed form in this simple case, I haven’t asked you to evaluate it because it will be similar to the MSE based rule and you have enough to do!