How do you implement the stuff we talked about in class in R?
Growth Data

- Data taken from Verbeke and Molenberghs page 241
- Data is a summary of brain size for boys and girls measured at ages 8, 10, 12, 14
- We create a “long format” data set like

```r
> dat[1 : 8,]
growth gender subject age
1  21.0     1    1    8
2  20.0     1    1   10
3  21.5     1    1   12
4  23.0     1    1   14
5  21.0     1    2    8
6  21.5     1    2   10
7  24.0     1    2   12
8  25.5     1    2   14
```
 Libraries to load

Load `nlme` and `gee`

```r
> library(nlme)
> library(gee)
```

Note if `gee` is not already installed

```r
> install.packages("gee")
```
Fitting a random intercept model

- random intercept only

```r
randomItc <- lme(growth ~ age + gender,
                 random = ~ 1 | subject,
                 data = dat,
                 method = "ML")
```

- The `random` statement tells R that there is a random intercept at the levels of the variable subject. *Make sure your data set is sorted by the subject variable.*

- The `method = "ML"` statement uses ML not REML estimation for the variance components.

- This fits the model

\[
Growth_{ij} = Itc + u_i + Age_{ij} + Gender_i + \epsilon_{ij}
\]

where \(u_i \sim N(0, \sigma_u^2) \) and \(\epsilon \sim N(0, \sigma^2) \).
Model fitting notes

- If a variety of baseline ages had been observed it is preferable to have separate effects for the (cross-sectional) baseline age and (longitudinal) years from baseline; this is not an issue in this data set where every child has the same baseline age.

- `lme` returns an object of class `lme`, for which there are many methods defined: plot, print, summary, coef, resid, fitted, coef, fixed.effects, AIC, intervals, anova.

- You can also just grab what you want directly:

  ```r
  > round(summary(randomItc)$tTable, 3)
   Value Std.Error DF  t-value p-value
  (Intercept) 17.707     0.832  80  21.294  0.000
   age        0.660     0.062  80  10.632  0.000
 gender      -2.321     0.743  25  -3.124  0.004
  ```
> intervals(randomItc)
Approximate 95% confidence intervals
 Fixed effects:
 lower est. upper
(Intercept) 16.0750295 17.7067130 19.3383964
 age 0.5383446 0.6601852 0.7820257
 gender -3.8299924 -2.3210227 -0.8120531
attr(,"label")
[1] "Fixed effects:"

 Random Effects:
 Level: subject
 lower est. upper
sd((Intercept)) 1.265289 1.730079 2.365603

 Within-group standard error:
 lower est. upper
1.219684 1.422728 1.659572
More lme functionality

- Look at the code to see different ways to use the `plot.lme` function. `lme` uses `trellis` graphics.
- `random.effects(randomItc)` will return the empirical BLUP estimates of the u_i.
- You can include `offset` terms which, in principle, can be used to calculate a profile likelihoods for slope parameters. I was unsuccessful when I tried this.
- You can use `method = "REML"` to get the REML estimates. Remember to use ML if you are going to use likelihood ratio tests for the slope parameters.
Example

Likelihood ratio test for an Age Gender interaction

```r
randomItcInt <- {
    update(randomItc,
    growth ~ age * gender)
}
> anova(randomItc, randomItcInt)
          Model df    Test  L.Ratio p-value
randomItc 1 5     1 vs 2 6.217427 0.0126
randomItcInt 2 6
```
(I edited the output a bit, it also gives the AIC, BIC and likelihoods)
Fitting a random slope

- Though the data do not really seem to display the need for a random slope term, here’s how I fit one anyway

```r
lme(growth ~ age + gender,
    random = ~ 1 + age | subject,
    data = dat,
    method = "ML"
)
```

Which fits the model

\[\text{Growth}_{ij} = Itc + u_{1i} + \text{Age}_{ij} \times u_{2i} + \text{Gender}_i + \epsilon_{ij} \]

automatically allowing \(u_{1i} \) and \(u_{2i} \) to be correlated
More model fitting

- If you just want an unstructured correlation matrix, you can use `gls`

  ```r
  gls(growth ~ age * gender,
      correlation=corSymm(form=~1|subject),
      data = dat)
  ```

- If you want compound symmetric correlation matrix, you can change `corSymm` to `corCompSymm`

- You can have random effects and a general covariance matrix

- These models assume the assume a known variance structure, we can use `gee` to get robust variance estimates
Here is some sample `gee` code

```r
gee(growth ~ age + gender,
    id = subject,
    data = dat,
    corstr = "unstructured")
```

you can also use

```r
corstr = "independence"
```

and

```r
corstr = "exchangeable"
```

try `?gee` to see all of the available working correlation matrices
Effect estimates as the models change

<table>
<thead>
<tr>
<th>Model</th>
<th>Itc</th>
<th>age</th>
<th>gender</th>
<th>age:gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>noCor</td>
<td>16.341</td>
<td>0.784</td>
<td>1.032</td>
<td>-0.305</td>
</tr>
<tr>
<td>randomItc</td>
<td>16.341</td>
<td>0.784</td>
<td>1.032</td>
<td>-0.305</td>
</tr>
<tr>
<td>exchLm</td>
<td>16.341</td>
<td>0.784</td>
<td>1.032</td>
<td>-0.305</td>
</tr>
<tr>
<td>unstrLm</td>
<td>15.933</td>
<td>0.824</td>
<td>1.474</td>
<td>-0.348</td>
</tr>
<tr>
<td>unstrGee</td>
<td>16.324</td>
<td>0.788</td>
<td>1.074</td>
<td>-0.310</td>
</tr>
<tr>
<td>idpendGee</td>
<td>16.341</td>
<td>0.784</td>
<td>1.032</td>
<td>-0.305</td>
</tr>
<tr>
<td>exchGee</td>
<td>16.341</td>
<td>0.784</td>
<td>1.032</td>
<td>-0.305</td>
</tr>
</tbody>
</table>

Apart from the linear model with an unstructured covariance matrix, the results are all nearly identical. (The odd result may be due to lack of convergence of estimates.)
Standard error estimates by model

<table>
<thead>
<tr>
<th>Model</th>
<th>Itc</th>
<th>age</th>
<th>gender</th>
<th>age:gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>noCor</td>
<td>1.416</td>
<td>0.126</td>
<td>2.219</td>
<td>0.198</td>
</tr>
<tr>
<td>randomItc</td>
<td>0.981</td>
<td>0.078</td>
<td>1.538</td>
<td>0.122</td>
</tr>
<tr>
<td>exchLm</td>
<td>0.981</td>
<td>0.078</td>
<td>1.537</td>
<td>0.121</td>
</tr>
<tr>
<td>unstrLm</td>
<td>0.998</td>
<td>0.082</td>
<td>1.563</td>
<td>0.129</td>
</tr>
<tr>
<td>unstrGee</td>
<td>1.170</td>
<td>0.098</td>
<td>1.376</td>
<td>0.117</td>
</tr>
<tr>
<td>idpendGee</td>
<td>1.171</td>
<td>0.098</td>
<td>1.378</td>
<td>0.117</td>
</tr>
<tr>
<td>exchGee</td>
<td>1.171</td>
<td>0.098</td>
<td>1.378</td>
<td>0.117</td>
</tr>
</tbody>
</table>
No interaction model

To illustrate a point, consider the standard errors of the (time invariant) gender effect when there is no interaction with the (time varying) age.

<table>
<thead>
<tr>
<th></th>
<th>(Intercept)</th>
<th>age</th>
<th>gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>noCor</td>
<td>1.112</td>
<td>0.098</td>
<td>0.445</td>
</tr>
<tr>
<td>randomItc</td>
<td>0.832</td>
<td>0.062</td>
<td>0.743</td>
</tr>
<tr>
<td>exchLm</td>
<td>0.834</td>
<td>0.062</td>
<td>0.761</td>
</tr>
<tr>
<td>unstrLm</td>
<td>0.897</td>
<td>0.070</td>
<td>0.757</td>
</tr>
<tr>
<td>unstrGee</td>
<td>0.895</td>
<td>0.070</td>
<td>0.730</td>
</tr>
<tr>
<td>idpendGee</td>
<td>0.889</td>
<td>0.070</td>
<td>0.750</td>
</tr>
<tr>
<td>exchGee</td>
<td>0.889</td>
<td>0.070</td>
<td>0.750</td>
</tr>
</tbody>
</table>