R - Statistical Modelling

Some slides that appear in this presentation were obtained from Thomas Lumley of the R-core group (http://www.r-project.org/) and the Bioconductor webpage (http://www.bioconductor.org/).

Statistical Modelling in S

The systematic part of a model is specified a model formula with basic structure

\[
\text{outcome} \sim \text{exposure} \ast \text{modifier} + \text{confounder}
\]

- The left-hand side is the outcome (response, independent) variable, the right-hand side describes the predictors.
- The \(\ast \) specifies an interaction and the corresponding main effects (\(a:b \) specifies just the interaction term).
- Factors (eg race, subtype of disease) are coded by default with indicator variables for all except the first category.
- Terms can be variables, simple expressions, or composite objects.
Statistical Modelling in S

- \(\text{depress} \sim \text{rural}^* \text{agegp} + \text{partner} + \text{parity} + \text{income} \)
 Does the risk of postnatal depression vary between urban and rural areas, separately for each age group, adjusted for having a domestic partner, previous number of pregnancies, income?

- \(\text{asthma} \sim \text{pm25} + \text{temp} + I(\text{temp}^2) + \text{month} \)
 How does the number of hospital admissions for asthma vary with fine particulate air pollution, adjusted for temperature and month of the year?

- \(\log(\text{pm25}) \sim \text{temp} + \text{stag} + \text{month} + \text{lag(tem}p,1) \)
 Predict (log-transformed) fine particulate air pollution from temperature, air stagnation, month, and yesterday’s temperature.

- \(\text{Surv(ttoMI,MI)} \sim \text{LDL} + \text{age} + \text{sex} + \text{hibp} + \text{diabetes} \)
 How does LDL cholesterol predict (time to) myocardial infarction after adjusting for age, sex, hypertension, and diabetes?

Generalized linear models

Generalized linear models (linear regression, logistic regression, poisson regression) are handled by the \(\text{glm}() \) function. This requires:

- A model formula
- A dataframe containing the variables [optional]
- A model family:
 - \(\text{binomial()} \) logistic regression,
 - \(\text{gaussian()} \) linear regression,
 - \(\text{poisson()} \) Poisson regression,
 and others less commonly used.

\(\text{glm(} \text{asthma} \sim \text{pm25} + \text{temp} + I(\text{temp}^2) + \text{month}, \text{data=pmdat, family=poisson()} \)
Model objects

Typical statistics packages fit a model and output the results. In S a model object is created that stores all the information about the fitted model. Coefficients, diagnostics, and other model summaries are produced by methods for this object.

- `coef(model)` returns the coefficients.
- `summary(model)` gives a table with coefficients, standard errors, perhaps other information.
- `resid(model)` returns (various flavours of) residuals.
- `anova(model)` gives an ANOVA table showing likelihood ratio tests for adding each term sequentially. Also, the function `anova(model1, model2)` compares the two models directly.
- `plot(model)` may give some useful diagnostic plots.
- many more!

Classes of model

R has most of the commonly used regression models:

- `lm()` Linear regression.
- `glm()` generalized linear models.
- `coxph()` Cox model (in “survival” package).
- `survreg()` Parametric survival models (in “survival” package).
- `clogit()` Conditional logistic regression (in “survival” package).
- `lme()` Linear mixed models (in “nlme” package).
- simple meta-analyses (in package “rmeta”).

Note: Currently, R does not have generalized linear mixed models (SAS PROC NLMIXED, BUGS, HLM, MLwin).