Be Wary of the Stepwise Regression Selection Procedures

Example: Suppose you are interested in associating socio-demographic factors with total medical expenditures for persons 19 to 94 years of age. You have data from the National Medical Expenditure Survey (1987). You are interested in looking at the following socio-demographic variables after adjusting for age and gender (known confounders):

Seat Belt Use as a surrogate for risk taking behavior:
1 – rare, 2 – some, 3 – always/almost always

Education Level:
1 – college grad, 2 – some college, 3 – hs grad, 4 – other

Marital Status:
1 – married, 2 – widowed, 3 – divorced, 4 – separated, 5 – never married

Our full model would be represented by the following output (assuming that its adequate to adjust for linear age):

```
.xi: regress TOTALEXP i.beltuse i.educate i.marital MALE LASTAGE
```

```
. xi: regress TOTALEXP i.beltuse i.educate i.marital MALE LASTAGE
i.beltuse         _Ibeltuse_1-3       (naturally coded; _Ibeltuse_1 omitted)
i.educate         _Ieducate_1-4       (naturally coded; _Ieducate_1 omitted)
i.marital         _Imarital_1-5       (naturally coded; _Imarital_1 omitted)
Source |       SS       df       MS              Number of obs =   22076
-------------+------------------------------           F( 11, 22064) =   78.96
Model |  3.1044e+10    11  2.8222e+09           Prob > F      =  0.0000
Residual |  7.8860e+11 22064  35741387.2           R-squared     =  0.0379
-------------+------------------------------           Adj R-squared =  0.0374
Total |  8.1964e+11 22075  37129887.0           Root MSE      =  5978.4

------------------------------------------------------------------------------
TOTALEXP |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   _Ibeltuse_2 |  -254.0798    122.231    -2.08   0.038    -493.6612   -14.49831
   _Ibeltuse_3 |   16.58768   101.5703     0.16   0.870    -182.4973    215.6727
   _Ieducate_2 |   206.0112   140.3061     1.47   0.142     -68.9987    481.0211
   _Ieducate_3 |  139.6909   119.1392     1.17   0.241    -93.83043    373.2123
   _Ieducate_4 |  -9.276727    155.301    -0.06   0.952    -313.6778    295.1243
   _Imarital_2 |   346.6635   152.8893     2.27   0.023     46.98958    646.3374
   _Imarital_3 |   272.9113   147.7179     1.85   0.065    -16.62643    562.4489
   _Imarital_4 |   676.878    234.6771     2.88   0.004     216.894    1136.862
   _Imarital_5 |  372.4754   117.1905     3.18   0.001    142.7366    602.2122
   MALE |  -111.2689   83.61385    -1.33   0.183    -275.1581    52.62019
   LASTAGE |   63.67303   2.71129     23.48   0.000    58.35871    68.98735
   _cons |  -1212.247   189.8173    -6.39   0.000    -1584.303   -840.1919
------------------------------------------------------------------------------
```

Someone not too familiar with Stata may request the following stepwise regression procedure and obtain the result below:

```
.sw regress TOTALEXP _Ibeltuse_2 _Ibeltuse_3 _Ieducate_2 _Ieducate_3 _Ieducate_4 _Imarital_2 _Imarital_3 _Imarital_4 _Imarital_5 MALE LASTAGE, pr(0.20)
```

```
> arital_2 _Imarital_3 _Imarital_4 _Imarital_5 MALE LASTAGE, pr(0.20)
begin with full model
p = 0.9524 >= 0.2000  removing _Ieducate_4
p = 0.8605 >= 0.2000  removing _Ibeltuse_3
```

```
. sw regress TOTALEXP _Ibeltuse_2 _Ibeltuse_3 _Ieducate_2 _Ieducate_3 _Ieducate_4 _Imarital_2 _Imarital_3 _Imarital_4 _Imarital_5 MALE LASTAGE, pr(0.20)
```

```
Source |       SS       df       MS              Number of obs =   22076
-------------+------------------------------           F(  9, 22066) =   96.51
Model |  3.1043e+10     9  3.4492e+09           Prob > F      =  0.0000
Residual |  7.8860e+11 22066  35738203.5           R-squared     =  0.0379
-------------+------------------------------           Adj R-squared =  0.0375
Total |  8.1964e+11 22075  37129887.0           Root MSE      =  5978.1

```
| Variable | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------------|--------|-----------|-----|-------|-----------------------|
| _Ibeltuse_2 | -265.9251 99.83842 -2.66 0.008 -461.6155 -70.23463 |
| MALE | -112.335 83.31994 -1.35 0.178 -275.6481 50.97801 |
| _Ieducate_2 | 210.5739 122.3683 1.72 0.085 -29.27661 450.4245 |
| _Ieducate_3 | 142.8822 94.09414 1.52 0.129 -41.54903 462.3131 |
| LASTAGE | 63.64699 2.649114 24.03 0.000 58.45453 68.83944 |
| _Imarital_2 | 344.719 152.1435 2.27 0.023 46.50685 642.9311 |
| _Imarital_3 | 271.7896 147.5858 1.84 0.066 -17.48914 561.0683 |
| _Imarital_4 | 674.7144 234.2095 2.88 0.004 215.6471 1133.782 |
| _Imarital_5 | 371.6564 116.9555 3.18 0.001 142.4153 600.8976 |
| _cons | -1202.13 164.9624 -7.29 0.000 -1525.468 -878.7919 |

What does _Ibeltuse_2 mean now? What is the reference group for beltuse now?

What does _Ieducate_2 and _Ieducate_3 mean now? What is the reference group for educate now?

A more logical approach to would be to restrict testing to the factors (beltuse, educate, marital, MALE and LASTAGE). See this very different result below:

```
sw regress TOTALEXP (_Ibeltuse_2 _Ibeltuse_3) (_Ieducate_2 _Ieducate_3 _Ieducate_4) >  (_Imarital_2 _Imarital_3 _Imarital_4 _Imarital_5) MALE LASTAGE, pr(0.20)
begin with full model
p = 0.3157 >= 0.2000 removing _Ieducate_2 _Ieducate_3 _Ieducate_4
```

A more logical approach to would be to restrict testing to the factors (beltuse, educate, marital, MALE and LASTAGE). See this very different result below:

```
sw regress TOTALEXP (_Ibeltuse_2 _Ibeltuse_3) (_Ieducate_2 _Ieducate_3 _Ieducate_4) >  (_Imarital_2 _Imarital_3 _Imarital_4 _Imarital_5) MALE LASTAGE, pr(0.20)
begin with full model
p = 0.3157 >= 0.2000 removing _Ieducate_2 _Ieducate_3 _Ieducate_4
```

What does _Ibeltuse_2 mean now? What is the reference group for beltuse now?

What does _Ieducate_2 and _Ieducate_3 mean now? What is the reference group for educate now?