xtreg count time, i(id)

Random-effects GLS regression Number of obs = 2376
Group variable (i) : id Number of groups = 369

R-sq: within = 0.2860 Obs per group: min = 1
between = 0.0895 avg = 6.4
overall = 0.1750 max = 12

Random effects u_i ~ Gaussian Wald chi2(1) = 833.71
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

+---+
| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|
| time | -99.63042 | 3.450528 | -28.874 | 0.000 | -106.3933 -92.8675 |
| _cons | 836.9788 | 14.55013 | 57.524 | 0.000 | 808.4611 865.4966 |
+---+

sigma_u | 252.15694
sigma_e | 257.97343
rho | 0.48859953 (fraction of variance due to u_i)

----------------------------------- ---
* xtgee count, f(gaussian) corr(exc)

Iteration 1: tolerance = .11918583
Iteration 2: tolerance = .00056272
Iteration 3: tolerance = 3.294e-06
Iteration 4: tolerance = 1.932e-08

GEE population-averaged model Number of obs = 2376
Group variable: id Number of groups = 369
Link: identity Obs per group: min = 1
Family: Gaussian avg = 6.4
Correlation: exchangeable max = 12
Scale parameter: 132167.4 Wald chi2(1) = 846.02
 Prob > chi2 = 0.0000

+---+
| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|
| time | -99.72951 | 3.428735 | -29.086 | 0.000 | -106.4497 -93.00931 |
| _cons | 836.9295 | 14.79482 | 56.569 | 0.000 | 807.9322 865.9268 |
+---+

* xtreg count, i(id) re

Random-effects GLS regression Number of obs = 2376
Group variable (i) : id Number of groups = 369

R-sq: within = 0.2860 Obs per group: min = 1
between = 0.0895 avg = 6.4
overall = 0.1750 max = 12

Random effects u_i ~ Gaussian Wald chi2(1) = 833.71
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

+---+
| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|
| time | -99.63042 | 3.450528 | -28.874 | 0.000 | -106.3933 -92.8675 |
| _cons | 836.9788 | 14.55013 | 57.524 | 0.000 | 808.4611 865.4966 |
+---+
count | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------+--- ---
time | -99.63042 3.450528 -28.874 0.000 -106.3933 -92.8675
_cons | 836.9788 14.55013 57.524 0.000 808.4611 865.4966
---------+--
sigma_u | 252.15694
sigma_e | 257.97343
rho | .48859953 (fraction of variance due to u_i)

. clear
. use "A:\logistic.dta", clear

. * consider the following data for logistic regression
. glm y, f(bin) l(logit)
Iteration 1 : deviance = 34.4535
Iteration 2 : deviance = 34.3718
Iteration 3 : deviance = 34.3718
Iteration 4 : deviance = 34.3718
Residual df = 26 No. of obs = 27
Pearson X2 = 26.99999 Deviance = 34.37177
Dispersion = 1.038461 Dispersion = 1.321991
Bernoulli distribution, logit link

 y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------+--
 _cons | -.6931472 .4082482 -1.698 0.090 -1.493299 .1070046

. * look at the deviance its 34.37
. * now lets include li in the model
. glm y li, f(bin) l(logit)
Iteration 1 : deviance = 26.1073
Iteration 2 : deviance = 26.0730
Iteration 3 : deviance = 26.0730
Iteration 4 : deviance = 26.0730
Residual df = 25 No. of obs = 27
Pearson X2 = 23.93291 Deviance = 26.07296
Dispersion = .9573164 Dispersion = 1.042919
Bernoulli distribution, logit link

 y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
---------+--
li | 2.897264 1.18682 2.441 0.015 .5711401 5.223387
 _cons | -3.77714 1.378624 -2.740 0.006 -6.479194 -1.075087

. * the deviance decreased to 26.07, also li is significant
. * now lets fit a model with a constant term and temp
. glm y temp, f(bin) l(logit)

Iteration 1 : deviance = 33.8750
Iteration 2 : deviance = 33.8180
Iteration 3 : deviance = 33.8180
Iteration 4 : deviance = 33.8180

Residual df = 25
Pearson X2 = 26.8173
Deviance = 33.81799
Dispersion = 1.07269

Bernoulli distribution, logit link

| y | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-----|--------|-----------|-------|-----|---------------------|
| temp| -22.01816 | 30.76225 | -0.716 | 0.474 | [-82.31106, 38.27475] |
| _cons| 21.23275 | 30.60836 | 0.694 | 0.488 | [-38.75853, 81.22403] |

. * not much decrease in deviance. Also the coefficient is not significant. Thus temp doesn't seem to be important to explain the variation in the response.

. glm y li temp, f(bin) l(logit)

Iteration 1 : deviance = 25.3826
Iteration 2 : deviance = 24.8337
Iteration 3 : deviance = 24.7970
Iteration 4 : deviance = 24.7968
Iteration 5 : deviance = 24.7968

Residual df = 24
Pearson X2 = 21.83892
Deviance = 24.79676
Dispersion = 0.9099551

Bernoulli distribution, logit link

| y | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---------|--------|-----------|-------|-----|---------------------|
| li | 3.298405 | 1.364846 | 2.417 | 0.016 | [0.6233552, 5.973454] |
| temp | -49.98084 | 47.91913 | -1.043 | 0.297 | [-143.9006, 43.93892] |
| _cons | 45.40973 | 46.83838 | 0.969 | 0.332 | [-46.39181, 137.2113] |

. * from the above results it is seen that temp is not significant alone or with li. Thus we decide that the final model will include only one covariate li.

. glm y li, f(bin) l(logit)

Iteration 1 : deviance = 26.1073
Iteration 2 : deviance = 26.0730
Iteration 3 : deviance = 26.0730
Iteration 4 : deviance = 26.0730

Residual df = 25
Pearson X2 = 23.93291
Deviance = 26.07296
Dispersion = 0.9573164

Bernoulli distribution, logit link
Table 1: Coefficients and Standard Errors

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|--------|-----------|-------|------|----------------------|
| li | 2.897264 | 1.18682 | 2.441 | 0.015 | 0.5711401 5.223387 |
| _cons | -3.77714 | 1.378624 | -2.740 | 0.006 | -6.479194 -1.075087 |

* thus we can write the model as logit(p) = -3.778 + 2.897 li

* if one wishes to obtain the estimate of odds ratio you can use either of the following commands

```plaintext
. disp exp(2.897264)
18.124489
```

```plaintext
. glm y li, f(bin) l(logit) eform
Iteration 1 : deviance =  26.1073
Iteration 2 : deviance =  26.0730
Iteration 3 : deviance =  26.0730
Iteration 4 : deviance =  26.0730
Residual df  =        25                                No. of obs =        27
Pearson X2   =  23.93291                                Deviance   =  26.07296
Dispersion   =  .9573164                                Dispersion =  1.042919
Bernoulli distribution, logit link
```

| | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|------------|-----------|-------|------|----------------------|
| li | 18.12448 | 21.51049 | 2.441 | 0.015 | 1.770284 185.5617 |

* we obtain the OR as 18.13

```plaintext
. clear
. edit
- preserve
```

* Now we demonstrate to do a logistic regression analysis when we have the data in the form Bin(n,p)

```plaintext
. glm blind, f(bin 50) l(logit)
Iteration 1 : deviance =  106.1028
Iteration 2 : deviance =  105.7517
Iteration 3 : deviance =  105.7517
Iteration 4 : deviance =  105.7517
Residual df  =         4                                No. of obs =         5
Pearson X2   =  95.03189                                Deviance   =  105.7517
Dispersion   =  23.75797                                Dispersion =  26.43794
Binomial (N=50) distribution, logit link
```

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|---|--------|-----------|-------|------|----------------------|
| blind | -.0800427 | .1265923 | -0.632 | 0.527 | -.3281591 .1680737 |

* look at the deviance
. glm blind age, f(bin 50) l(logit)

Iteration 1: deviance = 6.6044
Iteration 2: deviance = 6.4473
Iteration 3: deviance = 6.4471
Iteration 4: deviance = 6.4471

Residual df = 3 No. of obs = 5
Pearson X2 = 6.13217 Deviance = 6.447147
Dispersion = 2.044057 Dispersion = 2.149049

Binomial (N=50) distribution, logit link

| blind | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|--------|-----------|------|-----|---------------------|
| age | .0940683 | .0119755 | 7.855 | 0.000 | .0705967 .1175399 |
| _cons | -4.356181 | .5700965 | -7.641 | 0.000 | -5.473549 -3.238812 |

* the deviance reduced to 6.44 after we include the covariate in the model. A
> lso the age coefficient is highly significant. Thus the final model will be o
> f the form logit(p) = -4.36 + 0.094 Age. After the glm command one has an opt
> ion to give a comment to predict the fitted values. One can also obtain the o
> dds ratio by using the option eform in the glm command
> predict fit
> (option mu assumed; predicted mean blind)

* now we look at the corresponding observed and estimated probabilities
. gen op = bilnd/50
bilnd not found
r(111);
. gen op = blind/50
. gen fp = fit/50

* not lets grag the observed and the fitted probabilities
. graph op fp age
unrecognized command: graph
r(199);
. graph op fp age

* to obatin the OR
. glm blind age, f(bin 50) l(logit) eform

Iteration 1: deviance = 6.6044
Iteration 2: deviance = 6.4473
Iteration 3: deviance = 6.4471
Iteration 4: deviance = 6.4471

Residual df = 3 No. of obs = 5
Pearson X2 = 6.13217 Deviance = 6.447147
Dispersion = 2.044057 Dispersion = 2.149049

Binomial (N=50) distribution, logit link
| blind | Odds Ratio | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|--------|--------------|------------|-------|-------|----------------------|
| age | 1.098635 | 0.0131567 | 7.855 | 0.000 | 1.073148 1.124726 |

* the corresponding OR is 1.099

. clear

. close
unrecognized command: close
r(199);