Chapter 10

Additive Models, Trees, and Related Methods

In observational studies we usually have observed predictors or covariates X_1, X_2, \ldots, X_p and a response variable Y. A scientist is interested in the relation between the covariates and the response, a statistician summarizes the relationship with

$$E(Y|X_1, \ldots, X_p) = f(X_1, \ldots, X_n) \quad (10.1)$$

Knowing the above expectation helps us

- understand the process producing Y
- assess the relative contribution of each of the predictors
- predict the Y for some set of values X_1, \ldots, X_n.

One example is the air pollution and mortality data. The response variable Y is daily mortality counts. Covariates that are measured are daily measurements of particulate air pollution X_1, temperature X_2, humidity X_3, and other pollutants X_4, \ldots, X_p.

172
Note: In this particular example we can consider the past as covariates. GAM is more appropriate for data for which this doesn’t happen.

In this section we will be looking at a diabetes data set which comes from a study of the factors affecting patterns in insulin-dependent diabetes mellitus in children. The objective was to investigate the dependence of the level of serum C-peptide on various other factors in order to understand the patterns of residual insulin secretion. The response measurements Y is the logarithm of C-peptide concentration (mol/ml) at diagnosis, and the predictor measurements are age and base deficit, a measurement of acidity.

A model that has the form of (10.1) and is often used is

$$Y = f(X_1, \ldots, X_n) + \varepsilon$$ (10.2)

with ε a random error with mean 0 and variance σ^2 independent from all the X_1, \ldots, X_p.

Usually we make a further assumption, that ε is normally distributed. Now we are not only saying something about the relationship between the response and covariates but also about the distribution of Y.

Given some data, “estimating” $f(x_1, \ldots, x_n)$ can be “hard”. Statisticians like to make it easy assuming a linear regression model

$$f(X_1, \ldots, X_n) = \alpha + \beta_1X_1 + \ldots + \beta_pX_p$$

This is useful because it

- is very simple
- summarizes the contribution of each predictor with one coefficient
- provides an easy way to predict Y for a set of covariates X_1, \ldots, X_n.

It is not common to have an observational study with continuous predictors where there is “science” justifying this model. In many situations it is more useful to
let the data “say” what the regression function is like. We may want to stay away from linear regression because it forces linearity and we may never see what $f(x_1, \ldots, x_n)$ is really like.

In the diabetes example we get the following result:

So does the data agree with the fits? Let’s see if a “smoothed” version of the data agrees with this result.

But how do we smooth? Some of the smoothing procedures we have discussed may be generalized to cases where we have multiple covariates.

There are ways to define splines so that $g : I \subset \mathbb{R}^p \rightarrow \mathbb{R}$. We need to define knots in $I \subset \mathbb{R}^p$ and restrictions on the multiple partial derivative which is difficult but can be done.

It is much easier to generalize loess. The only difference is that there are many more polynomials to choose from: $\beta_0, \beta_0 + \beta_1 x, \beta_0 + \beta_1 x + \beta_2 y, \beta_0 + \beta_1 x + \beta_2 y + \beta_3 xy, \beta_0 + \beta_1 x + \beta_2 y + \beta_3 xy + \beta_4 x^2$, etc...
This is what we get when we fit local planes and use 15% and 66% of the data.

However, when the number of covariates is larger than 2 looking at small “balls” around the target points becomes difficult.

Imagine we have equally spaced data and that each covariate is in $[0, 1]$. We want to fit loess using $\lambda \times 100\%$ of the data in the local fitting. If we have p covariates and we are forming p-dimensional cubes, then each side of the cube must have size l determined by $l^p = \lambda$. If $\lambda = .10$ (so its supposed to be very local) and $p = 10$ then $l = .1^{1/10} = .8$. So it really isn’t local! This is known as the curse of dimensionality.

10.1 Additive Models

Additive models are specific application of projection pursuit. They are more useful in scientific applications.

In additive models we assume that the response is linear in the predictors effects and that there is an additive error. This allows us to study the effect of each predictor separately. The model is like (10.2) with

$$f(X_1, \ldots, X_p) = \sum_{j=1}^{p} f_j(X_j).$$
Notice that this is projection pursuit with the projection

\[\alpha_j'X = X_j. \]

The assumption made here is not as strong as in linear regression, but it's still quite strong. It's saying that the effect of each covariate is additive. In practice this may not make sense.

Example: In the diabetes example consider an additive model that models log(C-peptide) in terms of age \(X_1 \) and base deficit \(X_2 \). The additive model assumes that for two different ages \(x_1 \) and \(x_1' \) the conditional expectation of \(Y \) (seen as a random variable depending on base deficit):

\[
E(Y|X_1 = x_1, X_2) = f_1(x_1) + f_2(X_2)
\]

and

\[
E(Y|X_1 = x_1', X_2) = f_1(x_1') + f_2(X_2).
\]

This says that the way C-peptide depends on base deficit only varies by a constant for different ages. It is not easy to disregard the possibility that this dependence changes. For example, at older ages the effect of high base deficit can be dramatically bigger. However, in practice we have to make assumptions like these in order to get some kind of useful description of the data.

Comparing the non-additive smooth (seen above) and the additive model smooth shows that it is not completely crazy to assume additivity.
Notice that in the first plots the curves defined for the different ages are different. In the second plot they are all the same.

How did we create this last plot? How did we fit the additive surface. We need to estimate f_1 and f_2. We will see this in the next section.

Notice that one of the advantages of additive model is that no matter the dimension of the covariates we know what the surface $f(X_1, \ldots, X_p)$ is like by drawing each $f_j(X_j)$ separately.
10.1.1 Fitting Additive Models: The Backfitting Algorithm

Conditional expectations provide a simple intuitive motivation for the backfitting algorithm.

If the additive model is correct then for any \(k \)

\[
\mathbb{E} \left(Y - \alpha - \sum_{j \neq k} f_j(X_j) \bigg| X_k \right) = f_k(X_k)
\]

This suggest an iterative algorithm for computing all the \(f_j \).

Why? Let’s say we have estimates \(\hat{f}_1, \ldots, \hat{f}_{p-1} \) and we think they are “good”
estimates in the sense that $E\{f_j(X_j) - f_j(X_j)\}$ is “close to 0”. Then we have that

$$E\left(Y - \hat{\alpha} - \sum_{j=1}^{p-1} \hat{f}_j(X_j) \right) \approx f_p(X_p).$$

This means that the partial residuals $\hat{\epsilon} = Y - \hat{\alpha} - \sum_{j=1}^{p-1} \hat{f}_j(X_j)$

$$\hat{\epsilon}_i \approx f_p(X_{ip}) + \delta_i$$

with the δ_i approximately IID mean 0 independent of the X_p’s. We have already discussed various “smoothing” techniques for estimating f_p in a model as the above.

Once we choose what type of smoothing technique we are using for each co-variate, say its defined by $S_j(\cdot)$, we obtain an estimate for our additive model following these steps

1. Define $f_j = \{f_j(x_{1j}), \ldots, f_j(x_{nj})\}'$ for all j.
2. Initialize: $\alpha^{(0)} = \text{ave}(y_i), f_j^{(0)} = \text{linear estimate}$.
3. Cycle over $j = 1, \ldots, p$

$$f_j^{(1)} = S_j \left(Y - \alpha^{(0)} - \sum_{k \neq j} f_k^{(0)} | x_j \right)$$

4. Continue previous step until functions “don’t change”, for example until

$$\max_j \left\| f_j^{(n)} - f_j^{(n-1)} \right\| < \delta$$

with δ is the smallest number recognized by your computer. In my computer using S-Plus its:

$.Machine$double.eps = 2.220446e-16

Things to think about:

Why is this algorithm valid? Is it the solution to some minimization criterion? Its not MLE or LS.
10.1.2 Justifying the backfitting algorithm

The backfitting algorithm seems to make sense. We can say that we have given an intuitive justification.

However statisticians usually like to have more than this. In most cases we can find a “rigorous” justification. In many cases the assumptions made for the “rigorous” justifications too work are carefully chosen so that we get the answer we want, in this case that the back-fitting algorithm “converges” to the “correct” answer.

In the GAM book, H&T find three ways to justify it: Finding projections in L^2 function spaces, minimizing certain criterion with solutions from reproducing-kernel Hilbert spaces, and as the solution to penalized least squares. We will look at this last one.

We extend the idea of penalized least squares by considering the following criterion

$$
\sum_{i=1}^{n} \left\{ y_i - \sum_{j=1}^{p} f_j(x_{ij}) \right\}^2 + \sum_{j=1}^{p} \lambda_j \int \left\{ f_j''(t) \right\}^2 dt
$$

over all p-tuples of functions (f_1, \ldots, f_p) that are twice differentiable.

As before we can show that the solution to this problem is a p-tuple of cubic splines with knots “at the data”, thus we may rewrite the criterion as

$$
\left(y - \sum_{j=1}^{p} f_j \right)' \left(y - \sum_{j=1}^{p} f_j \right) + \sum_{j=1}^{p} \lambda_j f_j K_j f_j
$$

where the K_js are penalty matrices for each predictor defined analogously to the K of section 3.3.

If we differentiate the above equation with respect to the function f_j we obtain

$$-2(y - \sum_{k} f_k) + 2\lambda_j K_j f_j = 0.$$ The \hat{f}_j’s that solve the above equation must
10.1. ADDITIVE MODELS

satisfy:

$$\hat{f}_j = (I + \lambda_j K_j)^{-1} \left(y - \sum_{k \neq j} \hat{f}_k \right), \ j = 1, \ldots, p$$

If we define the smoother operator $S_j = (I + \lambda_j K_j)^{-1}$ we can write out this equation in matrix notation as

$$
\begin{pmatrix}
I & S_1 & \cdots & S_1 \\
S_2 & I & \cdots & S_2 \\
\vdots & \vdots & \ddots & \vdots \\
S_p & S_p & \cdots & I
\end{pmatrix}
\begin{pmatrix}
f_1 \\
f_2 \\
\vdots \\
f_p
\end{pmatrix}
=
\begin{pmatrix}
S_1 y \\
S_2 y \\
\vdots \\
S_p y
\end{pmatrix}
$$

One way to solve this equation is to use the Gauss-Seidel algorithm which in turn is equivalent to solving the back-fitting algorithm. See Buja, Hastie & Tibshirani (1989) Ann. Stat. 17, 435–555 for details.

Remember that that for any set of linear smoother

$$\hat{f}_j = S_j y$$

we can argue in reverse that it minimizes some penalized least squares criteria of the form

$$(y - \sum_j f_j)'(y - \sum_j f_j) + \sum_j f_j'(S_j - I)f_j$$

and conclude that it is the solution to some penalized least squared problem.

10.1.3 Standard Error

When using `gam()` in S-Plus we get point-wise standard errors. How are these obtained?

Notice that our estimates \hat{f}_j are no longer of the form $S_j y$ since we have used a complicated backfitting algorithm. However, at convergence we can express \hat{f}_j as $R_j y$ for some $n \times n$ matrix R_j. In practice this R_j is obtained from the last calculation of the \hat{f}_j’s but finding a closed form is rarely possible.
10.2 Generalized Models

What happens if the response is not continuous? This the same problem that motivated the extension of linear models to generalized linear models (GLM).

In this Chapter we will discusss two method based on a likelihood approach similar to GLMs.

10.2.1 Generalized Additive Models

We extend additive models to generalized additive models in a similar way to the extension of linear models to generalized linear models.

Say Y has conditional distribution from an exponential family and the conditional mean of the response $E(Y|X_1,\ldots,X_p) = \mu(X_1,\ldots,X_p)$ is related to an additive model through some link functions

$$g\{\mu_i\} = \eta_i = \alpha + \sum_{j=1}^{p} f_j(x_{ij})$$

with μ_i the conditional expectation of Y_i given x_{i1},\ldots,x_{ip}. This motivates the use of the IRLS procedure used for GLMs but incorporating the backfitting algorithms used for estimation in Additive Models.

As seen for GLM the estimation technique is again motivated by the approximation:

$$g(y_i) \approx g(\mu_i) + (y_i - \mu_i) \frac{\partial \eta_i}{\partial \mu_i}$$
This motivates a weighted regression setting of the form

\[z_i = \alpha + \sum_{j=1}^{p} f_j(x_{ij}) + \varepsilon_i, \ i = 1, \ldots, n \]

with the \(\varepsilon_s \), the working residuals, independent with \(\mathbb{E}(\varepsilon_i) = 0 \) and

\[
\text{var}(\varepsilon_i) = w_i^{-1} = \left(\frac{\partial \eta_i}{\partial \mu_i} \right)^2 V_i
\]

where \(V_i \) is the variance of \(Y_i \).

The procedure for estimating the function \(f_j \)s is called the local scoring procedure:

1. Initialize: Find initial values for our estimate:

\[
\alpha^{(0)} = g \left(\sum_{i=1}^{n} y_i / n \right); f_1^{(0)} = \ldots, f_p^{(0)} = 0
\]

2. Update:

- Construct an adjusted dependent variable

\[
z_i = \eta_i^{(0)} + (y_i - \mu_i^{(0)}) \left(\frac{\partial \eta_i}{\partial \mu_i} \right)_0
\]

with \(\eta_i^{(0)} = \alpha^{(0)} + \sum_{j=1}^{p} f_j^{(0)}(x_{ij}) \) and \(\mu_i^{(0)} = g^{-1}(\eta_i^{(0)}) \)

- Construct weights:

\[
w_i = \left(\frac{\partial \mu_i}{\partial \eta_i} \right)_0 \left(V_i^{(0)} \right)^{-1}
\]

- Fit a weighted additive model to \(z_i \), to obtain estimated functions \(f_j^{(1)} \), additive predictor \(\eta^{(1)} \) and fitted values \(\mu_i^{(1)} \).

Keep in mind what a fit is.... \(\hat{f} \).
• Compute the convergence criteria

\[\Delta(\eta^{(1)}, \eta^{(0)}) = \frac{\sum_{j=1}^{p} ||f_j^{(1)} - f_j^{(0)}||}{\sum_{j=1}^{p} ||f_j^{(0)}||} \]

• A natural candidate for \(||f|| \) is \(||f^*|| \), the length of the vector of evaluations of \(f \) at the \(n \) sample points.

3. Repeat previous step replacing \(\eta^{(0)} \) by \(\eta^{(1)} \) until \(\Delta(\eta^{(1)}, \eta^{(0)}) \) is below some small threshold.

10.2.2 Penalized Likelihood

How do we justify the local scoring algorithm? One way is to minimize a penalized likelihood criterion.

Given a generalized additive model let

\[\eta_i = \alpha + \sum_{j=1}^{p} f_j(x_{ij}) \]

and consider the likelihood \(l(f_1, \ldots, f_p) \) as a function \(\eta = (\eta_1, \ldots, \eta_p)' \).

Consider the following optimization problem: Over \(p \)-tuples of functions \(f_1, \ldots, f_p \) with continuous first and second derivatives and integrable second derivatives find one that minimizes

\[pl(f_1, \ldots, f_p) = l(\eta; y) - \frac{1}{2} \sum_{j=1}^{p} \lambda_j \int \{ f_j''(x) \}^2 dx \]

where \(\lambda_j \geq 0, j = 1, \ldots, p \) are smoothing parameters.

Again we can show that the solution is an additive cubic spline with knots at the unique values of the covariates.
In order to find the fs that maximize this penalized likelihood we need some optimization algorithm. We will show that the Newton-Raphson algorithm is equivalent to the local-scoring procedure.

As before we can write the criterion as:

$$ pl(f_1, \ldots, f_p) = l(\eta, y) - \frac{1}{2} \sum_{j=1}^{p} \lambda_j f_j'K_j f_j. $$

In order to use Newton-Raphson we let $u = \partial l / \partial \eta$ and $A = -\partial^2 l / \partial \eta^2$. The first step is then taking derivatives and solving the score equations:

$$ \begin{bmatrix} A + \lambda_1 K_1 & A & \ldots & A \\ A & A + \lambda_2 K_2 & \ldots & A \\ \vdots & \vdots & \ddots & \vdots \\ A & A & \ldots & A + \lambda_p K_p \end{bmatrix} \begin{bmatrix} f_1' \\ f_2' \\ \vdots \\ f_p' \end{bmatrix} = \begin{bmatrix} f_1 - f_1^0 \\ f_2 - f_2^0 \\ \vdots \\ f_p - f_p^0 \end{bmatrix} = \begin{bmatrix} u - \lambda_1 K_1 f_1^0 \\ u - \lambda_1 K_1 f_2^0 \\ \vdots \\ u - \lambda_1 K_1 f_p^0 \end{bmatrix} $$

where both A and u are evaluated at η^0. In the exponential family with canonical family, the entries in the above matrices are of simple form, for example the matrix A is diagonal with diagonal elements $a_{ii} = \left(\partial \mu_i / \partial \eta_i \right)^2 V_i^{-1}$.

To simplify this further, we let $z = \eta^0 + A^{-1} u$, and $S_j = (A + \lambda_j K_j)^{-1} A$, a weighted cubic smoothing-spline operator. Then we can write

$$ \begin{bmatrix} I & S_1 & \ldots & S_1 \\ S_2 & I & \ldots & S_2 \\ \vdots & \vdots & \ddots & \vdots \\ S_p & S_p & \ldots & I \end{bmatrix} \begin{bmatrix} f_1' \\ f_2' \\ \vdots \\ f_p' \end{bmatrix} = \begin{bmatrix} S_1 z \\ S_2 z \\ \vdots \\ S_p z \end{bmatrix} $$

Finally we may write this as

$$ \begin{bmatrix} f_1' \\ f_2' \\ \vdots \\ f_p' \end{bmatrix} = \begin{bmatrix} S_1(z - \sum_{j \neq 1} f_1^j) \\ S_2(z - \sum_{j \neq 2} f_2^j) \\ \vdots \\ S_p(z - \sum_{j \neq p} f_p^j) \end{bmatrix} $$
Thus the Newton-Raphson updates are an additive model fit; in fact they solve a weighted and penalized quadratic criterion which is the local approximation to the penalized log-likelihood.

Note: any linear smoother can be viewed as the solution to some penalized likelihood. So we can set-up to penalized likelihood criterion so that the solution is what we want it to be.

This algorithm converges with any linear smoother.

10.2.3 Inference

Deviance

The deviance or likelihood-ratio statistic, for a fitted model $\hat{\mu}$ is defined by

$$D(y; \hat{\mu}) = 2\{l(\mu_{max}; y) - l(\hat{\mu})\}$$

where μ_{max} is the parameter value that maximizes $l(\hat{\mu})$ over all μ (the saturated model). We sometimes unambiguously use $\hat{\eta}$ as the argument of the deviance rather than $\hat{\mu}$.

Remember for GLM if we have two linear models defined by η_1 nested within η_2, then under appropriate regularity conditions, and assuming η_1 is correct, $D(\hat{\eta}_2; \hat{\eta}_1) = D(y; \hat{\eta}_1) - D(y; \hat{\eta}_2)$ has asymptotic χ^2 distribution with degrees of freedom equal to the difference in degrees of freedom of the two models. This result is used extensively in the analysis of deviance tables etc...

For non-parametric we can still compute deviance and it still makes sense to compare the deviance obtained for different models. However, the asymptotic approximations are undeveloped.

H&T present heuristic arguments for the non-parametric case.
Standard errors

Each step of the local scoring algorithm consists of a backfitting loop applied to the adjusted dependent variables z with weights A given by the estimated information matrix. If R is the weighted additive fit operator, then at convergence

$$
\hat{\eta} = R(\hat{\eta} + A^{-1}\hat{\mu}) = Rz,
$$

where $\hat{\mu} = \partial l/\partial \hat{\eta}$. The idea is to approximate z by an asymptotically equivalent quantity z_0. We will not be precise and write \approx meaning asymptotically equivalent.

Expanding $\hat{\mu}$ to first order about the true η_0, we get $z \approx z_0 + A_0^{-1}u_0$, which has mean η_0 and variance $A_0^{-1}\phi \approx A\phi$.

Remember for additive models we had the fitted predictor $\hat{\eta} = Ry$ where y has covariance $\sigma^2 I$. Here $\hat{\eta} = Rz$, and z has asymptotic covariance A_0^{-1}. R is not a linear operator due to its dependence on $\hat{\mu}$ and thus y through the weights, so we need to use its asymptotic version R_0 as well. We therefore have

$$
\text{cov}(\hat{\eta}) \approx R_0A_0^{-1}R'_0\phi \approx RA^{-1}R'\phi
$$

Similarly

$$
\text{cov}(\hat{f}_j) \approx R_jA^{-1}R'_j\phi
$$

where R_j is the matrix that produces \hat{f}_j from z.

Under some regularity conditions we can further show that $\hat{\nu}$ is asymptotically normal, and this permits us to construct confidence intervals.

10.2.4 Degrees of freedom

Previously we described how we defined the degrees of freedom of the residuals as the expected value of the residual sum of squares. The analogous quantity in
generalized models is the deviance. We therefore use the expected value of the deviance to define the \textit{relative degrees of freedom}.

We don’t know the exact or asymptotic distribution of the deviance so we need some approximation that will permit us to get an approximate expected value.

Using a second order Taylor approximation we have that
\[
E[D(y; \hat{\mu})] \approx E[(y - \hat{\mu})'A^{-1}(y - \hat{\mu})]
\]
with \(A\) the Hessian matrix defined above. We now write this in terms of the “linear terms”.
\[
E[(y - \hat{\mu})'A(y - \hat{\mu})] \approx (z - \hat{\eta})'A(z - \hat{\eta})
\]
and we can show that this implies that if the model is unbiased
\[
E(D) = df \phi
\]
with
\[
df = n - \text{tr}(2R - R'ARA^{-1})
\]

This gives the degrees of freedom for the whole model not for each smoother. We can obtain the dfs for each smoother by adding them one at a time and obtaining
\[
E[D(\hat{\eta}_2; \hat{\eta}_1)] \approx \text{tr}(2R_1 - R_1'A_1R_1A_1^{-1}) - \text{tr}(2R_2 - R_2'A_2R_2A_2^{-1})
\]

In general, the crude approximation \(df_j = \text{tr}(S_j)\) is used.

\textbf{10.2.5 An Example}

The kyphosis data frame has 81 rows representing data on 81 children who have had corrective spinal surgery. The binary outcome Kyphosis indicates the presence or absence of a postoperative deformity (called Kyphosis). The other three variables are \textit{Age} in months, \textit{Number} of vertebra involved in the operation, and the beginning of the range of vertebrae involved (\textit{Start}).

Using GLM these are the results we obtain
10.2. GENERALIZED MODELS

<table>
<thead>
<tr>
<th>Value</th>
<th>Std. Error</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-1.213433077</td>
<td>1.230078549</td>
</tr>
<tr>
<td>Age</td>
<td>0.005978783</td>
<td>0.005491152</td>
</tr>
<tr>
<td>Number</td>
<td>0.298127803</td>
<td>0.176948601</td>
</tr>
<tr>
<td>Start</td>
<td>-0.198160722</td>
<td>0.065463582</td>
</tr>
</tbody>
</table>

Null Deviance: 86.80381 on 82 degrees of freedom

Residual Deviance: 65.01627 on 79 degrees of freedom

The dotted lines are smooths of the residuals. This does not appear to be a very good fit.

We may be able to modify it a bit, by choosing a better model than a sum of lines. We’ll use smoothing and GAM to see what “the data says”.

Here are some smooth versions of the data:
And here are the gam results:

Null Deviance: 86.80381 on 82 degrees of freedom

Residual Deviance: 42.74212 on 70.20851 degrees of freedom

Number of Local Scoring Iterations: 7

DF for Terms and Chi-squares for Nonparametric Effects

<table>
<thead>
<tr>
<th>Df</th>
<th>Npar</th>
<th>Df</th>
<th>Npar</th>
<th>Chisq</th>
<th>P(Chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1</td>
<td>s(Age)</td>
<td>1</td>
<td>2.9</td>
<td>6.382833</td>
</tr>
<tr>
<td>s(Start)</td>
<td>1</td>
<td></td>
<td></td>
<td>2.9</td>
<td>5.758407</td>
</tr>
<tr>
<td>s(Number)</td>
<td>1</td>
<td></td>
<td></td>
<td>3.0</td>
<td>4.398065</td>
</tr>
</tbody>
</table>

Notice that it is a much better fit and not many more degrees of freedom. Also
notice that the tests for linearity are close to “rejection at the 0.05 level”.

\[\text{glm2} <- \text{glm}(\text{Kyphosis} \sim \text{poly(Age,2)} + \text{I}((\text{Start} > 12) \times (\text{Start} - 12)), \text{family} = \text{binomial}) \]

Here are the results of this fit... much better than the original GLM fit.

Coefficients:
CHAPTER 10. ADDITIVE MODELS, TREES, AND RELATED METHODS

<table>
<thead>
<tr>
<th>Value</th>
<th>Std. Error</th>
<th>t value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.5421608</td>
<td>0.4172229</td>
</tr>
<tr>
<td>poly(Age, 2)1</td>
<td>2.3659699</td>
<td>4.1164283</td>
</tr>
<tr>
<td>poly(Age, 2)2</td>
<td>-10.5250479</td>
<td>5.2840926</td>
</tr>
<tr>
<td>I((Start > 12) * (Start - 12))</td>
<td>-1.3840765</td>
<td>0.5145248</td>
</tr>
</tbody>
</table>

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 86.80381 on 82 degrees of freedom

Residual Deviance: 56.07235 on 79 degrees of freedom

Number of Fisher Scoring Iterations: 6

Here are the residual plots:
10.2.6 Prediction using GAM

Often we wish to evaluate the fitted model at some new values.

With parametric models this is simple because all we do is form a new design matrix and multiply by the estimated parameters.

Some of the functions used to create design matrices in lm, glm a and gam are data dependent. For example bs(), poly(), make some standardization of the covariate before fitting and therefore new covariates would change the meaning of the parameters.

As an example look at what happens when we predict fitted values for new values of AGE in the Kyphosis example using predict().

The solution is to use predict.gam() that takes this into account.
predict.gam is especially useful when we want to make surface plots. For example:
10.2. GENERALIZED MODELS

10.2.7 Over-interpreting additive fits

One of the advantages of GAM is their flexibility. However, because of this flexibility we have to be careful not to “over-fit” and interpret the results incorrectly.

Binary data is especially sensitive. We construct a simulated example to see this.

The following figure shows the functional components f_1 and f_2 of a GAM

$$\text{logit}\{\Pr(Y = 1|U, V)\} = -1 + f_1(U) + f_2(V)$$

with U and V independent uniform(0,1).

We also show the “smooths” obtained for a data set of 250 observations and a data set of 50 observations. Notice how “bad” the second fit is.

If we make a plot of the mean $\mu(u, v)$ and of it’s estimate we see why this happens.
We have relatively large neighborhoods of $[0, 1] \times [0, 1]$ that contain only 1s or only 0s. The estimates in these regions will have linear part close to infinity and minus infinity!
One way to detect this when we don’t know “the truth” is to look at the estimates with standard errors and partial residuals. If the partial residuals follow the fit to closely and the standard errors “explode” we know something is wrong.

10.3 Classification Algorithms and Regression Trees

This is from the book by Breiman et. al.

At the university of California, San Diego Medical Center, when a heart attack patient is admitted, 19 variables are measured during the first 24 hours. They include BP, age and 17 other binary covariates summarizing the medical symptoms considered as important indicators of the patient’s condition.

The goal of a medical study can be to develop a method to identify high risk patients on the basis of the initial 24-hour data.
The next figure shows a picture of a tree structured classification rule that was produced in the study. The letter F means no high and the letter G means high risk.

How can we use data to construct trees that give us useful answers. There is a large amount of work done in this type of problem. We will give a brief description in this section.

10.3.1 Classifiers as Partitions

Suppose we have a categorical outcome $y \in C = \{1, 2, \ldots, J\}$. We call C the set of classes. Denote with \mathcal{X} the space of all possible covariates.

We can define a classification rule as a function $d(x)$ defined on \mathcal{X} so that for every x, $d(x)$ is equal to one of the numbers $1, \ldots, J$.
This could be considered a systematic way of predicting class membership from the covariates.

Another way to define classifiers is to partition \mathcal{X} into disjoint sets A_1, \ldots, A_j with $d(x) = j$ for all $x \in A_j$.

But how do we construct these classifiers from data?

10.3.2 What is truth?

We are now going to describe how to construct classification rules from data. The data we use to construct the tree is called the training set \mathcal{L} which is simply $\{(x_1, j_1), \ldots, (x_n, j_n)\}$.

Once a classification rule $d(\mathcal{X})$ is constructed how do we define it’s accuracy?

In this section we will define the true misclassification rate $R^*(d)$.

One way to estimate $R^*(d)$ is to draw another very large subset (virtually infinite) from the same population as \mathcal{L} and observe the rate of correct classification in that set. The proportion misclassified by d is our estimate of $R^*(d)$.

To make this definition more precise, define the space $\mathcal{X} \times \mathcal{C}$ as the set of all couples (x, j) where $x \in \mathcal{X}$ and $j \in \mathcal{C}$. Let $\Pr(A, j)$ be a probability distribution on $\mathcal{X} \times \mathcal{C}$. Assume each element of \mathcal{L} is an iid outcome from this distribution.

We define the misclassification rate as

$$R^*(d) = \Pr[d(x) \neq j | \mathcal{L}]$$ \hspace{1cm} (10.3)\]

with (x, j) an outcome independent of \mathcal{L}.

How do we obtain an estimate of this?
The substitution estimate simply counts how many times we are right with the data we have, i.e.

\[R(d) = \frac{1}{N} \sum_{n=1}^{N} 1_{d(x_n) \neq j_n}. \]

The problem with this estimate is that most classification algorithms construct \(d \) trying to minimize the above equation. If we have enough covariates we can define a rule that always has \(d(x_n) = j_n \) and randomly allocates any other \(x \). This has an \(R(d) = 0 \) but one can see that, in general, \(R^*(d) \) will be much bigger.

Another popular approach is the test sample estimate. Here we divide the data \(\mathcal{L} \) into two groups \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \). We then use \(\mathcal{L}_1 \) to define \(d \) and \(\mathcal{L}_2 \) to estimate \(R^*(d) \) with

\[R(d) = \frac{1}{N_2} \sum_{x_n \in \mathcal{L}_2} 1_{d(x_n) \neq j_n}, \]

with \(N_2 \) the size of \(\mathcal{L}_2 \). A popular choice for \(N_2 \) is 1/3 of \(N \), the size of \(\mathcal{L} \).

A problem with this procedure is that we don’t use 1/3 of the data when constructing \(d \). In situations where \(N \) is very large this may not be such a big problem.

The third approach is cross validation. We divide the data into many subsets of equal (or approximately equal) size \(\mathcal{L}_1, \ldots, \mathcal{L}_V \), define a \(d_v \) for each of these groups, and use the estimate

\[R(d) = \frac{1}{V} \sum_{v=1}^{V} \frac{1}{N_v} \sum_{x_n \in \mathcal{L}_v} 1_{d(x_n) \neq j_n}. \]

10.3.3 Constructing tree classifiers

Notice how big the space of all possible classifiers is. In the simple case where \(\mathcal{X} = \{0, 1\}^p \) this space has \(2^p \) elements.

Binary trees are a special case of this partition. Binary trees are constructed by repeated splits of the subsets of \(\mathcal{X} \) into two descendant subsets, beginning with \(\mathcal{X} \) itself.
The subsets created by the splits are called nodes. The subsets which are not split are called terminal nodes.

Each terminal nodes gets assigned to one of the classes. So if we had 3 classes we could get $A_1 = \mathcal{X}_5 \cup \mathcal{X}_9$, $A_2 = \mathcal{X}_6$ and $A_3 = \mathcal{X}_7 \cup \mathcal{X}_8$. If we are using the data we assign the class most frequently found in that subset of \mathcal{X}. We call these classification trees.

Various question still remain to be answered

- How do we define truth?
- How do we construct the trees from data?
CHAPTER 10. ADDITIVE MODELS, TREES, AND RELATED METHODS

• How do we assess trees, i.e. what makes a good tree?

The first problem in tree construction is how to use \mathcal{L} to determine the binary splits of \mathcal{X} into smaller and smaller pieces. The fundamental idea is to select each split of a subset so that the data in each of the descendant subsets are “purer” than the data in the parent subset.

This can be implemented in the following way

• Define the node proportions $p(j|t)$ to be the proportion of cases $x_n \in t$ belonging to class j so that $\sum_j p(j|t) = 1$.

• Define a measure of impurity $i(t)$ as a nonnegative function ϕ such that it reaches its maximum at $\phi(1/n, \ldots, 1/n)$, $\phi(1,0,\ldots,0) = 0$, and is symmetric with respect to its entries.

A popular example is the entropy

$$i(t) = -\sum_{j=1}^{J} p(j|t) \log p(j|t),$$

but there are many other choices.

• Define a set S of binary splits s at each node. Then we chose the split that minimize the impurity of the new left and right nodes

$$\Delta i(s,t) = i(t) - p_L i(t_L) + p_R i(t_R)$$

There are many different possible splits. For continuous variables there are an infinite amount. We need to define the set of splits S that we consider.

Most implementations require that the the splits are defined by only one covariate, but fancier versions permit the use of linear combinations.

If the covariate is continuous or ordered then the split must be defined by $x < c$ and $x \geq c$.
If the covariate is categorical then we simply consider all splits that divide original set into two.

Now all we need is a stopping rule and we are ready to create trees. A simple stopping rule is that $\Delta i(s, t) < \delta$, but this does not work well in practice.

What is usually done is that we let the trees grow to a size that is bigger than what we think makes sense and then prune. We remove node by node and compare the trees using estimates of $R^*(d)$.

Sometimes to save time and/or choose smaller trees we define a penalized criterion based on $R^*(d)$.
The big issue here is *model selection*. The model selection problem consists of four orthogonal components.

1. Select a space of models
2. Search through model space
3. Compare models
 - of the same size
 - of different sizes (penalize complexity)
4. Assess the performance of a procedure

Important points:

- Components 2 and 3 are often confused (e.g., in stepwise regression). That’s bad.
- People often forget component 1.
- People almost always ignore component 4; it can be the hardest.

Better trees may be found by doing a one-step “look ahead,” but this comes with the cost of a great increase in computation.

10.3.4 Regression Trees

If instead of classification we are interested in predicting we can assign a predictive value to each of the terminal nodes. Notice that this defines an estimate for the regression function $E(Y|X_1, \ldots, X_n)$ that is like a multidimensional bin smoother. We call these regression trees.
Regression trees are constructed in a similar way to classification trees. They are used for the case where Y is a continuous random variable.

A regression tree partitions x-space into disjoint regions A_k and provides a fitted value $E(y|x \in A_k)$ within each region.

In other words, this is a decision tree where the outcome is a fitted value for y.

We need a new definition $d(x)$ and $R^*(d)$.

Now $d(x_j)$ will simply be the average of the terminal node where x_j lies. So $d(x)$ defines a step-function $\mathbb{R}^p \to \mathbb{R}$.
Instead of misclassification rate, we can define mean squared error

\[R^*(d) = \mathbb{E}[Y - d(x)]^2 \]

The rest is pretty much the same.

10.3.5 General points

From Karl Broman’s notes.

- **This** is most natural when the explanatory variables are categorical (and it is especially nice when they are *binary*).
- **There** is nothing special about the tree structure...the tree just partitions \(x \)-space, with a fitted value in each region.
- **Advantage**: These models go after *interactions* immediately, rather than as an afterthought.
- **Advantage**: Trees can be easy to explain to non-statisticians.
- **Disadvantage**: Tree-space is huge, so we may need *a lot* of data.
- **Disadvantage**: It can be hard to assess uncertainty in inference about trees.
- **Disadvantage**: The results can be quite variable. (Tree selection is not very stable.)

Disadvantage: Actual *additivity* becomes a mess in a binary tree. This problem is somewhat alleviated by allowing splits of the form \(x_1 + bx_2 < (\geq) d \).

Computing with trees

R: `library(tree); library(rpart)` [MASS, ch 10]
An important issue: Storing trees

Binary trees are composed of nodes (root node, internal nodes and terminal nodes).

Root and internal nodes:

- Splitting rule (variable + what goes to right)
- Link to left and right daughter nodes
- Possibly a link to the parent node (null if this is the root node)

Terminal nodes:

- Fitted value
- Possibly a link to the parent node

C: Use pointers and structures (struct)

R: It beats me. Take a look.
Bibliography

