
Paper SY08

Stata® for the Struggling SAS® Mind
Dan Blanchette, Carolina Population Center, UNC-CH, Chapel Hill, NC

ABSTRACT
This paper shows how to “do” in Stata what you know how to “program” in SAS. For those SAS programmers who
need the statistical software Stata for certain analysis commands or have been given Stata code that they need to
use, this is basically a formal presentation of notes to myself that I made as I started learning how to use Stata.
What is covered:
1) How to get your SAS brain to conceptualize the different way Stata is set up. In essence, how to think Stata.
2) How to navigate the Stata window environment.
3) How to translate your SAS code into Stata code.

With a SAS programmer in mind, this paper makes use of your SAS knowledge to explain how to use Stata. This
makes learning Stata a lot easier as familiar SAS terms and concepts are used in the explanations. Not all SAS
statements are translated into Stata commands. Just the basics are covered so that a new-to-Stata user can learn
enough to get started. Perhaps the handiest feature is the table of SAS code matched to Stata code.

INTRODUCTION
For some reason you need to learn how to use Stata. Having already gone through perhaps a long and arduous
period learning SAS, you are likely not eager to do the same to learn another software package. This paper is
intended to ease the pain by making use of what you already know in SAS.

STATA AND SAS ARE SIMILAR
Stata is also a statistical software package. Stata is very much like SAS in that you can read in a data set,
manipulate the values of variables and analyze the data with it. For the most part, it is the case that anything you
can do in SAS you can also do in Stata. There are many tools available to create complex programs, stylized
reports and graphs. This paper is not going to cover all of that, but you should know there is much more to Stata
than this paper talks about.

STATA GOES ABOUT THINGS DIFFERENTLY
Stata is more than just a different programming language. The whole software package is set up differently than
SAS which spawns many nuances that you need to keep in mind while interacting with it. At first you are likely to
find this frustrating, but you may find certain aspects of Stata preferable to SAS.

DATA
The biggest difference between Stata and SAS is that Stata loads the entire data set into memory where SAS
typically only has the current observation in memory. In Stata you can access the values of variables in any
observation in the whole data set at almost any time. For this reason a RETAIN statement would make no sense in
Stata.

SETTING MEMORY
Stata requires you to be aware of how much of the computer's memory will be required to load the data set into
memory. Stata's default setting for memory frequently is large enough to keep this from being an issue, but you
should be aware that the memory setting might need to be tweaked. A quick rule of thumb would be to set Stata's
memory to 20% more than the size of the data set. If your data sets tend to be smaller than 30 megabytes, set your
default memory setting to 40m. Stata allows you to modify your initial memory setting when no data are in memory.

COMMANDS VS. STATEMENTS
In Stata one command modifies the entire data set one observation at a time, then the next command modifies the
entire data set, etc. In SAS a series of statements modifies one observation at a time, then the entire series
modifies the next observation, etc. Think of each Stata command as a SAS data step containing only one
statement:

1

data mydata;
set mydata;
var3=var1/var2*100;
run;

data mydata;
set mydata;
agegroup=(0<=age<2)*1+(2<=age<8)*2+(8<=age<18)*3;
run;

MISSING VALUES
For numeric variables, missing values in SAS are the SMALLEST values whereas in Stata they are the LARGEST
values. Starting with Version 8, Stata allows for special missing values .a-.z. Unlike SAS where special missing
value dot underscore (._) is smaller than dot missing (.), followed by .a alphabetically up to the largest missing value
.z, Stata's dot missing (.) is the smallest missing value and .z is the largest missing value (Stata has no dot
underscore). Thus the expression “<.” in Stata excludes all missing values whereas “>.z” in SAS excludes all
missing values.

IN CASE, IT MATTERS
Capital or lower case SAS code does not matter. For example the variable “Age” is the same as variable “age” or
“aGe”, etc. In Stata lower case is most often used because case does matter. For example the variables “Age”,
“age” and "aGe" are all different variables, albeit not very good names for different variables. All commands in Stata
are in lower case so beware the Caps Lock key.

THE END OF THE LINE
The end-of-line delimiter in SAS is the semi-colon (;).

data one;
set two;
 if oldvar1=2 and oldvar2=1 then
 newvar=1;
run;

Stata's default end-of-line delimiter is the carriage return, which is invisible to us. You can set the end-of-line
delimiter to be the semi-colon with the “ #delimit ; ” command. You might find this a helpful crutch at first, but I
encourage you to give the carriage return a chance since it is less to type and it can be a hassle to keep track of
what the end-of-line delimiter is in your code. Here are some examples in Stata that show how to span more than
one line in one command:

generate newvar=1 if oldvar1==2 /* comments out the carriage return
 this ends the comment */ & oldvar2==1

Or you can use 3 forward slashes preceded by at least one blank space to comment out the rest of the line and to
continue the command on the next line.

generate newvar=1 if oldvar1==2 /// also comments out the carriage return
 & oldvar2==1

CONDITIONS
In SAS, conditions come first and then something happens. For example:

if age>10 then age1=1;

Conditions in Stata come at the end of a command. For example:
generate age1=1 if age>10 & age<.

(Remember to consider that age may equal missing for some cases and that in Stata missing values are greater
than any other number.) If you are used to conditionally processing statements in a do-loop in SAS, there is no real
substitute for that in Stata. Depending on the problem you are trying to solve, one of Stata's looping commands
may come to the rescue. If you find yourself wanting to write a SAS-like conditional do-loop, remind yourself that

2

Stata processes each command for all observations before processing the next command. Remember: Think
Stata.

NO NEED TO SPELL IT OUT
All SAS statements have to be spelled out completely and usually spelled correctly for SAS to recognize them.
Stata recognizes a command when it is spelled out enough for Stata to understand what command you intend. For
example, the command “generate” can be typed as “g” although “gen” has somehow become its most common
abbreviation. Stata documentation of commands shows the first few letters underlined to indicate what characters
must be typed. It is common practice to use the abbreviation of the command.

LOGGING
If you want to keep a record of your session in a log file, Stata requires you to decide to do that at the beginning
instead of after the fact as in SAS. There is no option to save the contents of the Results window, though you can
copy and paste a large amount from the Results window to your favorite text editor. You can also save the contents
of the Review window if you forgot to start a log file.

STATA'S WINDOWS MODE
The Windows mode of Stata may initially look vastly different than SAS's, but what you might expect to see is there.

RESULTS WINDOW
Stata's Results window is a mix of SAS's log and output windows. The Results window prints the command and
Stata's reaction to that command. The default setting for the maximum number of characters to be stored in the
Results window is 32,000. This may not be enough to store all your results, as the SAS output and log windows do,
so it is better to log your Stata session instead of relying on the Results window.

COMMAND WINDOW
The Stata Command window is almost like SAS's program editor except that it is designed for the user to submit
only one command at a time. (Helpful tip: to scroll back to previously submitted commands use the Page Up key.)

DO-FILE EDITOR
The Stata Do-file Editor is like SAS's program editor. To launch it, click the icon in the tool bar of an open envelope.
Here you can submit all the commands in the window, or by highlighting a selection you can submit a single
command or several lines of code at a time. To submit commands from the Do-file Editor, click the icon in the tool
bar that looks like a piece of paper with lines on it and an arrow pointing down. In SAS you write programs, but in
Stata you write do-files. A Stata program is equivalent to a SAS macro.

VARIABLES WINDOW
The Variables window lists the names and labels of the variables in the data set that is currently in memory. If you
click on a variable it will appear in the command line.

REVIEW WINDOW
The Review window lists recently submitted commands from the Command window. If you click on a previous
command, it will appear in the Command window. If you double click, it will be executed. (Helpful tip: If you want to
save the commands in the Review window, perhaps because you did not start logging your Stata session, click to
the left of the word "Review" in the title of the window and select "Save Review Contents". This saves the
commands in the order they were submitted in the form of a do-file (*.do), which is equivalent to a SAS program
(*.sas) file.)

DATA EDITOR AND BROWSER
Stata also offers a Data Editor and a Data Browser just like SAS. To access them there are icons in the tool bar
that look like spread sheets. The icon for the data browser is the one with the magnifying glass.

VIEWER
The Stata Viewer is for viewing existing log files as well as help files. To launch the viewer click the icon in the tool
bar that is a picture of an eye.

CLICKING YOUR WAY THROUGH STATA
In the tool bar above the Results window there are drop-down menus for Data, Graphics, and Statistics. Here you
can click your way through most any Stata command using Stata's dialog boxes and have Stata write the code for
you. If you are logging your Stata session, the log will contain all the Stata code as if you had typed it yourself. The
Page Up key will also recall your last command even if it was generated by the Stata dialog box.

3

SAS CODE MATCHED TO STATA CODE
The following table shows you what the equivalent Stata code is for the SAS code you have in mind. This is
intended to acquaint you with some of the basics to get you started.

SAS Code Matched to Stata Code

Note: Stata commands are partially underlined to show the minimum characters that need to be typed for Stata
to recognize the command. Not all commands can be abbreviated.

SAS Stata

In SAS operators can be symbols or mnemonic
equivalents such as:

&
or:

and
For many situations in SAS order doesn't matter:

 <=
can be:

 =<
and

 >=
can be:

 =>

Most operators are the same in Stata as in SAS, but in
Stata operators do not have mnemonic equivalents.
For example, you have to use the ampersand (&) and
not the word "and":
This works:

var_a>=1 & var_b<=10
where this does not:

var_a>=1 and var_b<=10

These are the operators that are different in Stata:

Symbol Definition
 & and
 | or
 >= greater than or equal to
 <= less than or equal to
 == equality
 != does not equal
 ~ not
 ^ power

NOTE: Symbols have to be in the order shown: " >= "

not " => " .

/* comment */
* comment ;

/* comment */
* comment
// comment

To continue a line:

///
For example:

list hhid personid gender age ///
 weight height race income date

Range of values:

 if 1<=var_a<=10
or:

 if var_a in(1,2,3,4,5,6,7,8,9,10)

 if var_a>=1 & var_a<=10
or:

 if inrange(var_a,1,10)
or:

 if inlist(var_a,1,2,3,4,5,6,7,8,9,10)

4

SAS Stata
Referencing multiple variables at a time:

Say the following variables in the data file in the order
shown:

var1 var2 var3 age var4 var5
You could refer to them as:

var1var5
To SAS, this means “all variables that are positionally
between var1 and var5,” which would include the
variable age.

Referencing multiple variables at a time:

var1var5
To Stata, this means “all variables that are positionally
between var1 and var5.” Notice that there is only one
hyphen (-).

Referencing multiple variables at a time:

var1var5
is the same as:

var1 var2 var3 var4 var5
no matter the positions of the variables are in the
observation.

Using a colon selects variables containing the same
prefix:

var:
could represent:

var1 var2 var10 variable varying var_1

Referencing multiple variables at a time:

var?
The question mark (?) is a wild card that represents
one character in the variable name. It could be a
number, a letter, or an underscore (_).

var*
The asterisk (*) is a wild card that represents many
characters in the variable name. They could be
numbers, letters, or underscores. Thus

var*
could represent:

var1 var2 var10 variable varying var_1

To save the contents of the Log window and/or Output
window, go to that window and click on the menu bar's
“File”, “Save”. In SAS batch mode these files are
automatically generated for you.

To save the contents of the Results window, start
logging to a log file BEFORE you submit commands that
you want logged. Open a Log file by clicking on the icon
in the tool bar that looks like a scroll and a traffic light. A
“*.log” file is a simple ASCII text file; a “ *.smcl” file is
formatted with html-like tags.

You can also use the log command:

log using “d:\mydofile.log”, replace
NOTE: The “replace” option simply tells Stata to
overwrite the log file if it already exists. This is helpful
when you have to run a do-file over and over again.

libname in8 v8 “d:\mydata\”;
data new;
 set in8.mySASfile;
run;

or, starting in SAS 8:

data new;
 set “d:\mydata\mysasfile.sas7bdat”;
run;

use “d:\mydata\myStataFile.dta”
You can also click on the “open file” icon and select your
data set.

Save the data set newer to d:\mydata\ :

data in8.newer;
 set new;
run;

save “d:\mydata\newer.dta”
To overwrite the data set newer if it already exists:

save “d:\mydata\newer.dta” , replace
You can also click on the "save" icon to save your data
set.

5

SAS Stata

Save a SAS data set as a Stata data set with the SAS
macro SAVASTATA, which can be downloaded from the
web:
http://www.cpc.unc.edu/services/computer/presentations
/sas_to_stata/savastata.html

savastata(“d:\mydata\”, replace)

Save a Stata data set as a SAS data set with the Stata
command SAVASAS, which can be downloaded from
the web:
http://www.cpc.unc.edu/services/computer/presentations
/sas_to_stata/savasas.html

savasas “d:\mydata\”, replace

Or use a SAS data set using the Stata command
USESAS, which can be downloaded from the web:
http://www.cpc.unc.edu/services/computer/presentations
/sas_to_stata/usesas.html

usesas using “d:\mydata\mySAS.sas7bdat”

proc contents;
On selected variables:

proc contents data=in8.newer
 (keep=id age height);
run;

describe
On selected variables:

describe id age height

proc means;
On selected variables:

proc means;
 var age height;
run;

or

proc univariate;
 var age height;
run;

summarize
On selected variables:

summarize age height
If you want variable labels and a proc univariate style
output try:

summarize age height, detail
or:

codebook age height

proc surveymeans;
 cluster sampunit;
 strata stratum;
 var age height;
 weight sampwt;
run;

svyset [pweight=sampwt], ///
 psu(sampunit) strata(stratum)
svymean age height

Analyze a subpopulation by implementing the domain
option:

proc surveymeans;
 cluster sampunit;
 strata stratum;
 domain female;
 var age height;
 weight sampwt;
run;

Analyze a subpopulation by implementing the subpop
option:

svymean age height, subpop(females)

NOTE: Options come after a comma (,).

proc freq;

tabulate
or, for just checking out your data set, try:

codebook

6

SAS Stata
A series of 1-way tables:

proc freq;
tables var1 var2;
run;

A series of 1-way tables:

tab1 var1 var2

A 2-way table:

proc freq;
tables var1*var2;
run;

A 2-way table:

tab2 var1 var2

Starting in SAS Version 9:

proc surveyfreq;
 cluster sampunit;
 strata stratum;
 tables females*var1*var2;
 weight sampwt;
run;

svyset [pweight=sampwt], ///
 psu(sampunit) strata(stratum)
svytab var1 var2, subpop(females)

NOTE: The svytab command requires two variables.
Currently it is not possible to do a one-way tab with
svytab. A work-around for this is to generate a new
variable with a value equal to 1 and use that variable as
the second variable in your svytab. Stata plans to allow
svytab to do one-way tabs in the future.

proc surveyreg;
 cluster sampunit;
 strata stratum;
 model depvar=indvar1 indvar2;
 weight sampwt;
run;

Proc surveyreg does not have a way of dealing with
subpopulations. Using “by” or “where” will not suffice as
they will compute incorrect standard errors.

svyset [pweight=sampwt], ///
 psu(sampunit) strata(stratum)
svyreg depvar indvar1 indvar2, /*
 */ subpop(females)

Starting in SAS Version 9:

proc surveylogistic;
 cluster sampunit;
 strata stratum;
 model depvar=indvar1 indvar2 indvar3;
 weight sampwt;
run;

Proc surveylogistic does not have a way of dealing with
subpopulations. Using "by" or "where" will not suffice as
they will compute incorrect standard errors.

svyset [pweight=sampwt], ///
 psu(sampunit) strata(stratum)
svylogit depvar indvar1 indvar2, /*
 */ subpop(females)

proc print;
On selected variables:

proc print;
 var id age height;
run;

On selected variables and a limited range of
observations:

proc print data=new (firstobs=1
 obs=20);
 var id age height;
run;

list
On selected variables:

list id age height
On selected variables and a limited range of
observations:

list id age height in 1/20

7

SAS Stata

Create a numeric variable with a default length of 8
bytes:

var1=1234;

Create a numeric variable with the minimum allowable
length (3 bytes):

length var1 3;
var1=1234;

generate var1=1234
NOTE: The default numeric type is “float.” The
statement above is relying on that default. It could have
been written explicitly as:

generate float var1=1234
“float” stands for “floating point decimal.”
You could more wisely save storage space by
specifying:

gen int var1=1234
“int” stands for “integer.”

Create a character variable with a length of 3 bytes:

name=”Bob”;

Generate a string variable with a length of 3 bytes:

gen str3 name=”Bob”

Increase the variable length to allow for 5 characters:

data new;
 length name $5;
set new;

Change the values of numeric and character variables.

 var1=123456;
 name=”Bobby”;
run;

replace var1=123456
Stata automatically increases the storage type if
necessary.

replace name=”Bobby”
Stata automatically increases the length to 5.
To change the storage of a variable manually, use the
recast command.

recast int age

Example of an if-then statement:

if var1=123456 then var2=1;

The condition follows the command:

replace var2=1 if var1==123456
NOTE: Notice that Stata requires two equals signs when
testing equality.

Example of an if-then do loop:

if age<=10 then do;
 child=1;
 parent=0;
end;

replace child=1 if age<=10
replace parent=0 if age<=10

Since each command is executed on all observations
before the next command is executed, the "if-then do
loop" is not an option. Stata does have excellent looping
tools: foreach, forvalues, and while.

Drop variables var1, var2, and var3:

data new(drop=var1 var2 var3);
 set new;
run;

Drop variables var1, var2, and var3:

drop var1 var2 var3

Keep variables var1, var2, and var3:

data new(keep=var1 var2 var3);
 set new;
run;

Keep variables var1, var2, and var3:

keep var1 var2 var3

Keep observations / subsetting if statement:

data new;
 set new;
 if var1=1;
run;

Keep observations

 keep if var1==1

8

SAS Stata
Delete observations:

data new;
 set new;
 if var1=1 then delete ;
run;

Drop observations:

 drop if var1==1

data new(drop=i);
 set new;
 array raymond {4} var1 var2 var3
var4;
 do i=1 to 4;
 if raymond{i}=99 then raymond{i}=.;
 end;
run;

foreach i in var1 var2 var3 var4 {
 replace `i' = . if `i' == 99
 }

NOTE: Notice that the quote to the left of the letter “ i ” is
a left quote (`). The left quote is located at the top of
your keyboard next to the “ ! 1 ” key. In this example i is
a local macro variable that exists only for the duration of
the foreach command so it does not need to be dropped
like the variable i in the SAS code.

label age="age in years"
 height="height in inches";

label var age “age in years”
label var height “height in inches”

Define a format:

proc format;
 value yesno
 1="yes"
 2="no";
run;
data newer;
 set newer;
 format smokes yesno.;
run;

Define a format. These are called "value labels":

label define yesno 1 "yes" /*
 */ 2 "no"

Assign the value label to a variable:

label value smokes yesno

Assign formats defined by SAS to a variable:

 format interview_date mmddyy8.;

Assign formats defined by Stata to a variable:

format interview_date %n/d/y
NOTE: The “n” in “%n/d/y” stands for “number of the
month”.

title "Nutritional Intakes ages 1218";

Since the Results window/log file is both the log and the
Output window Stata does not need a title statement.
Titling can be accomplished with a comment.

/* Nutritional Intakes ages 1218 */

proc sort data=new out=newer;
 by id;
run;

sort id

proc transpose data=new
 (keep=age edu rel sex id lineno)
 out=tr_new;
 by id;
run;

reshape long age edu rel sex, ///
 i(id) j(lineno)

9

SAS Stata

data newer1;
 set newer;
 by id;
 if first.id=1 then f_num=1;
 if first.id=1 and last.id=1 then
 s_num=1;
 if last.id=1 then l_num=1;
run;

by id: gen f_num=1 if _n==1
by id: gen s_num=1 if _n==1 & _N==1
by id: gen l_num=1 if _n==_N

Stata's "_n" is equivalent to SAS's "_n_" in that it is
equal to the observation number; but when inside a by
command "_n" is equal to 1 for the first observation of
the by-group, 2 for the second observation of the by-
group, etc.
Stata's "_N" is equal to the number of observations in
the data set except in a by-command when it is equal to
the total number of observations in the by-group.

Count the number of boys within an id by-group:

data new_c;
 set newer;
 by id;
 retain count 0;
 if first.id then count=0;
 if gender=1 and age<=18 then
count=count+1
run;

Count the number of boys by id:

by id: gen count=sum(gender==1 & ///
age<=18)

The sum function creates a running sum of the
expression inside it.

data both;
 merge new(in=a)
 in8.newer(in=b);
 by id;
if a=1 and b=1;
run;

merge id using “d:\mydata\newer.dta”
keep if _merge==3

Stata automatically creates the variable "_merge" after a
merge. Stata will not merge on another data set if
_merge already exists on one of the data sets.
The data set in memory is the "master" data set. The
data set that is being merged on is the "using" data set.
Unlike SAS, variables shared by the master data set
and the using data set will not be updated (values
overwritten) by the using data set. Like SAS, the
formats, labels, and informats of variables shared by the
master data set and the using data set will be defined by
the master data set. Remember that the master always
wins.

Concatenate two data sets:

data both;
 set new
 in8.newer;
run;

append using “d:\mydata\newer.dta”

10

SAS Stata
Sort data sets in order to prepare them for a merge:

Sort permanently stored data sets and create new,
sorted copies in the WORK library:

proc sort data=in8.individual
 out=indiv;
 by id;
run;

proc sort data=in8.household
 out=house;
 by id;
run;

data temp2;
 merge house(in=a)
 indiv(in=b);
 by id;
run;

Sort data sets in order to prepare them for a merge:

Create a local macro variable to represent a filename for
Stata to use in temporarily storing a data file on the
computer's hard drive if requested to do so later:

tempfile indiv

use "d:\mydata\individual.dta"

sort id

Save the data set that is currently in memory to a
temporary filename in Stata's temp directory. This file
will be deleted when Stata is exited just like a data set in
SAS's work library:

save `indiv'
use "d:\mydata\household.dta"
sort id
merge id using `indiv'

Note: Stata commands are partially underlined to show the minimum characters that need to be typed for
Stata to recognize that command. Not all commands can be abbreviated.

CONCLUSION
Stata can be learned using your SAS knowledge, but it does require knowing that you need to have in mind the
differences between Stata and SAS. There will be times when you type a semi-colon at the end of the line or forget
to use the double equals signs (==) when testing for equality, but with practice you will become proficient. I hope
this paper helps you learn Stata and saves you many hours of frustration that you would have encountered
otherwise.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Dan Blanchette
Carolina Population Center
University of North Carolina at Chapel Hill
CB# 8120, University Square
123 West Franklin St.
Chapel Hill NC 27516-2524

Work Phone: 919-966-1714
Fax: 919-966-6638
Email: Dan_Blanchette@unc.edu
Web: http://www.cpc .unc.edu/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

11

