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Summary

Datasets characterized by highly non-Gaussian distributions pose interesting challenges for predic-
tion and comparison goals. Health care expenditure data is a common example where point masses
and severe skewness often complicate analyses. Parametric approaches can improve efficiency char-
acteristics of estimators but may sacrifice robustness in the process. We examine a variety of models
commonly used to compensate for complex distributions and illustrate techniques for evaluating the
competing models. The discussion is motivated by Medicare colorectal cancer charges. Results, con-
clusions & suggestions summary here. An extended description and additional information is available
on the project website: http://biosun01.biostat.jhsph.edu/project/seermed/seermed.htm

1. Introduction

1.1. Motivation

Cost data is typically characterized by distributions that are difficult to describe using standard
approaches. For example, costs are both highly skewed, (a result of a few patients incurring dispropor-
tionately high costs relative to the majority of patients), and can present point masses (”lumpiness”)
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at lower cost values, (a result of patients incurring no costs, minimal costs, or program-standard
cost amounts) (Figure 1). The comparison of costs between groups of patients, and more gener-
ally the formulation of prediction models to describe determinants of variation in costs, can become
challenging in these circumstances. Simple estimators, such as the difference in sample means for
the group comparison example, can be inefficient and sensitive to individual observations, especially
when sample sizes in the groups are substantially different. Common parametric approaches, such
as the lognormal model, rely heavily on the mathematical form of the specified distribution and can
fail to fit the data adequately even after the transformations are applied. Additionally, modelling in
transformed scales, such as the logarithm, can create severe bias adjustment problems for estimating
cost expectations. Weighed against these difficulties is the importance of accurate cost prediction for
public health resource planning, for cost-effectiveness evaluations on subject specific interventions,
and for investigating cost allocation differences among subpopulations of service users.

1.2. A Bit of Background

The following constitutes a short review of statistical methods commonly used for dealing with
complex health care cost distributions. The logic underlying usage of each model is discussed to
flavor the subsequent comparisons in the results and discussion sections.

Ordinary Least Squares: ”A billion here and a billion there, and soon you’re talking about
real money.” – usually attributed to Senator Everett McKinley Dirksen –. Databases used in health
expenditure analyses tend to be large. The Law of Large Numbers then implies that mean cost esti-
mates should be close to their respective population average costs. By the Gauss-Markov theorem,
coefficient estimates under OLS will have the smallest variance among the class of linear unbiased
estimators. One suggestion found in the literature then, is to not worry specifically about the form
of the distribution with large data sets, since OLS may perform quite respectably in relation to more
sophisticated models, (particularly when average expenditure estimation is the goal). The drawback
is that inferences based on OLS standard error estimates may be suspect, since ignoring the shape
of the distribution may lead to overstated significance via inaccurate standard errors and confidence
intervals. Diehr et al. (1999) recommend OLS only when the goal is future cost prediction.

Lognormal Models: Aitchison and Brown (1957) give historical background on the use of this
model, commonly applied to make skewed data ’look more normal’ whereupon linear regression tech-
niques can be applied with more confidence. Often lost in the proverbial mix are subtleties such as (1.)
simple exponentiating of the estimated linear predictor leads to estimates of the median rather than
the mean, (whereas the mean is often the central interest), and (2.) changes in explanatory variables
lead to proportional rather than additive changes in the response. When the additional complication
of zero values in the dependent variable arises, a common solution is to add 1, (or some arbitrary small
number), before taking the log. Estimates based on the lognormal method can have better procedural
properties, such as more appropriate variability estimates than simple analysis on the untransformed
scale, and there are many cases where a lognormal model is eminently justified. However, as Manning
(1998) eloquently relates:

Although such estimates may be more precise and robust, no one is interested in log model
results on the log scale per se. Congress does not appropriate log dollars. First Bank will
not cash a check for log dollars. Instead, the log scale results must be retransformed to
the original scale so that one can comment on the average or total response to a covariate
x. There is a very real danger that the log scale results may provide a very misleading,
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incomplete, and biased estimate of the impact of covariates on the untransformed scale,
which is usually the scale of ultimate interest.

If the data actually are lognormally distributed, then the average response on the original scale is a
function of both the mean and the variance on the log-transformed scale. Original scale expected costs
can therefore be calculated by including an estimate of the residual variability when re-exponentiating.

Smearing: If the data are not lognormally distributed, the techniques above can give severely
biased estimates for the expected cost. Duan (1983) developed a nonparametric solution for this
problem by constructing a “smearing” estimate that distributes (smears) the excess error about ob-
servations when converting back to original scale means. In particular, the empirical error distribution
is used when estimating the expectation instead of the assumed lognormal distribution. Manning
(1998) investigates estimation for groups having heteroscedastic error terms and recommends the use
of separate smearing coefficients in such cases.

Two-stage models: Tobin (1958) examined decompositions such as E(Cost) = E(Cost|Cost >
0) ·Pr(Cost > 0), to account for limited dependent variables, (data with clusters of minimum values
like zero costs). The tobit model, as it is called, constrains the parameters in the two stages however,
and Cragg (1971) has an early treatment allowing a separable mixture (the parameters being deter-
mined independently for each stage.) Mullahy (1998) discuss problems arising from two-stage models
when transformations are used for the conditional expectation stage.

Generalized Linear Models: Using Generalized Linear Models (McCullagh and Nelder 1989) to
address health cost issues has been outlined by Blough et al. (1995) and Blough and Ramsey (2000)
who approach estimation with a quasi-likelihood framework. They suggest constructing “profile-
extended-quasi-likelihood” surfaces for estimating the optimal link and variance functions to employ
in the GLM. We prefer to use a log-link function for clearer parameter interpretations, which in
turn leads to specifying a “Gamma-class” distribution, (V ar(y|x) ∝ E(y|x)2) as the “natural” error
choice. An insightful discussion is given in Manning and Mullahy (2001), who perform simulations and
present an example comparing three log-link GLM‘s and two lognormal models (with homoscedastic
and heteroscedastic smearing factors) for positive expenditures. Appealing aspects of GLMs include
their flexibility in modelling mean-variance relationships and their avoidance of retransformation issues
when the mean is of primary interest.

Cox PHM: Survival analysis techniques have recently been a topic of debate for expenditure mod-
elling, the Cox PHM being of particular interest. Two motivations appear in the literature for using
the PHM with cost data. The first, highlighted by Lipscomb et al. (1998), is that the PHM relaxes
assumptions about the specific error term distribution, offering more flexibility than purely parametric
models. The second, discussed in Dudley et al. (1993), Fenn et al. (1995), & Fenn et al. (1996)
is that censoring issues may need to be addressed if observations are terminated early by either the
end of data collection or by a competing process (such as death). While the first motivation has not
generated much controversy, criticism for the second has founded a good deal of current research.
Standard survival techniques are not applicable to “censored” cost data because the censoring is in-
formative, (those who are lost to follow up will tend to have smaller expenditures.) Lin et al. (1997)
and Etzioni et al. (1999) give in-depth discussions on the issue of induced informative censoring in
survival cost models and Jain and Strawderman (2002) give an inventory of published work concerning
solutions (as well as their own). The SEER Medicare colorectal cancer dataset we analyze contains a
full year of expenditure observations for all subjects.
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Comparison Papers: Assorted articles have been devoted to comparing methods for health cost
analysis. The following provide discussions of the problems inherent in expenditure modelling, as well
as careful considerations into when and where their suggestions may be appropriate. We present their
results only briefly here, to outline the separate and various findings. Dudley et al. (1993) considered
linear regression, lognormal regression, logistic regression, a Cox PHM, and a Weibull survival model
applied to coronary artery bypass graft surgery costs. The authors advocated the Cox PHM, but
concluded “we are unable to determine unequivocally which method of analysis is ‘best’ for analyz-
ing the importance of clinical factors upon cost”. Using Medicare ischemic stroke costs, Lipscomb
et al. (1998) compared 1- & 2-stage linear regression, 1- & 2-stage lognormal regression (with and
without a smearing adjustment), and a Cox PHM. Although their focus was on how to assess can-
didate models rather than on the actual candidate models per se, the authors do state ”For deriving
the predictive distribution of cost, the log-transformed two-part and proportional-hazards models are
superior. For deriving predicted mean or median cost, these two models and the commonly used
log-transformed linear model all perform about the same.” Diehr et al. (1999) evaluate 1- & 2-stage
linear regression, 1- & 2-stage lognormal regression (with and without a smearing adjustment), and
1- & 2-stage Gamma (GLM) regression with data from the Washington State Basic Health Plan. The
authors recommend the two-stage lognormal model for “understanding the system”, the one-stage
Gamma model for “understanding the effect of individual covariates on total costs”, and one-stage
linear regression for “prediction of future costs”.

To say a consensus has not been reached would not be entirely fair, since each of the previous
comparison papers rightly state that choice of statistical method should depend on the scientific
goals and specific data in question. However, the diversity of comparisons appraised thus far and
the lack of consistency in results/recommendations calls for further discussion. In addition, previous
comparison papers base their model discussions and recommendations on a single set of chosen
explanatory variables, with little emphasis on how the explanatory variable set was chosen. Our
discourse highlights the interplay between variable selection and model choice.

Giov Sugg. - we should also point out that there may be specificas of cancer data that have not
been addressed in the literature (Joe and Arnie may help here)

1.3. Goals of paper and statistical challenges

The goal of this paper is to explore the potential of a variety of techniques to reliably address the
obstacles in cost estimation. Specifically, we examine variations in costs and patterns of resource use
for various demographic configurations in the last year of life of colorectal cancer patients. We use
this application as a springboard for comparing methodological approaches, and for tailoring statistical
methods to the specific needs of cancer research questions. Our investigations focus on methods for
regression modelling, variable selection, and cost prediction with an assortment of error distributions.
We additionally demonstrate a hybrid cross-validation/bootstrap method for evaluating competing
models. Models examined include one- and two-stage Gaussian regression modelling, one- and two-
stage LogNormal modelling (with and without smearing adjustments), one- and two-stage Gamma
regression modelling, and proportional hazard modelling.

Statistical challenges include characterizing similarities and differences between different classes of
models, demonstrating approaches for adapting models to specific contexts, illustrating techniques
for evaluating a set of contending models, and incorporating covariate profile assessments into such
evaluations.
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2. Data Description

We use colorectal cancer cost data from the Surveillance, Epidemiology and End Results (SEER)-
Medicare-linked database as the motivating example throughout our methodologic discussions. Warren
et al. (2002) describe in detail the overall materials and methods used in constructing the SEER-
Medicare database and Brown et al. (2002) discusses various descriptive cost estimation techniques
and limitations with a focus on colorectal and breast cancers. Our subset of costs for colorectal cancer
patients is outlined below and is similar to those in Brown et al. (1999) and Etzioni et al. (2001).

Patient Population & Sample: Patients diagnosed with colon or rectal cancer as their first primary
cancer comprise our population of colorectal cancer patients. Additionally, patients selected for anal-
ysis were entitled to both Medicare part A (inpatient hospital, skilled nursing, home and hospice care)
& Medicare part B (physician services, outpatient care, and medical equipment) payments sometime
during the calender period Jan. 1986 - Dec. 1998 and had a full year of reimbursement data ob-
served for the 12 months preceding death. In all, 44006 patients, (23101 females and 20905 males)
were examined. SEER registries and their contributions included the states of San Francisco (4330),
Connecticut(7445), Michigan(7311), Hawaii(1020), Iowa(7324), New Mexico(1508), Seattle(4617),
Utah(1498), Georgia/Rural(2457), San Jose(1434), and Los Angeles(5062).

Dependent Variable: We take on a ”Medicare” or ”Governmental” perspective (payments made
for colorectal cancer patients) rather than a societal one (additional cost burdens due to colorectal
cancer) and adopt total Medicare payments (the sum of both A & B Medicare reimbursements) in the
terminal disease phase (the patient-specific 12 month period preceding death) as our analysis variable.
Terminal phase costs are particularly relevant to concerns on end-of-life care in the health care system.
As in previous studies on this database, costs (reimbursements) were adjusted to 1994 constant dollars
using time and geographical adjustment factors from the Centers for Medicare and Medicaid Services
(CMS), (previously the Health Care Financing Administration (HCFA)). Figure 1 shows the marginal
distribution of costs in the last year of life for colorectal cancer patients, as well as marginal fits
for each of the statistical models described below. Note in particular the substantial concentrations
of small expenditures in the left tail, and the extreme skewness towards large expenditures in the right.

Explanatory Variables: Our substantive concerns focus primarily on the effects of Gender and
Ethnicity on costs in the last year of life. We additionally investigate the effects of age, time from
diagnosis till death; Socio-Economic factors such as marital status, median income, and percent of
high school graduates, (the last two measured at the census tract level); severity factors such as cancer
stage at initial diagnosis, number of other primary cancers diagnosed within time from diagnosis to
death and whether the patient died from cancer. Specific confounder/covariate subsets (covariate
profiles) examined in this article are described below:

1. “Basic Profile”: The basic covariates of interest are included as linear effects in this profile
and simple regression terms were added for each of the following explanatory variables: gender,
ethnicity, age at death, basic geographic location (SEER registry), cancer stage, number of
distinct tumors diagnosed in the patient, an indicator for cancer being the cause of death, the
number of months from diagnosis to death, census tract median income, census tract high
school graduation percent and marital status.

2. “Full Profile”: Included in this profile are all of the basic covariates of interest discussed above,
as well as all other explanatory variables considered in our study, including: interactions for
gender by ethnicity and gender by age at death, linear spline terms for Diagnosis to Death
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Months larger than 1 and 2 years, linear spline terms for Census Tract Median Income larger
than $12,000 and $20,000, and linear spline terms for Census Tract highschool graduation rates
being larger than 35%. (The spline terms were added to account for nonlinear continuous
covariate effects observed in the training sample.)

3. “Significance Profile”: Covariates from the “Full Model” that were statistically significant at
the α = 0·05 level in one or more of the cost models were included in this profile. In many
articles, this is the only covariate profile presented.

4. “Significance, No Income profile”: This profile is the same as Profile 3 without the census tract
median income variables. Results in the training sample from the PHM fluctuated substantially
under covariate profile 3. Results were more stable when this variable was dropped.

5. “Geographically adjusted Gender, Ethnicity and Age Profile”: This profile examines the main
explanatory variables of interest, after adjusting for basic geographic information (as represented
by SEER registry) and age effects.

6. “Gender*Ethnicity Profile”: This profile contains indicator variables for Gender=”Male”, Eth-
nicity=”Black”, Ethnicity=”Other” and the interactions of these indicators. White Females are
thus the baseline comparison group in this profile, and combinations of the 5 indicators examine
total differences between the 6 Gender and Ethnicity Groups, unadjusted for any other effects.

Table 1 in Appendix I lists the explanatory variables included in the 6 covariate profiles. A limitation
of the SEER-Medicare database is that it contains only fee-for-service (FFS) claims data, which do
not capture all sources of rendered medical services. There are no Medicare claims when a beneficiary
receives services covered by, but not billed to medicare; thus costs of non-FFS services are not present
in the database. Similarly, costs for HMO enrollees are not available since HMOs have historically
not been required to submit specific service claims. For an in-depth discussion on these and other
SEER-Medicare database limitations, see Warren et al. (2002).

3. Statistical Methods

3.1. General Overview

We used a dual cross-validation framework, where 10% of the data was set aside for external
validation and a “purist” attitude was adopted in locking this data away until all aspects of modelling
(and complications therein) had been resolved. Within the remaining 90% training sample, we applied
k-fold cross-validation with k=10%, to answer all the questions one must confront in any data analysis,
including variable selection, nonlinear covariate function investigation, knot placements for smoothing,
mixture model cutpoint values, etc. Models were therefore initially built up on 81% of the full dataset,
with k-fold cross-validation evaluations made on 9% of the full dataset until we felt comfortable with
our modelling decisions. The final models were then applied to the complete 90% training sample to
obtain final parameter estimates. The 10% external validation sample was then ‘unlocked’ and used
to evaluate the parameters and predictions from our final models. A visual representation of this dual
cross-validation is available on the project website and is worth approximately 5 times as much as the
preceding paragraph, applying the classical 1 picture = 1000 words formula.
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3.2. Model Descriptions

Suppose we are interested in predicting costs at the individual level, using a set of covariates (ex-
planatory variables), Xi, which are believed to capture important differences in the cost distributions.
A systematic component for the prediction, linear in the parameters but possibly nonlinear in the
explanatory variables, may be defined for each subject as:

ηi = η(β, Xi) = β0 +
∑

j

βj · hj(xij)

where the β parameters are recognized to be model-specific. We wish to determine how changes in the
covariates alter the conditional distribution of costs F (c|Xi) = Pr(C ≤ c|Xi) particularly through the
conditional cost expectation which we shall use for prediction, Ĉi = E(C|Xi). Medians (vs. means)
are also commonly used to characterize the central tendencies of distributions but we focus on average
expenditures for point estimates and do not consider median prediction in this article, (noting that
the health care service that bases their budget on median cost predictions may soon be out of business.)

Normal Regression:
Universally applied in research, the familiar Gaussian regression model specifies:

Ci = ηi + εi,

where Ci denotes the ith subject’s cost, ηi denotes the systematic component determined by the ith

subject’s covariate profile, and εi is a random error component following a Gaussian distribution with
mean 0 and constant variance σ2. The predicted mean cost for this model is simply the estimate of
the systematic component, calculated via ordinary least squares or maximum likelihood:

ĈN
i = η̂i,

and the Cumulative Distribution Function, (CDF), for costs is simply:

FN (c|η̂i, σ̂) = Φ{[c− η̂i]/σ̂},
where Φ is the CDF of the standard normal distribution.

2-Stage Normal Regression:
Two-stage models draw on the idea that E(C) = E(C|C > 0) · Pr(C > 0) to address large
concentrations of zero cost expenditures. The complete specification is then a mixture of two models,
the first describing the probability of having any expenditure, and the second describing the average
cost among those having positive expenditures. A model is called separable if Θ = (Ψ, Λ) represents
parameters describing the complete distribution of costs and the factorization applies: f(C|Θ) =
f(C|P, Ψ) · f(P |Λ), where P = I(C > 0) is an indicator function denoting positive or zero cost.
Note that the Tobit model is not separable. A standard two-part separable mixture model, with a
gaussian distribution for positive costs, can be characterized by:

Ci =
{

0 with probability (1− pi)
ηi + εi with probability pi

where εi ∼ N(0, σ2). The probability of a positive expenditure, pi, is usually modelled with either
probit or logistic regression. Opting for the latter, we would specify:

Pr(Ci > 0) = pi = {1 + exp(−ζi)}−1
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(or equivalently, logit(pi) = ζi), where ζi is the analogous systematic component for predicting a
positive cost:

ζi = γ0 +
∑

j

γj · h∗j (xij)

The h∗ notation simply denotes that the functions of the explanatory variables (as well as the set of
explanatory variables themselves) in ζi may be different than in ηi. Under this model, the predictor
for an individual’s expected cost would be:

Ĉi = E(C|η̂i, σ̂, ζ̂i)
= E(C|C > 0, η̂i, σ̂

2) · Pr(C > 0|ζ̂i)
= η̂i · {1 + exp(−ζ̂i)}−1

Mixture models are useful in a variety of ways, allowing us to adapt error distributions to fit the data
more closely, and aiding in understanding separate aspects of the expenditure system. These models
can easily be made more flexible, (see for example Manning et al. (1987) for a four-part model);
one extension in particular allows a non-zero cutpoint, τ , to be defined for splitting the two-stages:
E(C) = E(C|C ≤ τ) · Pr(C ≤ τ) + E(C|C > τ) · Pr(C > τ). Under such a formulation, we
require the additional specification of a model for costs when they are below the cutpoint, as well as
the usual two models for (1.) the distribution of costs when they are above the cutpoint and (2.)
the probability of having a cost above the cutpoint. One goal of this expanded two-stage model is to
balance parsimony and interpretability with fitting the error distribution in a more complicated, but
hopefully tighter manner. Our intention was to use the two-part model to address the concentrations
of “minimal” costs, (measured in dollars), in the left tail of Figure 1, and it was found that the simple
specification with τ = $0 left an unsatisfying “lump” of minimal costs remaining. We therefore used
our 90% training sample to investigate alternate values for τ that retained model interpretability, but
accounted for the observed “minimal” cost concentrations. For the purposes of demonstrating how
to adapt models to specific contexts, we use τ = $1000, and a Uniform(0,$1000) distribution for the
“minimal” costs, arguing both that in the last year of life for colorectal cancer patients, $1000 could
still be considered a “minimal” cost, and that costs below $1000 were not found to vary substantially
between demographic groups of interest. The simple uniform specification for the minimal cost also
allows explanatory variable parameter interpretations for expenditure size to focus on the cost group
with larger expenditures. More complicated mixture models can be fit using a variety of finite mixture
specifications for the lower expenditures, but our aims are to illustrate the technique and we do not
compare additional lower expenditure mixture specifications in this manuscript.

As discussed, our two-part Normal mixture model may be specified as:

Ci =
{

Uniform(0, 1000) for Ci ≤ 1000 with probability (1− pi)
Normal(ηi, σ

2) for Ci > 1000 with probability pi

Where:

Pr(Ci > 1000) = pi = {1 + exp(−ζi)}−1

and ζi is the systematic component for predicting a “large” cost as above. The predictor for an
individual’s expected cost is:

ĈN2
i = E(C|η̂i, σ̂

2, ζ̂i)
= E(C|C ≤ 1000) · Pr(C ≤ 1000|ζ̂i) + E(C|C > 1000, η̂i, σ̂

2) · Pr(C > 1000|ζ̂i)
= 500 · {1 + exp(ζ̂i)}−1 + η̂i · {1 + exp(−ζ̂i)}−1
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and the CDF for costs under the two-stage Normal model is:

FN2(c|η̂i, σ̂, ζ̂i) =

[
(c/1000)I(c≤1000)

1 + exp(ζ̂i)

]
· I(c ≥ 0) +

[
Φ{[c− η̂i]/σ̂}
1 + exp(−ζ̂i)

]
· I(c > 1000)

where I(condition) is a 0/1 indicator function for the condition.

Lognormal Regression (with and without smearing):
A simple lognormal regression specifies:

log(Ci + 1) = ηi + εi,

where εi again represents a random error component following a Gaussian distribution with mean 0
and constant variance σ2. The addition of $1 to the original cost sets the log-transformed cost to
zero when the original cost is zero. If costs are log-normally distributed, then the average cost on the
untransformed scale is a function of both the mean and the variance on the transformed scale, and
the predicted mean cost on the original scale is:

ĈLN
i = exp(η̂i + σ̂2/2)− 1

As noted above, this estimate can be severely biased if costs do not follow a lognormal distribution,
or if the variability is heterogeneous between groups. The smearing adjustment, (Duan 1983), essen-
tially replaces the variability estimate above with a nonparameteric average-retransformed-residual-
error estimate, and the predicted mean cost using a single smearing coefficient would be:

Ĉi = exp(η̂i + S)− 1

where S = log[
∑

i exp(ei)/N ] and ei = log(Ci +1)− η̂i is the residual from the linear regression
of the log-transformed expenditures. Manning (1998) relates that even a simple smearing adjustment
may not be adequate if error terms are heteroscedastic between covariate groupings, and we have
constructed separate smearing coefficients for the six different gender/ethnicity combinations, (Gender
(G) = Male,Female; Ethnicity (E) = White,Black,Other). Our predicted mean cost under the smeared
lognormal model is thus:

ĈLNS
i = exp(η̂i + SG,E)− 1

where SG,E denotes a gender/ethnicity specific smearing coefficient.
The smearing technique is an adjustment for estimating a mean, and does not affect other distribu-

tional aspects, (quantiles, etc.), and whether or not the smearing adjustment is used the Cumulative
Distribution Function, (CDF), for costs under the lognormal model is:

FLN (c|η̂i, σ̂) = Φ{[log(c + 1)− η̂i]/σ̂}

2-Stage Lognormal Model (with and without smearing):
We exploit the same ideas discussed in the Normal mixture model above for a lognormal version of
the two-stage model. The only adjustment needed is to employ a lognormal model for the large
expenditures instead of the Normal. Our lognormal mixture model is thus:

Ci =
{

Uniform(0, 1000) for Ci ≤ 1000 with probability (1− pi)
Lognormal(ηi, σ

2) for Ci > 1000 with probability pi
,
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where pi is identical to that for the Normal mixture. Under this model, the predictor for an individual’s
expected cost is:

ĈLN2
i = E(C|η̂i, σ̂

2, ζ̂i)
= E(C|C ≤ 1000) · Pr(C ≤ 1000|ζ̂i) + E(C|C > 1000, η̂i, σ̂

2) · Pr(C > 1000|ζ̂i)
= 500 · {1 + exp(ζ̂i)}−1 + {exp(η̂i + σ̂2/2)− 1} · {1 + exp(−ζ̂i)}−1

The lognormal part in this two-stage model is subject to the same deficiencies in estimating the
mean as the one-stage lognormal model and we employ smearing adjustments as before. The predicted
mean cost under the two-stage lognormal model with smearing is then:

ĈLN2S
i = 500 · {1 + exp(ζ̂i)}−1 + {exp(η̂i + SG,E)− 1} · {1 + exp(−ζ̂i)}−1

where the gender and ethnicity specific smearing coefficients, SG,E , are calculated from the lognormal
model residuals for those with positive expenditures. Smearing again does not affect quantile or
distribution estimates, and whether or not the smearing adjustment is used the CDF for costs under
the two-stage lognormal model is:

FLN2(c|η̂i, σ̂, ζ̂i) =

[
(c/1000)I(c≤1000)

1 + exp(ζ̂i)

]
· I(c ≥ 0) +

[
Φ{[log(c)− η̂i]/σ̂}

1 + exp(−ζ̂i)

]
· I(c > 1000)

Gamma Model
We adopt a Gamma distribution and log-link for our basic generalized linear model specification for the
reasons listed above and because it approximated both the marginal and Gender/Ethnicity conditional
densities adequately. For the Gamma distribution, and indeed under any generalized linear model
utilizing a log-link, the expected cost is simply:

ĈG
i = exp(η̂i)

The corresponding estimated Gamma CDF is:

FG(c|η̂i, α̂) =
Γc(α̂, η̂i)

Γ(α̂)
(
exp(η̂i)

)α̂

where α̂ is the estimate of α, the dispersion parameter for the Gamma distribution, Γ(·) is the gamma

function, and Γc(α̂, η̂i) is the incomplete gamma function Γc(α̂, η̂i) =
∫ c

0
(tα̂)α̂

t · exp
(

−tα̂
exp(η̂i)

)
dt.

2-Stage Gamma Model
Similar to the Normal and Lognormal mixture models above, the Gamma version of the two-stage
model specifies:

Ci =
{

Uniform(0, 1000) for Ci ≤ 1000 with probability (1− pi)
Gamma(ηi, α) for Ci > 1000 with probability pi

,

where pi is again the probability of an expenditure being above $1000. The predicted mean cost
under the two-stage gamma model is:

ĈG2
i = {exp(η̂i)} · {1 + exp(−ζ̂i)}−1 + 500 · {1 + exp(ζ̂i)}−1
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and the corresponding CDF is:

FG2(c|η̂i, α̂) =

[
(c/1000)I(c<1000)

1 + exp(ζ̂i)

]
· I(c ≥ 0) +

[
Γc(α̂, η̂i)

Γ(α̂)
(
exp(η̂i)

)α̂
· 1

{1 + exp(−ζ̂i)}

]
· I(c > 1000)

Cox PHM
The Cox Proportional Hazards model is a semiparametric model characterized by the ”survival” func-
tion:

Pr(Ci ≥ c|ηi) = 1− F (c|ηi) = S(c|ηi) = S0(c)exp(ηi)

where S0(c) is the “baseline” survival cost function (all covariates set to zero). Since the expected
value of a random variable is equal to the integral of its survival function, the predicted mean cost
under the Cox Proportional Hazards Model is:

ĈPHM
i =

∫ ∞

0

Ŝ0(c)exp(η̂i)dc

The Cox PHM is appealing for cost research because one is able to estimate the β coefficients for use
in η̂i without specifying the survival function for expenditures (i.e. the underlying cost distribution)
which, as discussed, is a primary difficulty. To obtain an estimate of the baseline survival function,
Ŝ0(c), we used the standard product-limit estimator (Kalbfleisch and Prentice (1980)).

With estimates for the β coefficients and the baseline survival function in hand, we can calculate
ĈPHM

i and determine the CDF for costs under the proportional hazards model with:

FPHM (c|η̂i) = 1− S(c|η̂i) = 1− Ŝ0(c)exp(η̂i)

3.3. Parameter Interpretations:

Substantive research attempts to say something about how the world works, (for cost research,
how the world spends), and relies inherently on the underlying model to drive conclusions. To further
understand the models presented above and to aid in choosing an appropriate model, we discuss
briefly the related parameter interpretations. Suppose there were only one explanatory variable, a
linear predictor would take the form ηi = β0 + β1xi, (ζi = γ0 + γ1xi for our probability models), and
the parameter β1 (γ1) would take on the following interpretations for each of the different models:

Logistic: γ1 takes on standard log-odds-ratio interpretations. When comparing the dichotomous
grouping of those who spent over $1000 to those who spent $1000 or less, there is a multiplicative
effect of eγ1 on the odds of spending over $1000 for each unit increase in x.

Normal: β1 represents the additive change in the average expenditure for each unit increase in x,
(standard Gaussian regression interpretations).

Lognormal (without smearing): Since E[log(Ci + 1)] = β0 + β1xi, β1 could be taken as the
change in the average log(Ci + 1) for each unit increase in x. More useful however is to exploit

the fact that, under the lognormal model, E(Ci + 1) = eβ0+β1xi · e·5σ2
, which shows eβ1 to be the

multiplicative increase on E(Ci + 1) for each unit increase in x. Thus, for E(Ci + 1) ≈ E(Ci), eβ1

has a relative expenditure interpretation.
Lognormal (with smearing): With a single smearing coefficient in the lognormal model, E(Ci +

1) = eβ0+β1xi · eS , where S is the smearing coefficient. Hence, eβ1 has a relative expenditure
interpretation when a single smearing coefficient is considered. With multiple smearing coefficients,
interpretations become more complex. Consider the simple case of two smearing groups. When
comparing within a group, eβ1 retains its relative expenditure meaning but when comparing between
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groups, a one unit increase in x is associated with an increase of eβ0+β1(xi+1)·eS1

eβ0+β1xi ·eS0
= eβ1 ·

(
eS1

eS0

)

and the effect is modified by a multiplicative constant. Recalling that the smeared lognormal model
incorporates six separate smearing coefficients, interpretations become complex.

Gamma: One of the benefits of using a Generalized Linear Model is the ease of interpretation after
applying the inverse link function. Since we used a log-link with our Gamma GLM, we exponentiate
and find that eβ1 has a simple relative expenditure interpretation.

PHM: Parameters in the Proportional Hazards Model take on log-hazard-ratio interpretations. A
one unit increase in x is associated with a multiplicative increase of eβ1 in the expenditure hazard
(the probability of having a certain expenditure C, given the expenditure will be at least C.) Note
that the direction of the effects represented by these parameters are reversed compared to the other
parameterizations. For example, if β1 is positive, the hazard increases with increasing x. Thus the
probability of spending “exactly C and no more” increases, which in turn decreases the average
expenditure. Likewise, if β1 is negative, the average expenditure increases.

Two-Stage Models: All the previous interpretations hold, except they are now applied only to
expenditures greater than $1000.

3.4. Validation Criteria

We adopt a validation algorithm similar to Lipscomb et al. (1998) to incorporate both model
estimation error and individual-level error. Within our training dataset we randomly select B = 100
bootstrap samples and apply each covariate profile to each of our models within each of the bootstrap
samples. The final cost prediction for each profile and model combination is then the average of the 100
predictions constructed from the parameters found in the 100 bootstrap training samples. Bootstrap
estimates for the β parameters and their standard errors are similarly the mean and standard deviation
of the 100 corresponding β̂’s, while 95% confidence intervals for the β’s are found non-parametrically
from the 0.025 and 0.975 percentiles of the 100 β̂’s. The measures we investigate for evaluating the
quality of the preceding models are described below. Each measure attempts to capture a different
aspect of model “quality”, and is calculated for all model and covariate profile combinations.

• BIAS: The bias is computed as

BIAS =
1
n

∑

i

(Ci − Ĉi)

and provides information on the calibration of the prediction, (i.e. whether the predicted cost
is centered around the true cost on average.)

• RMSE: The Root Mean Squared Error is computed as

RMSE =

√
1
n

∑

i

(Ci − Ĉi)2

and is a combination of the calibration (bias) and the precision (variability) of the prediction.
Many estimators attempt to trade off a small increase in bias for a large decrease in variability,
thus improving their overall RMSE measure.

• MAE: The Mean Absolute Error is computed as

MAE =
1
n

∑

i

∣∣∣Ci − Ĉi

∣∣∣
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Similar to the RMSE, the MAE is a penalty measure of the distance between the predicted
cost and the actual cost. While the RMSE penalizes in a quadratic fashion, however, the MAE
penalizes in a linear fashion. The contributions to these two error measures for predictions that
were, say, $1, $10, & $100 away from their true costs would be $1, $100, & $10,000 respectively
for the RMSE, while only $1, $10, & $100 for the MAE. The RMSE therefore penalizes large
errors more severely than the MAE.

• LS-rule: The Logarithmic-Scoring rule is computed as:

LS =
1
n

∑

i

−log
[
f̂(Ci)

]

Where f(Ci) is the density corresponding to the CDF for each model and covariate profile
combination specified above.

While the BIAS, RMSE & MAE measures concentrate on evaluating the point predictions of
cost, the LS-rule evaluates how well the actual cost is represented in the predictive cost distribution.
Observed costs with high probabilities of occurring under the predictive distributions contribute small
penalties to the LS-rule, while observed costs that lie in the tails of the predicted distributions, (have
small probabilities of occurring when calculated under the estimated model parameters) contribute
large penalties to the LS-rule. As with the RMSE and MAE measures, lower LS-rule values indicate
better predictions. For calculation of the LS-rule, the normal, lognormal and gamma densities have
closed forms corresponding to the CDF’s given previously. To find a representation of the density under
the PHM, Lipscomb et al. (1998) estimated the probability of the cost Ci falling in a $1 “bucket”
with fPHM (C) = FPHM (C)−FPHM (C − 1). We construct our estimator of fPHM (Ci) by noting
that under the PHM S(c|ηi) = S0(c)exp(ηi), and thus:

f(c|ηi) = −∂S(c|ηi)
∂c

= exp(ηi) · S0(c){exp(ηi)−1} · −∂S0(c)
∂c

= exp(ηi) · S0(c){exp(ηi)−1} · f0(c)

Having obtained estimates of S0(c) and ηi as previously described, all that is further required is
an estimate of the baseline density function, f0(c), which is simply the (negative) derivative of the
baseline survival function. With our non-parametric estimate Ŝ0(c) and knowledge that the true
S0(c) is relatively well behaved, (a non-increasing function from 1 to 0), we smooth Ŝ0(c) with a
constrained monotonic B-spline smoother with λ degrees of freedom, and estimate f0(c) by noting
that the derivative of a B-spline of degree r is simply a corresponding B-spline of degree (r− 1). An
estimate of the Cox PHM density is thus:

f̂PHM (Ci) = exp(η̂i) · Ŝ0(c;λ){exp(η̂i)−1} · f̂0(c; λ)

We used cross-validation within the training sample to resolve standard smoothing issues such as
the behavior of the estimate with respect to the choice of λ. Within our bootstrapped validation
framework, we take the final estimate for the density at Ci to be the average f̂PHM (Ci), calculated
over the 100 bootstrap samples.

We adopt the framework of Lipscomb et al. (1998) to account for individual-level variability in the
validation sample and bootstrap the cross-validation statistics M = 100 times within the validation
sample. Thus, each validation measure is the average of 100 corresponding bootstrapped measures,
calculated from randomly sampling the residuals in the 10% pure validation dataset with replacement.
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4. Results

4.1. Substantive Results:

Our substantive questions center on expenditure differences for the six Gender and Ethnicity sub-
groups defined earlier; this section focuses on the related five β parameters that characterize these
differences.

Similarities between models: Figure 2 displays parameter estimates and bootstrapped 95% confidence
intervals for Gender/Ethnicity differences (White Females are the reference group) over the six covari-
ate profiles described in section 2, for each of the models described above. The ‘adjusted’ covariate
profiles that include Gender/Ethnicity interaction terms (profiles 2 through 5) demonstrate that in a
general sense, white males have the least expenditures, followed by black males, while white females,
females of other ethnicities and males of other ethnicities had similar expenditures and black females
had the highest estimated expenditures overall. Examining the estimates over a variety of models
and over a variety of confounder adjustments lends credibility to these statements. An important
question then is whether these observed Gender/Ethnicity differences may be policy related (Joe &
Arnie?). The unadjusted parameters (profile 6) tell a somewhat different story, where white males
and females of other ethnicities spend more than white females. Since these relationships disappear
when adjusting for age and geographic area (profile 5), we know that area and age are modifiers of
the effects of Gender/Ethnicity. Thus the adjusted models are more appropriate for discussing overall
Gender/Ethnicity expenditure differences. We note that white females were the oldest group with an
average age of death of 83 years, while white males had an average age of death of 80 years and
females of other ethnicities had an average age of death of 81 years. Covariate profile 1 is the basic
profile without interactions and does not distinguish between white, black and other ethnicity males,
or white, black and other ethnicity females. The ”Male” estimate thus averages over the ethnicity
subgroups and yields fairly different results (intuitively so) than the other ‘adjusted’ covariate profiles;
likewise the ethnicity estimates for the ”Black” and ”Other” parameters average over gender. The
Gender/Ethnicity interaction terms are therefore important to include.

Differences between models: The overall patterns in estimates and confidence intervals are similar
for all models save the simple logNormal model, which deviates in two ways. First, the estimates
differ from what we might expect by examining the other models. White male expenditures are all
substantially lower than estimates from the Gamma and Proportional Hazards models, the estimates
for black females are relatively higher for the ‘Full’ and ‘Significance’ profiles and relatively much
lower for the ‘Basic’ profile. Second, and more importantly, the bootstrap confidence intervals are
all much wider compared to those for the Gamma and Proportional Hazards models. Since these
models describe roughly the same expenditure relationships (multiplicative increases in expenditures),
we would hope to have roughly similar estimates and inferences across these models. Figure 1 gives
us some insight into why the simple lognormal may behave differently than the other models; to
accommodate both the spike of small expenditures in the left tail and the extreme expenditures in
the right tail, the lognormal model must substantially overestimate lower expenditures (below around
$10,000), and underestimate mid-sized expenditures (from about $10,000 to $100,000). Incorporating
even the simple 2-stage mixture vastly improves the lognormal fit and we note that the differences
between the lognormal and Gamma models disappear when we use the 2-stage modelling technique.
Consider if we had used only the simple lognormal model and the simple adjustments of the ‘Basic’
covariate profile for determining Gender/Ethnicity differences in expenditures; we would incorrectly
conclude that white females and black females appear to have similar medicare expenditures. Ex-
amining results over a wide variety of error distributions and covariate profiles allows us to make a
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more accurate and robust statement about the data supporting black females as a group spending
substantially more than white females on colorectal cancer in the last year of life.

4.2. Validation Results

Figure 3 shows predictive ability cross-validation results for each covariate profile and error model
investigated. The left column contains results for all models while the right column omits extremely
poor models to expand the vertical axes and visualize results from acceptable models. The BIAS
measures have been left on their original scale, while the remaining measures are shown relative to the
‘Gender*Ethnicity’ profile in the 2-Stage lognormal Model for display purposes. Therefore, BIAS mea-
sures closer to zero are better, and smaller MAE, RMSE, & LS-rule measures are better. Validation
measures on their natural scales can be found on the project website. We obtain 95% C.I.’s for each
measure by additionally bootstrapping the 10% validation dataset 100 times. After calculating pre-
dicted values for validation-set individuals, (based on the bootstrapped parameter estimates calculated
from the 90% training-set), we randomly draw predicted values and residuals from the validation-set
with replacement until we have 100 validation datasets to calculate cross-validation results from. 95%
confidence intervals for cross-validation measures are then found non-parametrically from the 0.025
and 0.975 percentiles of each measure.

Covariate Profile Results: Generally speaking, the ‘Full Covariate’ and ‘Significant Covariate’ pro-
files (with the most information) performed the best and the ‘Gender*Ethnicity’ profile (with the least
information) performed the worst. There appear to be fairly dramatic improvements in the MAE &
RMSE measures between the ‘Significance Profile’ (profile 3) and the ‘Significance, No Income profile’
(profile 4). Thus, census tract median income remains an important covariate for cost prediction even
after adjusting for variables that may have accounted for its effects, such as geographic region.

Modelling Technique Results: The Gaussian models, the Gamma models and the Cox PHM ap-
pear to perform similarly towards point prediction based on BIAS, MAE and RMSE measures for this
dataset. The PHM performs the best in terms of predicting the distribution based on the LS-Rule,
with substantial gains made over all other models for the simple ‘Gender*Ethnicity’ profile. The 2-
stage Gamma model also performed well on the LS-rule, with similar results to the Cox PHM for all
profiles except the ‘Gender*Ethnicity’ profile. The simple logNormal model performed the worst of
any of the examined models on all validation criteria for all covariate profiles. The smearing tech-
nique reduced the lognormal BIAS substantially, but even with six separate smearing coefficients (one
for each of the Gender*Ethnicity subgroups) the simple smeared lognormal model still considerably
over-estimates expenditures. Only by incorporating both smearing and the two-stage technique do
we obtain estimates with relatively smaller amounts of BIAS. The normal models performed well in
terms of point predictions and poorly in terms of the predictive cost distribution; adding the second
stage to the simple normal model did not lead to large gains in any of the measures. Figure 4 displays
the observed and predicted expenditures in the validation set for the ‘significance profile’ over the
different error distributions. None of the models appear to predict expenditures accurately; gains in
point prediction validation measures appear to be gains made in precision (variability) rather than in
calibration (bias). The Normal, Gamma, and Proportional Hazard models all demonstrate consider-
ably less variability than the lognormal models.
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5. Discussion

We have used the SEER database and the problem of estimating colorectal cancer costs to mo-
tivate our discussion of statistical challenges in health cost research. The amount of data available
from this resource makes it possible to investigate commonly applied statistical modelling strategies
with a substantial validation set, even when using a “purist” cross-validation approach. We have
attempted to provide insights into a standard set of statistical models frequently seen in the litera-
ture, while demonstrating ways to develop adaptations of these models to specific contexts. Further,
we presented a variety of techniques for evaluating a set of candidate models, including both error
distribution and covariate profile assessments into these evaluations.

Substantive Discussion? Joe & Arnie?

General Recommendations: “While statisticians will inevitably speak of robust models and ro-
bust procedures...robustness should be defined as a scientists’ ability to ferret simple, lasting structures
from data.” - Robert Miller: discussion of George Box’s 1980 JRSSA paper - Previous comparison
papers have advocated specific statistical models for specific scientific purposes. While we agree that
scientific goals should be considered in any statistical analysis, we instead acknowledge Dr. Miller’s
point above and recommend examining a variety of statistical models whatever the scientific purpose.
With current statistical computing resources it is fairly simple to obtain estimates for a wide variety
of models and explanatory variables, all addressing a common goal. Substantive conclusions are given
additional weight once it is determined that inferences are not driven by the underlying model or
covariate selection. Our ‘simple, lasting structures’ here are presented in the form of similar patterns
in substantive results across the various examined models. Though specific parameter interpretations
will change between models, Figure 2 shows that the data are telling the same general story about
how the world works (spends). One might argue then, that if the story is generally the same, why not
just use one model? To this we point out that for our SEER Medicare colorectal cancer dataset, the
simple lognormal model performed rather poorly on all counts. Without examining multiple models
in a variety of settings, we would never know for the next dataset if we had chosen its ‘lognormal’
equivalent. Additionally, after reviewing results from all models examined, it becomes easier to make
specific recommendations. For this dataset, one might choose the simple normal model if the goal
was simple point prediction. However, the Gamma model performed equally well on all point predic-
tion measures and much better in predicting the cost distribution, thus it may be a better choice for
simple analyses. Suppose instead that we wished to perform a cost-benefit analysis, which depends on
both estimated expenditures and the probability that those expenditures will occur; the Proportional
Hazards Model may then be a better choice since it also performs similarly in terms of point prediction
and it does a better job of estimating the overall expenditure distribution.

Modelling choices that matter (and those that don’t):
Variable Selection: After primary explanatory variables of interest, probable confounders and pos-

sible non-linear relationships were determined, we set about the familiar process of ascertaining a
‘statistically significant’ subset to include in a ‘final model’. The usual thinking is to minimize a bias-
variance trade off: the more predictors we include, the more variable each of the estimates become,
while leaving an important predictor out leads to bias in the estimates. Figures 2 and 3 show that,
given enough data, the differences between the ‘statistically significant’ subset and the ‘Full’ subset
of predictors are minimal, leading us to propose that inclusion of the additional variables in the ‘Full’
subset may be suitable with data such as these. Using our dual cross-validation approach for variable
selection was informative for evaluating covariate profile effects.
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Error Distribution: It is clear at this point that the lognormal distribution provides a relatively
poor method of analyzing this dataset. All of the alternatives are superior, and even the simple
normal distribution is an improvement from a variety of perspectives. Yet the first (and perhaps
too-frequently last) impulse of many analysts when confronted with skewed data is to simply take the
log. Straightforward solutions such as using a GLM can provide considerable improvements in terms
of both point and overall distribution predictions. If the data is actually lognormally distributed then
using the lognormal model will of course be the optimal thing to do. However, if the data deviate
from the lognormal assumption and the lognormal model is used, then the expected cost (i.e. the
“object of interest”) is no longer the quantity that maximizes the likelihood function, (i.e. the “object
of inference”= θg = exp{Egln(X)/ + σ2/2} where g is the underlying true distribution, Royall and
Tsou (2003)). The PHM performs best for error distribution estimation, but a drawback is that for
point prediction you must integrate the survival distribution for each unique covariate profile, which
can be computationally prohibitive if there are continuous covariates. Finally, we again stress the
benefits of examining multiple models to ensure robust conclusions.
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6. Appendix I

Covariate Profile
Covariate Type Range 1 2 3 4 5 6
Gender ind 1 = Male X X X X X X
Ethnicity cat White, Black, Other X X X X X X

Gender × Ethnicity int X X X X X
Age at Death cont 66− 110 X X X X X

Gender × Age at Death int X X X X
Geography cat 10 SEER Registries1 X X X X X
Cancer Stage cat 1, 2, 3, 4, 5,missing X X X X
Number of Cancers cat 1, 2,≥ 3 X X X X
Cause of Death ind 1 = Cancer X X X X
Months from Diagn. to Death2 cont 0− 296 X X X X
Census Tract Median Income3 cont 1, 875− 171, 107 X X X
Census Tract % HS Grads4 cont ·11− ·99 X X
Marital Status ind 1 = Married X X

1 Type: ind=Indicator Variable, cat=Categorical Variable, cont=Continuous Variable, int=Interaction term(s).
2 linear spline terms added for Diagnosis to Death Months > 1 year and > 2 years in profiles 2,3,4.
3 linear spline terms added for Census Tract Median Income > $12,000 and > $20,000 in profiles 2,3.
4 linear spline term added for Census Tract highschool graduation rate > 35% in profile 2.
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Fig. 1. SEER Yearly Colorectal Cancer Reimbursements
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Fig. 2. Gender/Ethnicity Estimates & 95% C.I.s: (White Female = Reference Group)
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Fig. 3. Cross Validation Measures: (MAE, RMSE & LS-Rule measures are Relative to the Gender*Ethnicity
Profile in the 2-Stage Lognormal Model)
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Fig. 4. Validation Set: Predicted $ vs. Observed $ (Cov. Profile 3)


