
Intermediate Unix

Notes by Kasper D. Hansen

Last Modified 4/25/2013

The Shell

Most people use Bash (Bourne Again Shell). This is a program running inside a
terminal program.

There are many different shells, but most modern systems ship with bash per
default.

One other shell is worth knowing about: ‘sh’ the most basic shell. Many configure
scripts are written in sh.

Startup files / configurations

On Unix: .bashrc and .bash_profile. Hard to remember the difference, but
roughly .bash_profile is for code that only should be run once.

On Mac it is called .profile. Different name, same beast.

I use a couple of highly convenient settings in my .bashrc

export PS1="\h:\w/> "
export LSCOLORS="gxxxxxxxxxxxxxxxxxxxxx"
export HISTCONTROL=erasedups
export HISTSIZE=10000
shopt -s histappend
shopt -s cmdhist
bind ’"\e[B": history-search-forward’
bind ’"\e[A": history-search-backward’

The last two lines are awesome. The \e[B is what is being sent to the shell when
I press up-arrow (or is it down?). It is bound to a command which searches the
history based on what is already entered.

ls ~/
ls ~/Work
ls ~/bin
pwd
ls

1

http://www.biostat.jhsph.edu/~khansen

We also have .ssh/config which is a very convenient file for ssh/scp shortcuts.
Syntax is easy

Host enigma2.jhsph.edu e
HostName enigma2.jhsph.edu
User khansen

Host lore.ebalto.jhmi.edu lore
HostName lore.ebalto.jhmi.edu
User khansen

Host bitbucket.org bb
Compression yes
HostName bitbucket.org
User hg
ForwardX11 no
ForwardX11Trusted no

Host *
ForwardX11 yes
ForwardX11Trusted yes

Differences between Linux and OS X

OS X is based in BSD, which has slight differences to Linux. For example, sed
-i is different between the two OS. This can be confusing and irritating. This
could in principle be ‘fixed’ by installing the GNU Linux tools on OS X.

Commands

Bash has a number of built in commands. Most of what we use (like ls) is other
programs residing in /bin or perhaps /usr/bin.

Example: contrast the time built in bash command with /usr/time which had
me confused for a while.

The way ls gets colors is by adding control sequences around the output.

ls -G
ls -G > tmp
less tmp

Piping

You should know about piping.

2

cat count.txt
cat -t count.txt
cut -f1 count.txt
cut -f1 -d’ ’ count.txt
cut -f1 count.txt | uniq -c
cut -f1 count.txt | sort | unic -c

Here, the really big computation is sort which is a specialized program.

Viewing files

less has a number of build in commands. You can search and jump to a specific
percentage of the file, which can be really useful.
You probably know tail, I use tail -f a lot.

Redirection

What is the deal with the input and output streams? You have

stdin Standard input
stdout Standard outout
stderr Standard error

There are also named pipes. I won’t discuss those, but they can be very convenient
for the right task.

bowtie.sh
bowtie.sh &> tmp.out
bowtie.sh 1> tmp.out
bowtie.sh 2> tmp.out

Background processes

Every code/command you run is a process on the machine. Most of the processes
have a parent process, which is the shell you are running in.
First we look at processes and jobs inside a single shell.
A job can be in the foreground, in the background and suspended. Think of a
switching between full-screen applications. Only one can be visible at any time,
but the other apps are still running. You suspend a running app by ctrl-z.
You may be familiar with command & which runs command as a background
process. Each jobs has a single number, which you can refer to like %1 or %emacs.
Commands jobs, fg, bg.

3

ssh e
jobs
R
ctrl-z
jobs
fg
ctrl-z
emacs
ctrl-z
jobs
fg %2
... stop everything ...
./until.sh
ctrl-c
./until.sh >> until.out
ctrl-z
tail -f until.out
ctrl-c
bg
tail -f until.out
ctrl-c
jobs

This is extremely handy for doing multiple things at the same time.

Now, jobs only knows about jobs inside the specific shell process.

Show this. Discuss ps and top.

Bash programming

Can be frustrating, but worth learning. This is entirely a macro language.

Use #!/bin/bash -e which stops on error.

export VARIABLE

Tips

Go to the last directory cd -.

Learn how to do for loops on the command line

for f in $(/bin/ls *.fastq); do echo $f; head -1 $f; done

Learn screen.

4

	Intermediate Unix
	The Shell
	Startup files / configurations
	Differences between Linux and OS X
	Commands
	Piping
	Viewing files
	Redirection
	Background processes
	Bash programming
	Tips

