Module 10

Data Visualization

Basic Plots

We covered some basic plots on Wednesday, but we are going to expand the ability to customize
these basic graphics first.

2/37

But first...

Some cool graphics made in R by us.

3/37

Basic Plots

> death = read.csv("http://biostat.jhsph.edu/~ajaffe/files/indicatordeadkids35.csv",
+ as.is = T, header = TRUE, row.names = 1)

> year = as.integer (gsub("X", "", names(death)))

> plot(as.numeric(death["Sweden",]) ~ year)

=2

o3 o
]

w | e B

o o @ @
-5 o
o>, (=Y o

14 20
]
"
&

as.numeric{death["Sweden”, |
1.0

0.a

T T T T I I I I
1750 1800 1850 1900 1950 2000 2050 2100

year

4/37

Basic Plots

> plot(as.numeric(death["Sweden",]) ~ year, ylab = "# of deaths per family",
+ main = "Sweden")

Sweden
=
o3
S
w o &
o Mo, @ o
e - S o
- oo o
= o o g
E oo %o
.E o %J g?&(fp
] 2
w f — o et
=
®)
@
o
5 = %;
H - a
“ %
= o
o kon i
=

I ! ! ! ! ! ! I
1750 1800 1850 1900 1950 2000 2050 2100

Year

5/37

Basic Plots

> plot(as.numeric(death["Sweden",]) ~ year, ylab = "# of deaths per family",
+ main = "Sweden", xlim = c(1760, 2012), pch = 19, cex = 1.2, col = "blue")

Sweden
=
[==T .
s T
o . 3 .
o * g F
:E.Q' :o *
* -
= | 0‘ » i~
3 o %
. e
-
.bl %
f — * %

of deaths per family

0.8 1.0
|
.c".?’

o

0.a
]

I ! ! ! !
1750 1800 1850 1900 1950 2000

Year

6/37

Basic Plots

> scatter.smooth (as.numeric(death["Sweden",]) ~ year, span = 0.2, ylab = "# of deaths per family",
+ main = "Sweden", lwd = 3, xlim = c(1760, 2012), pch = 19, cex = 0.9, col = "grey")

Sweden

1.0 14 20 2.5 3.0
]]

of deaths per family

0.5

0.0

I ! ! ! !
1750 1800 1850 1900 1950 2000

Year

7/37

Basic Plots

> par (mfrow = c(1, 2))

> scatter.smooth (as.numeric(death["Sweden",]) ~ year, span = 0.2, ylab = "# of deaths per family",

+ main = "Sweden", 1lwd = 3, xlim = c¢(1760, 2012), pch = 19, cex = 0.9, col = "grey")

> scatter.smooth (as.numeric(death["United Kingdom",]) ~ year, span = 0.2, ylab = "# of deaths per famil
+ main = "United Kingdom", lwd = 3, xlim = c¢(1760, 2012), pch = 19, cex = 0.9,

+ col = "grey")

Sweden United Kingdom
=
o wo_|
[}
[Tw]
L'\l. 7] =
= = o |
E o | E
Z e =
@ 5w
(=% o) (=8 -
EN £
@ 2 =2
= = | L= —
5 T k=
H H o
. Ch
= | = |
= T T T T T = T T T T T
1750 1800 1850 1900 1950 2000 1750 1800 1850 1900 1850 2000
year year

8/37

Basic Plots

> par (mfrow = c(1, 2))
> yl = range (death[c("Sweden", "United Kingdom"),])

> scatter.smooth (as.numeric (death["Sweden",]) ~ year, span

+ ylab = "# of deaths per family", main = "Sweden", lwd = 3, xlim = c(1760,
+ 2012) , pch = 19, cex = 0.9, col = "grey")
> scatter.smooth (as.numeric(death["United Kingdom",]) ~ year, span = 0.2, ylab = "",
+ main = "United Kingdom", lwd = 3, ylim = yl, x1lim = c(1760, 2012), pch = 19,
+ cex = 0.9, col = "grey")
Sweden United Kingdom

E — —

=] I I I I I =] I I I I I

1750

1800

1850

1900

year

1950

2000

= 0.2, ylim = y1,

1750

1800

1850

1900

year

1950

2000

9/37

Graphical parameters

par() can be used to set or query graphical parameters. Parameters can be set by specifying them as
arguments to par in tag = value form, or by passing them as a list of tagged values.

Note that some parameters are passed from plot(,...) calls whereas others need to be explicitly set
using par() - like above with par(mfrow = c(nrow,ncol))

Note that some parameters are both very flexible but also very finicky, especially margins.

10/37

Bar Plots

e Stacked Bar Charts are sometimes wanted to show how

> ## Stacked Bar Charts

> cars = read.csv("http://biostat.jhsph.edu/~ajaffe/files/kaggleCarAuction.csv",

+ as.is = T)

> counts <- table(cars$IsBadBuy, cars$VehicleAge)

> barplot (counts, main = "Car Distribution by Age and Bad Buy Status", xlab = "Vehicle Age",
+ col = c("darkblue", "red"), legend = rownames (counts))

Car Distribution by Age and Bad Buy Status

o1 2 3 4 5 8 7

Vehicle Age

| §-
[

15000
I

10000
|

5000
]

.
3 9

11/37

Bar Plots

> ## Use percentages (column percentages)

> barplot (prop.table (counts, 2), main = "Car Distribution by Age and Bad Buy Status",

+

[}
—

0.8

0.6

0.4
]

0.2

0.a

xlab = "Vehicle Age", col = c("darkblue", "red"), legend = rownames (counts))

Car Distribution by Age and Bad Buy Status

o1 2 3 4 5 6 7 8 49

Vehicle Age

12/37

Bar Plots

> # Stacked Bar Plot with Colors and Legend
> barplot (counts, main = "Car Distribution by Age and Bad Buy Status", xlab = "Vehicle Age",
+ col = c("darkblue", "red"), legend = rownames (counts), beside = TRUE)

Car Distribution by Age and Bad Buy Status

lll-ll'h

Vehicle Age

14000
I

-} |
-

10000
]

G000
] |

0 2000

13/37

Graphics parameters

Set within most plots in the base 'graphics' package:

e pch = point shape, http://voteview.com/symbols pch.htm
e cex = size/scale

e xlab, ylab = labels for x and y axes

e main = plot title

¢ lwd = line density

e col = color

e cex.axis, cex.lab, cex.main = scaling/sizing for axes marks, axes labels, and title

14/37

http://voteview.com/symbols_pch.htm

Colors

R relies on color 'palettes’'.

> palette()

[1] "black" llred" "green3" llblue" "cyan"
[8] "gray"

> plot(1:8, 1:8, type = "n")
> text(1:8, 1:8, lab = palette(), col = 1:8)

— magenta

1.8

- blue

— green3

2 3 4 5 6 7 8
]

1 red

1

]
o
]
=

"mgenta" Hyellowll

15/37

Colors

The default color palette is pretty bad, so you can try to make your own.

> palette(c("darkred", "orange", "blue"))
> plot(1:3, 1:3, col = 1:3, pch = 19, cex = 2)

an
|
[|

1:3
2.4
l

1.5

1.0

1.3

16/37

Colors

It's actually pretty hard to make a good color palette. Luckily, smart and artistic people have spent a lot
more time thinking about this. The result is the 'RColorBrewer' package

RColorBrewer::display.brewer.all() will show you all of the palettes available. You can even print it out
and keep it next to your monitor for reference.

The help file for brewer.pal() gives you an idea how to use the package.

You can also get a "sneak peek" of these palettes at: www.colorbrewer2.com . You would provide the
number of levels or classes of your data, and then the type of data: sequential, diverging, or qualitative.
The names of the RColorBrewer palettes are the string after 'pick a color scheme:'

17/37

http://www.colorbrewer2.com/

> with (ChickWeight, plot(weight ~ Time, pch = 19, col = Diet))

> palette("default")

Colors

I I I I I I I
nse noe 0se oog 0sl oot 0g

1y Gran

18/37

15 20

10
Time

> library (RColorBrewer)
> palette (brewer.pal (5, "Dark2"))
> with (ChickWeight, plot(weight ~ Time, pch = 19, col = Diet))

[]
= []
= .

L] ::
= L] P]
=
- SR

[]

= o 13
5] o o3
] . l ll
% L] l :l
T = - . e]

=]
= . Il L
: ! 1 i
= []
o I Il 3

- l L] .
| [] I:

s | i ¢ .
— - il . : "
I I B 8 » L "o

E_" H ¢ . -
| | | | |
] 5 10 15 20

Time

19/37

weight

library (RColorBrewer)

palette (brewer.pal (5, "Dark2"))

with (ChickWeight, plot(weight ~ jitter (Time, amount = 0.2), pch = 19, col = Diet),
xlab = "Time")

[] :.-
2 4 ° .
= - . f"‘
. '3
2 s 43
(o] [- ‘
. i 3 :'-
8 - c . 3 e
- E i " g'
= & - -
£ }‘ t.]
' IR
o 1 ! - € = i
R B RS IEES
E—. ’ » " -
[[[[I
0 5 10 15 20

jitter{Time, amount = 0.2)

20/37

Adding legends
The legend() command adds a legend to your plot. There are tons of arguments to pass it.

X, Y=NULL.: this just means you can give (x,y) coordinates, or more commonly just give x, as a
character string: "top","bottom","topleft","bottomleft","topright","bottomright".

legend: unique character vector, the levels of a factor
pch, lwd: if you want points in the legend, give a pch value. if you want lines, give a lwd value.

col: give the color for each legend level

21/37

> palette (brewer.pal (5, "Dark2"))

> with(ChickWeight, plot(weight ~ jitter (Time, amount = 0.2), pch = 19, col = Diet),

+ xlab = "Time")

> legend ("topleft", paste("Diet", levels (ChickWeight$Diet)), col = 1l:length(levels (ChickWeight$Diet)),
+ lwd = 3, ncol = 2)

m—— Dijet1 = Diet3 .
2 _| = Digt2 == Digt4 -
[] ..:
= 4 . . @
™ - L] .‘.
. °:
o - : }'I
o 'l
L [T
g . ¢ $ e 3
= = L]
@ E— L] "
= . ‘ 'E : ‘3
= % - b
G 2 4 i 1-"-'-.
2 4 I
= -! ; d . s T
p b Bl
m_. g . -

] 5 10 15 20

Jitter(Time, amount = 0.2}

22/37

Boxplots, revisited

These are one of my favorite plots. They are way more informative than the barchart + antenna...

> with (ChickWeight, boxplot(weight ~ Diet, outline = FALSE))
> points (ChickWeight$weight ~ jitter (as.numeric (ChickWeight$Diet), 0.5))

350
]

300
]
=) o
a0
o™ g7
o D_*

250
]

200
|

140
|

100
]

B £ Lo S e 9000

23/37

Coloring by variable

> load("data/charmcirc.rda")

> palette (brewer.pal (7, "Dark2"))
> dd = factor (dat$day)

> with(dat, plot(orangeAverage ~ greenAverage, pch = 19, col = as.numeric(dd)))
> legend ("bottomright", levels(dd), col = l:length(dd), pch = 19)

orangeAverage

1000 2000 3000 4000 5000 6000 Y000

a

[] hf.'.

.“ - N :"'."‘ e
..-:-’-.

o
2
. .

Friday
Monday
Saturday
Sunday
Thursday
Tuesday

* Wednesday

I l I
1000 2000 3000

greenAverage

I I
4000 5000

24/37

Coloring by variable

dd = factor(dat$day, levels = c("Monday", "Tuesday", '"Wednesday", "Thursday",

>
+
>
>

arangefverage

with (dat, plot(orangeAverage ~ greenAverage, pch = 19, col = as.numeric(dd)))
legend ("bottomright", levels(dd), col = l:length(dd), pch = 19)

1000 2000 3000 4000 5000 G000 7000

1]

"Friday" , "Saturday" , "Surlday"))

Maonday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

0

1000

I !
2000 3000

greenfverage

4000 5000

25/37

Devices

By default, R displays plots in a separate panel. From there, you can export the plot to a variety of
image file types, or copy it to the clipboard.

However, sometimes its very nice to save many plots made at one time to one pdf file, say, for
flipping through. Or being more precise with the plot size in the saved file.

R has 5 additional graphics devices: bmp(), jpeg(), png(), tiff(), and pdf()

The syntax is very similar for all of them:

pdf ("filename.pdf", width=8, height=8) # inches
plot() # plot 1

plot() # plot 2

etc

dev.off ()

Basically, you are creating a pdf file, and telling R to write any subsequent plots to that file. Once you

are done, you turn the device off. Note that failing to turn the device off will create a pdf file that is
corrupt, that you cannot open.

26/37

More powerful graphics

There are two very common packages for making very nice looking graphics.
lattice: http://Imdvr.r-forge.r-project.org/figures/figures.html

ggplot2: http://docs.ggplot2.org/current/index.html

27137

http://lmdvr.r-forge.r-project.org/figures/figures.html
http://docs.ggplot2.org/current/index.html

Lattice

> library (lattice)

> xyplot (weight ~ Time | Diet, data = ChickWeight)

0 5 o 15 20
1 1 1 1 1 1 | 1 1 1
3 4
DD
@ og o
7 Dogg DD_B»{I{I
o 8 o 8o
Dggaﬂ DDnU
- o & D R ggﬂa—zﬂn
[=]
°EESEBD °§Eno
DE o L |
- EEDD i. - 100
[}
- o ® B o ®
=
o 1 2
=
a
[=]
- [=] =T =
200 o .
a °° =
B g DD e o
200 o2 2 S
g Qo i A
S Dg E ED
| T L I
100 B ge g
E == s oo oo 2 o 6o
n!l “ ol

28/37

Lattice

> densityplot(~weight | Diet, data = ChickWeight)

0 100 200 300 400
| | | | | | | | |

3 4
- - 0.008
— - 0.008
- - 0.004
- - 0.002
= — PP A T AT 50 - 0.000
wy
c 1 2
s

D.008 B

0.006 B

0.004 B

D.002 B

0.000 A AR -
! ! T ! T ! !

I
0 100 200 300 400

weight

29/37

Lattice

> rownames (dat2) = dat2$date

> mat = as.matrix(dat2[975:nrow(dat2), 3:6])
> levelplot(t(mat), aspect = "fill")

column

AETALETAARALERANE AL TANL LA AN TALALALRLLA L LUERE AN AR

[o8 o O OB o O 0N Gk O 08 O G OR OB 6 Ok R OB O OB O UK R O R UK R O N G 0K O R O O O D O O O U6 OB o O R o8 OR R]

I I I I
orangefverageirplefveraggreenfveragesnneriverage

row

- 8000

- 7000

- &000

r 8000

4000

- 2000

2000

1000

30/37

Lattice

> theSeq = seq(0, max(mat), by = 50)
> my.col <- colorRampPalette (brewer.pal (5, "Greens'")) (length (theSeq))
> levelplot(t(mat) , aspect = "fill", at = theSeq, col.regions = my.col, xlab = "Route",

+

Date

o
T

ylab = "Date")

e

=

—

=

ot o o e

I I
orangefveragaurpledveraggreenfveragesnnerdverage

Route

TOO00

8000

5000

2000

- 2000

- 1000

31/37

Lattice

> tmp = death[grep("s$", rownames (death)), 200:251]

> yr = gsub("X", "", names (tmp))

> theSeq = seq(0, max(tmp, na.rm = TRUE), by = 0.05)

> my.col <- colorRampPalette (brewer.pal (5, "Reds")) (length (theSeq))

> levelplot(t(tmp) , aspect = "fill", at = theSeq, col.regions = my.col, scales = list(x = list(label = j
+ rot = 90, cex = 0.7)))

United States
= 3.0

United Arab Emirates
Soloemen Islands
Saint Vincent and the Grenadines

O 25
Philippines

Metherlands Antilles
Metherlands — 20
Mauritius -

Maldives

column

Laos - 15

Honduras —
Cyprus r

Comoros -

r1.0

Channel Islands -
Belarus — ro.E
Barbados —

Bahamas -

32/37

Lattice

> cloud (weight ~ weight * Chick | Diet, data = ChickWeight)

weight

33/37

Lattice

> cloud (weight ~ weight * Chick | Diet, data = ChickWeight, screen = list(z = 40,
+ x = -70, y = 60))

Chick

34/37

ggplot2

> library (ggplot2)
> gplot(factor (Diet) , weight, data = ChickWeight, geom = "boxplot")

weight

[=]
=]
1

factor(Diet)

35/37

ggplot2

> p = ggplot(ChickWeight, aes(Diet, weight))
> p + geom boxplot(notch = TRUE, aes(fill = Diet)) + geom jitter() + coord flip()

Diet

36/37

ggplot2

Useful links:

¢ http://docs.ggplot2.org/0.9.3/index.html

e http://www.cookbook-r.com/Graphs/

37/37

http://docs.ggplot2.org/0.9.3/index.html
http://www.cookbook-r.com/Graphs/

