
Module 11
Statistics

Andrew Jaffe

Instructor

Statistics
Now we are going to cover how to perform a variety of basic statistical tests in R.

Note: We will be glossing over the statistical theory and "formulas" for these tests. There are plenty of

resources online for learning more about these tests, as well as dedicated Biostatistics series at the

School of Public Health

Correlation

T-tests

Proportion tests

Chi-squared

Fisher's Exact Test

Linear Regression

·

·

·

·

·

·

2/25

Correlation
cor() performs correlation in R

cor(x, y = NULL, use = "everything",
 method = c("pearson", "kendall", "spearman"))

> load("charmcirc.rda")
> cor(dat2$orangeAverage, dat2$purpleAverage)

[1] NA

> cor(dat2$orangeAverage, dat2$purpleAverage, use = "complete.obs")

[1] 0.9208

3/25

Correlation
You can also get the correlation between matrix columns

Or between columns of two matrices, column by column.

> signif(cor(dat2[, grep("Average", names(dat2))], use = "complete.obs"), 3)

 orangeAverage purpleAverage greenAverage bannerAverage
orangeAverage 1.000 0.889 0.837 0.441
purpleAverage 0.889 1.000 0.843 0.441
greenAverage 0.837 0.843 1.000 0.411
bannerAverage 0.441 0.441 0.411 1.000

> signif(cor(dat2[, 3:4], dat2[, 5:6], use = "complete.obs"), 3)

 greenAverage bannerAverage
orangeAverage 0.837 0.441
purpleAverage 0.843 0.441

4/25

Correlation
You can also use cor.test() to test for whether correlation is significant (ie non-zero). Note that linear

regression is probably your better bet.

> ct = cor.test(dat2$orangeAverage, dat2$purpleAverage, use = "complete.obs")
> ct

 Pearson's product-moment correlation

data: dat2$orangeAverage and dat2$purpleAverage
t = 69.65, df = 871, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.9100 0.9303
sample estimates:
 cor
0.9208

5/25

Correlation
Note that you can add the correlation to a plot, via the legend() functinon.

> plot(dat2$orangeAverage, dat2$purpleAverage, xlab = "Orange Line", ylab = "Purple Line",
+ main = "Average Ridership", cex.axis = 1.5, cex.lab = 1.5, cex.main = 2)
> legend("topleft", paste("r =", signif(ct$estimate, 3)), bty = "n", cex = 1.5)

6/25

Correlation
For many of these testing result objects, you can extract specific slots/results as numbers, as the 'ct'

object is just a list.

> # str(ct)
> names(ct)

[1] "statistic" "parameter" "p.value" "estimate" "null.value"
[6] "alternative" "method" "data.name" "conf.int"

> ct$statistic

 t
69.65

> ct$p.value

[1] 0

7/25

T-tests
The T-test is performed using the t.test() function, which essentially tests for the difference in means of

a variable between two groups.

> tt = t.test(dat2$orangeAverage, dat2$purpleAverage)
> tt

 Welch Two Sample t-test

data: dat2$orangeAverage and dat2$purpleAverage
t = -16.22, df = 1745, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1141.5 -895.2
sample estimates:
mean of x mean of y
 2994 4013

> names(tt)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"
[6] "null.value" "alternative" "method" "data.name"

8/25

T-tests
You can also use the 'formula' notation.

> cars = read.csv("http://biostat.jhsph.edu/~ajaffe/files/kaggleCarAuction.csv",
+ as.is = T)
> tt2 = t.test(VehBCost ~ IsBadBuy, data = cars)
> tt2$estimate

mean in group 0 mean in group 1
 6797 6259

9/25

T-tests
You can add the t-statistic and p-value to a boxplot.

> boxplot(VehBCost ~ IsBadBuy, data = cars, xlab = "Bad Buy", ylab = "Value")
> leg = paste("t=", signif(tt$statistic, 3), " (p=", signif(tt$p.value, 3), ")",
+ sep = "")
> legend("topleft", leg, cex = 1.2, bty = "n")

10/25

Proportion tests
prop.test() can be used for testing the null that the proportions (probabilities of success) in several

groups are the same, or that they equal certain given values.

prop.test(x, n, p = NULL,
 alternative = c("two.sided", "less", "greater"),
 conf.level = 0.95, correct = TRUE)

> prop.test(x = 15, n = 32)

 1-sample proportions test with continuity correction

data: 15 out of 32, null probability 0.5
X-squared = 0.0312, df = 1, p-value = 0.8597
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
 0.2951 0.6497
sample estimates:
 p
0.4688

11/25

Chi-squared tests
chisq.test() performs chi-squared contingency table tests and goodness-of-fit tests.

chisq.test(x, y = NULL, correct = TRUE,
 p = rep(1/length(x), length(x)), rescale.p = FALSE,
 simulate.p.value = FALSE, B = 2000)

> tab = table(cars$IsBadBuy, cars$IsOnlineSale)
> tab

 0 1
 0 62375 1632
 1 8763 213

12/25

Chi-squared tests
> cq = chisq.test(tab)
> cq

 Pearson's Chi-squared test with Yates' continuity correction

data: tab
X-squared = 0.9274, df = 1, p-value = 0.3356

> names(cq)

[1] "statistic" "parameter" "p.value" "method" "data.name" "observed"
[7] "expected" "residuals" "stdres"

> cq$p.value

[1] 0.3356

13/25

Chi-squared tests
Note that does the same test as prop.test, for a 2x2 table.

> chisq.test(tab)

 Pearson's Chi-squared test with Yates' continuity correction

data: tab
X-squared = 0.9274, df = 1, p-value = 0.3356

> prop.test(tab)

 2-sample test for equality of proportions with continuity
 correction

data: tab
X-squared = 0.9274, df = 1, p-value = 0.3356
alternative hypothesis: two.sided
95 percent confidence interval:
 -0.005208 0.001674
sample estimates:
prop 1 prop 2
0.9745 0.9763

14/25

Linear Regression
Now we will briefly cover linear regression. I will use a little notation here so some of the commands

are easier to put in the proper context.

y_i = \alpha + \beta * x_i + \epsilon_i

where:

y_i is the outcome for person i

\alpha is the intercept

\beta is the slope

x_i is the predictor for person i

\epsilon_i is the residual variation for person i

·

·

·

·

·

15/25

Linear Regression
The 'R' version of the regression model is:

y ~ x

where:

y is your outcome

x is/are your predictor(s)

·

·

16/25

Linear Regression

'(Intercept)' is \alpha

'VehicleAge' is \beta

> fit = lm(VehOdo ~ VehicleAge, data = cars)
> fit

Call:
lm(formula = VehOdo ~ VehicleAge, data = cars)

Coefficients:
(Intercept) VehicleAge
 60127 2723

17/25

Linear Regression
> summary(fit)

Call:
lm(formula = VehOdo ~ VehicleAge, data = cars)

Residuals:
 Min 1Q Median 3Q Max
-71097 -9500 1383 10323 41037

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 60127.2 134.8 446.0 <2e-16 ***
VehicleAge 2722.9 29.9 91.2 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 13800 on 72981 degrees of freedom
Multiple R-squared: 0.102, Adjusted R-squared: 0.102
F-statistic: 8.31e+03 on 1 and 72981 DF, p-value: <2e-16

18/25

Linear Regression
> summary(fit)$coef

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 60127 134.80 446.04 0
VehicleAge 2723 29.86 91.18 0

19/25

Linear Regression
> library(scales)
> par(mfrow = c(1, 2))
> plot(VehOdo ~ jitter(VehicleAge, amount = 0.2), data = cars, pch = 19, col = alpha("black",
+ 0.05), xlab = "Vehicle Age (Yrs)")
> abline(fit, col = "red", lwd = 2)
> legend("topleft", paste("p =", summary(fit)$coef[2, 4]))
> boxplot(VehOdo ~ VehicleAge, data = cars, varwidth = TRUE)
> abline(fit, col = "red", lwd = 2)

20/25

Linear Regression
Note that you can have more than 1 predictor in regression models.

The interpretation for each slope is change in the predictor corresponding to a one-unit change in the

outcome, holding all other predictors constant.

> fit2 = lm(VehOdo ~ VehicleAge + WarrantyCost, data = cars)
> summary(fit2)

Call:
lm(formula = VehOdo ~ VehicleAge + WarrantyCost, data = cars)

Residuals:
 Min 1Q Median 3Q Max
-67895 -8673 940 9305 45765

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.24e+04 1.46e+02 359.1 <2e-16 ***
VehicleAge 1.94e+03 2.89e+01 67.4 <2e-16 ***
WarrantyCost 8.58e+00 8.25e-02 104.0 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12900 on 72980 degrees of freedom
Multiple R-squared: 0.218, Adjusted R-squared: 0.218
F-statistic: 1.02e+04 on 2 and 72980 DF, p-value: <2e-16

21/25

Linear Regression
Factors get special treatment in regression models - lowest level of the factor is the comparison group,

and all other factors are relative to its values.

> fit3 = lm(VehOdo ~ factor(TopThreeAmericanName), data = cars)
> summary(fit3)

Call:
lm(formula = VehOdo ~ factor(TopThreeAmericanName), data = cars)

Residuals:
 Min 1Q Median 3Q Max
-71947 -9634 1532 10472 45936

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 68249 93 733.98 < 2e-16 ***
factor(TopThreeAmericanName)FORD 8524 158 53.83 < 2e-16 ***
factor(TopThreeAmericanName)GM 4952 129 38.39 < 2e-16 ***
factor(TopThreeAmericanName)NULL -2005 6362 -0.32 0.75267
factor(TopThreeAmericanName)OTHER 585 160 3.66 0.00026 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14200 on 72978 degrees of freedom
Multiple R-squared: 0.0482, Adjusted R-squared: 0.0482
F-statistic: 924 on 4 and 72978 DF, p-value: <2e-16

22/25

Probability Distributions
These are included in base R

Normal

Binomial

Beta

Exponential

Gamma

Hypergeometric

etc

·

·

·

·

·

·

·

23/25

Probability Distributions
Each has 4 options:

r for random number generation [e.g. rnorm()]

d for density [e.g. dnorm()]

p for probability [e.g. pnorm()]

q for quantile [e.g. qnorm()]

·

·

·

·

> rnorm(5)

[1] -1.0539 2.2844 -0.5777 1.6222 1.0054

24/25

Sampling
The sample() function is pretty useful for permutations

> sample(1:10, 5, replace = FALSE)

[1] 6 7 3 5 10

25/25

