
Module 3
Data Classes

Andrew Jaffe

Instructor

Functions - Intro
R revolves around functions: denoted by [function name]()

Every function takes an input, defined by arguments, often provided by the user

Many functions have default settings for these arguments

If you know the name of a function, ?[function name] or help([function name]) will pop

up the help menu

example([function name]) shows you how it is used

·

·

·

·

·

2/30

Functions - Intro
For example, length is a function we briefly covered last module. You can try typing ?length in the

console and reading the help file.

You can also see examples of running a function using example() [which is another function!]

3/30

Data Classes:
One dimensional classes ('vectors'):

Character: strings or individual characters, quoted

Numeric: any real number(s)

Integer: any integer(s)/whole numbers

Factor: categorical/qualitative variables

Logical: variables composed of TRUE or FALSE

·

·

·

·

·

4/30

Data Classes:
Two dimensional classes:

Data frame: traditional 'Excel' spreadsheets

Matrix: two-dimensional data, composed of rows and columns. Unlike data frames, the entire matrix

is composed of one R class.

·

Each column can have a different class, from above-

·

5/30

Data Classes
N-dimensional classes:

Lists

Arrays

·

·

6/30

Character and numeric
We have already covered character and numeric

Note that c() and class() are both functions!

> class(c("Andrew", "Jaffe"))

[1] "character"

> class(c(1, 4, 7))

[1] "numeric"

7/30

Integer
Integer is a special subset of numeric that contains only whole numbers

Sequences of numbers are an example of integers

> x = seq(from = 1, to = 5) # seq() is a function
> x

[1] 1 2 3 4 5

> class(x)

[1] "integer"

> 1:5 # this makes a consecutive sequence from [num1] to [num2]

[1] 1 2 3 4 5

8/30

Factor
factor are special character vectors where the elements have pre-defined groups or 'levels'. You

can think of these as qualitative variables:

> x = factor(c("boy", "girl", "girl", "boy", "girl"))
> x

[1] boy girl girl boy girl
Levels: boy girl

> class(x)

[1] "factor"

9/30

Factor
factor is very particular about adding additional elements

We will revisit factors later.

> c(x, "baby")

[1] "1" "2" "2" "1" "2" "baby"

> c(x, "boy")

[1] "1" "2" "2" "1" "2" "boy"

10/30

Logical
logical is a class that only has two possible elements: TRUE and FALSE

sum() and mean() work on logical vectors - they return the total and proportion of TRUE elements,

respectively.

> x = c(TRUE, FALSE, TRUE, TRUE, FALSE)
> class(x)

[1] "logical"

11/30

Logical
Note that logical elements are NOT in quotes.

> z = c("TRUE", "FALSE", "TRUE", "FALSE")
> class(z)

[1] "character"

12/30

Vector functions
Useful functions for exploring vectors (and other data types):

length()

head() and tail()

table()

subset() and brackets ([])

unique()

sum(), mean(),median(), min(), max()

·

·

·

·

·

·

13/30

Head and Tail
head() shows the first 6 (default) elements of an R object

tail() shows the last 6 (default) elements of an R object

·

·

> z = 1:100
> head(z)

[1] 1 2 3 4 5 6

> tail(z)

[1] 95 96 97 98 99 100

14/30

Table
table() is the basic tabulation function, which is often more useful for character and factor

vectors

From the manual: "table uses the cross-classifying factors to build a contingency table of the counts at

each combination of factor level"

> x = c("boy", "girl", "girl", "boy", "girl")
> table(x)

x
 boy girl
 2 3

> y = c(1, 2, 1, 2, 1)
> table(x, y)

 y
x 1 2
 boy 1 1
 girl 2 1

15/30

Data Subsetting
Brackets are used to select/subset/extract data in R

> x1 = 10:20
> x1

 [1] 10 11 12 13 14 15 16 17 18 19 20

> length(x1)

[1] 11

16/30

Data Subsetting

*This is probably the most powerful and useful function in R. If you master this,
you can literally do anything with R. Everything in the 'data analysis pipeline'
revolves around subsetting (as you will soon see)*

> x1[1] # selecting first element

[1] 10

> x1[3:4] # selecting third and fourth elements

[1] 12 13

> x1[c(1, 5, 7)] # selecting first, fifth, and seventh elements

[1] 10 14 16

17/30

Matrices
> n = 1:9 # sequence from first number to second number incrementing by 1
> n

[1] 1 2 3 4 5 6 7 8 9

> mat = matrix(n, nrow = 3)
> mat

 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

18/30

Matrix (and Data frame) Functions
These are in addition to the previous useful vector functions:

nrow() displays the number of rows of a matrix or data frame

ncol() displays the number of coloumns

dim() displays a vector of length 2: # rows, # columns

colnames() displays the column names (if any) and rownames() displays the row names (if any)

·

·

·

·

19/30

Data Selection
Matrices have two "slots" you can use to select data, which represent rows and columns, that are

separated by a comma

> mat[1, 1] # individual entry: row 1, column 1

[1] 1

> mat[1,] # first row

[1] 1 4 7

> mat[, 1] # first columns

[1] 1 2 3

20/30

Data Selection
Note that the class of the returned object is no longer a matrix

> class(mat[1,])

[1] "integer"

> class(mat[, 1])

[1] "integer"

21/30

Data Frames
The data.frame is another two dimensional variable class. As mentioned before, these are very

similar to Excel spreadsheets and even Stata/SAS/SPSS datasets.

Data frames are like matrices, but each column is a vector that can have its own class. So some

columns might be character and others might be numeric

We can look at some of the example data frames that come with R

22/30

Data Frames
> data(iris)
> names(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[5] "Species"

> str(iris)

'data.frame': 150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
 $ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

23/30

Data Selection
Data frames have special ways to select data, specifically by a $ and the column name.

> head(iris$Petal.Length)

[1] 1.4 1.4 1.3 1.5 1.4 1.7

> class(iris$Petal.Width)

[1] "numeric"

24/30

Data Selection
You can also subset data frames like matrices, using row and column indices, but using column names

is generally safer and more reproducible.

You can also use the bracket notation, but specify the name(s) in quotes if you want more than 1

column. This allows you to subset rows and columns at the same time

> head(iris[, 2])

[1] 3.5 3.0 3.2 3.1 3.6 3.9

> iris[1:3, c("Sepal.Width", "Species")]

 Sepal.Width Species
1 3.5 setosa
2 3.0 setosa
3 3.2 setosa

25/30

Data Frames
You can make your own data frames from "scratch" too, either from a matrix or using the

data.frame function:

> x = c("Andrew", "Andrew", "Kate")
> y = 1:3
> df = data.frame(name = x, id = y)
> df

 name id
1 Andrew 1
2 Andrew 2
3 Kate 3

26/30

Data Frames
You can add variables to a data.frame using $ as well:

> iris2 = iris # copy ̀iris̀ to a new df
> iris2$Index = seq(1:nrow(iris2))
> head(iris2)

 Sepal.Length Sepal.Width Petal.Length Petal.Width Species Index
1 5.1 3.5 1.4 0.2 setosa 1
2 4.9 3.0 1.4 0.2 setosa 2
3 4.7 3.2 1.3 0.2 setosa 3
4 4.6 3.1 1.5 0.2 setosa 4
5 5.0 3.6 1.4 0.2 setosa 5
6 5.4 3.9 1.7 0.4 setosa 6

> names(iris2)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[5] "Species" "Index"

27/30

Lists
Lists are useful for storing vectors or data frames of varying lengths

We will come back to lists later

> list1 = list(x = c("Andrew", "Andrew", "Kate"), y = 1:5, z = matrix(letters[1:4],
+ nc = 2))
> list1

$x
[1] "Andrew" "Andrew" "Kate"

$y
[1] 1 2 3 4 5

$z
 [,1] [,2]
[1,] "a" "c"
[2,] "b" "d"

28/30

Arrays
An array is basically a matrix that can extend in additional dimensions

> array1 = array(1:12, c(2, 3, 2))
> array1

, , 1

 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

 [,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

29/30

Arrays
Data selection can now occur across three different "slots"

We will come back to arrays later as well

> array1[, , 1]

 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

> array1[1, , 2]

[1] 7 9 11

30/30

