
Module 5
Data I/O + Subset

Andrew Jaffe

Instructor



Data Output
While its nice to be able to read in a variety of data formats, it's equally important to be able to output

data somewhere.

write.table(): prints its required argument x (after converting it to a data.frame if it is not one

nor a matrix) to a file or connection.

write.table(x,file = "", append = FALSE, quote = TRUE, sep = " ",
            eol = "\n", na = "NA", dec = ".", row.names = TRUE,
            col.names = TRUE, qmethod = c("escape", "double"),
            fileEncoding = "")

2/29



Data Output
x: the R data.frame or matrix you want to write

file: the file name where you want to R object written. It can be an absolute path, or a filename (which

writes the file to your working directory)

sep: what character separates the columns?

row.names: I like setting this to FALSE because I email these to collaborators who open them in

Excel

"," = .csv - Note there is also a write.csv() function

"\t" = tab delimited

·

·

3/29



Data Output
For example, from the Homework 1 Dataset:

Note that row.names=TRUE would make the first column contain the row names, here just the

numbers 1:nrow(dat2), which is not very useful for Excel.

> dat = read.csv("data/Charm_City_Circulator_Ridership.csv", header = T, as.is = T)
> dat2 = dat[, c("day", "date", "orangeAverage", "purpleAverage", "greenAverage", 
+     "bannerAverage", "daily")]
> write.csv(dat2, file = "data/charmcitycirc_reduced.csv", row.names = FALSE)

4/29



Data Input - Excel
Many data analysts collaborate with researchers who use Excel to enter and curate their data. Often

times, this is the input data for an analysis. You therefore have two options for getting this data into R:

For single worksheet .xlsx files, I often just save the spreadsheet as a .csv file (because I often have to

strip off additional summary data from the columns)

For an .xlsx file with multiple well-formated worksheets, I use the xlsx package for reading in the data.

Saving the Excel sheet as a .csv file, and using read.csv()

Using an add-on package called xlsx

·

·

5/29



Packages
Packages are add-ons that are commonly written by users comprised of functions, data, and vignettes

Some useful data input/output packages

Use library() or require() to load the package into memory so you can use its functions

Install packages using install.packages("PackageName")

Use help(package="PackageName") to see what contents the package has

http://cran.r-project.org/web/packages/available_packages_by_name.html

·

·

·

·

foreign package - read data from Stata/SPSS/SAS

sas7bdat - read SAS data

xlsx - reads in XLS files

·

·

·

6/29

http://cran.r-project.org/web/packages/available_packages_by_name.html


Installing Packages
> ## install.packages('xlsx',repos='http://cran.us.r-project.org')
> library(xlsx)  # or require(xlsx)

7/29



Saving R Data
It's very useful to be able to save collections of R objects for future analyses.

For example, if a task takes several hours(/days) to run, it might be nice to run it once and save the

results for downstream analyses.

save(...,file="[name].rda")

where ... is as many R objects, referenced by unquoted variable names, as you want to save.

For example, from the homework:

> save(dat, dat2, file = "data/charmcirc.rda")

8/29



Saving R Data
You also probably have noticed the prompt when you close R about saving your workspace. The

workspace is the collection of R objects and custom R functions in your current environment. You can

check the workspace with ls() or view it in the "Workspace" tab:

Saving the workspace will save all of these files in your current working directory as a hidden file called

".Rdata". The function save.image() also saves the entire workspace, but you can give your desired

file name as an input (which is nicer because the file is not hidden).

Note that R Studio should be able to open any .rda or .Rdata file. Opening one of these file types from

Windows Explorer or OSX's Finder loads all of the objects into your workspace and changes your

working directory to wherever the file was located.

> ls()

[1] "dat"  "dat2" "f"    "x"   

9/29



Loading R Data
You can easily load any '.rda' or '.Rdata' file with the load() function:

Note that this saves the R object names as character strings in an object called 'tmp', which is nice if

you already have a lot of items in your working directory, and/or you don't know exactly which got

loaded in

> tmp = load("data/charmcirc.rda")
> tmp

[1] "dat"  "dat2"

> ls()

[1] "dat"  "dat2" "f"    "tmp"  "x"   

10/29



Removing R Data
You can easily remove any R object(s) using the rm() or remove() functions, and they are no longer

in your R environment (which you can confirm with running ls())

You can also remove all of the objects you have added to your workplace with:

rm(list = ls())

11/29



Subsetting Data
Often you only want to look at subsets of a data set at any given time. As a review, elements of an R

object are selected using the brackets.

Today we are going to look at more flexible ways of identifying which rows of a dataset to select.

12/29



Subsetting Data
Note: there is a convenience function for subsetting, called subset(), which takes the R object, the

logical statement to identify the index of the rows to take, and then an option to select a subset of the

columns:

However, the function comes with a warning in the help file:

"Warning: This is a convenience function intended for use interactively. For programming it is better to

use the standard subsetting functions like [, and in particular the non-standard evaluation of argument

subset can have unanticipated consequences."

Therefore, we are only going to use the brackets for selecting data in this class.

subset(x, subset, select, drop = FALSE, ...)

13/29



Subsetting Data
You can put a - before integers inside brackets to remove these indices from the data.

> x = c(1, 3, 77, 54, 23, 7, 76, 5)
> x[1:3]  # first 3

[1]  1  3 77

> x[-2]  # all but the second

[1]  1 77 54 23  7 76  5

14/29



Subsetting Data
Note that you have to be careful with this syntax when dropping more than 1 element:

> x[-c(1, 2, 3)]  # drop first 3

[1] 54 23  7 76  5

> x[-1:3]  # shorthand

Error: only 0's may be mixed with negative subscripts

> x[-(1:3)]  # needs parentheses

[1] 54 23  7 76  5

15/29



Subsetting Data
Sometimes you want to select a specific sequence of rows from a data frame. Here, the seq()

command comes in handy. We already saw one specific application using the colon (e.g. 1:10), but

seq() is much more flexible.

where from and 'to' are integers. by can be any numeric value.

seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),
    length.out = NULL, along.with = NULL, ...)
# Typical usages are:
#seq(from, to)
#seq(from, to, by=)
#seq(from, to, length.out= )
#seq(along.with= )
#seq(from)
#seq(length.out= )

16/29



seq()
> seq(1, 10, by = 2)  # odds

[1] 1 3 5 7 9

> seq(2, 10, by = 2)  # evens

[1]  2  4  6  8 10

> seq(1, 10, length.out = 3)

[1]  1.0  5.5 10.0

17/29



seq()
The along.with argument becomes useful later when we talk about R programming, but here is

taste:

This is essentially a sequence from 1 to length(x)

> x

[1]  1  3 77 54 23  7 76  5

> seq(along = x)

[1] 1 2 3 4 5 6 7 8

18/29



seq()
by can also be negative, but be careful. You can also create sequences from larger numbers to smaller

numbers.

> seq(1, 10, by = -2)  # odds

Error: wrong sign in 'by' argument

> seq(10, 1, by = -2)  # odds

[1] 10  8  6  4  2

> seq(10, 1, by = 2)  # evens

Error: wrong sign in 'by' argument

19/29



seq()
We can take all of the even rows in a data.frame:

> head(dat, 2)  # only the first 2 rows

      day       date orangeAverage purpleAverage greenAverage
1  Monday 01/11/2010           952            NA           NA
2 Tuesday 01/12/2010           796            NA           NA
  bannerAverage daily
1            NA   952
2            NA   796

> head(dat[seq(2, nrow(dat), by = 2), ], 2)

       day       date orangeAverage purpleAverage greenAverage
2  Tuesday 01/12/2010           796            NA           NA
4 Thursday 01/14/2010          1214            NA           NA
  bannerAverage daily
2            NA   796
4            NA  1214

20/29



Selecting on multiple queries
You can select rows where a value is allowed to be several categories. In the homework, we had to

subset the Charm City Circulator dataset by each day. How can we select rows that are 1 of 2 days?

The %in% operator proves useful: "%in% is a more intuitive interface as a binary operator, which

returns a logical vector indicating if there is a match or not for its left operand."

> (dat$day %in% c("Monday", "Tuesday"))[1:20]  # select entries that are monday or tuesday

 [1]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
[12] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE

> which(dat$day %in% c("Monday", "Tuesday"))[1:20]  # which indices are true?

 [1]  1  2  8  9 15 16 22 23 29 30 36 37 43 44 50 51 57 58 64 65

21/29



Selecting on multiple queries
What about selecting rows based on the values of two variables? We can 'chain' together logical

statements using the following:

& : AND

| : OR

·

·

> # which Mondays had more than 3000 average riders?
> which(dat$day == "Monday" & dat$daily > 3000)[1:20]

 [1] 148 155 162 169 176 183 190 197 204 211 218 225 232 239 246 253 260
[18] 267 274 281

22/29



AND
Which days had more than 10000 riders overall and more than 3000 riders on the purple line?

> Index = which(dat$daily > 10000 & dat$purpleAverage > 3000)
> length(Index)  # the number of days

[1] 280

> head(dat[Index, ], 2)  # first 2 rows

         day       date orangeAverage purpleAverage greenAverage
551   Friday 07/15/2011          4705          6293           NA
552 Saturday 07/16/2011          4624          7622           NA
    bannerAverage daily
551            NA 10998
552            NA 12246

23/29



OR
Which days had more than 10000 riders overall or more than 3000 riders on the purple line?

> Index = which(dat$daily > 10000 | dat$purpleAverage > 3000)
> length(Index)  # the number of days

[1] 600

> head(dat[Index, ], 2)  # first 2 rows

         day       date orangeAverage purpleAverage greenAverage
180   Friday 07/09/2010          2847          3094           NA
188 Saturday 07/17/2010          1513          3562           NA
    bannerAverage daily
180            NA  5941
188            NA  5076

24/29



Getting a little more complex: && and ||
Sometimes we may have more complicated situations where we don't want all statements to be

evaluated together. The commands && and || evaluate the statements starting from the left and then

proceed right only if the left "passes" the test.

> z  # note we have no variable called z in memory

Error: object 'z' not found

> which(dat$daily > 10000 & dat$purpleAverage > 3000 & z > 500)

Error: object 'z' not found

> which(dat$daily > 10000 & dat$purpleAverage > 3000 && z > 500)

integer(0)

25/29



Subsetting with missing data
Note that logical statements cannot evaluate missing values, and therefore returns an NA:

> dat$purpleAverage[1:10] > 0

 [1] NA NA NA NA NA NA NA NA NA NA

> which(dat$purpleAverage > 0)[1:10]

 [1] 148 149 150 151 152 153 154 155 156 157

26/29



Subsetting with missing data
You can use the complete.cases() function on a data frame, matrix, or vector, which returns a

logical vector indicating which cases are complete, i.e., they have no missing values.

27/29



Subsetting columns
We touched on this last class. You can select columns using the variable/column names or column

index

> dat[1:3, c("purpleAverage", "orangeAverage")]

  purpleAverage orangeAverage
1            NA           952
2            NA           796
3            NA          1212

> dat[1:3, c(7, 5)]

  daily greenAverage
1   952           NA
2   796           NA
3  1212           NA

28/29



Subsetting columns
You can also remove a column by setting its value to NULL

> tmp = dat2
> tmp$daily = NULL
> tmp[1:3, ]

        day       date orangeAverage purpleAverage greenAverage
1    Monday 01/11/2010           952            NA           NA
2   Tuesday 01/12/2010           796            NA           NA
3 Wednesday 01/13/2010          1212            NA           NA
  bannerAverage
1            NA
2            NA
3            NA

29/29


