
Module 6
Data Manipulation

Andrew Jaffe

Instructor

Manipulating Data
So far, we've covered how to read in data, and select specific rows and columns. All of these steps

help you set up your analysis or data exploration. Now we are going to cover manipulating your data

and summarizing it using basic statistics and visualizations.

2/26

Sorting and ordering
sort(x, decreasing=FALSE): 'sort (or order) a vector or factor (partially) into ascending or

descending order.' Note that this returns an object that has been sorted/ordered

order(...,decreasing=FALSE): 'returns a permutation which rearranges its first argument into

ascending or descending order, breaking ties by further arguments.' Note that this returns the indices

corresponding to the sorted data.

> x = c(1, 4, 7, 6, 4, 12, 9, 3)
> sort(x)

[1] 1 3 4 4 6 7 9 12

> order(x)

[1] 1 8 2 5 4 3 7 6

3/26

Sorting and ordering

The first indicates the rows of dat2 ordered by daily average ridership. The second displays the actual

sorted values of daily average ridership.

> dat = read.csv("data/charmcitycirc_reduced.csv", header = T, as.is = T)
> dat2 = dat[, c("day", "date", "orangeAverage", "purpleAverage", "greenAverage",
+ "bannerAverage", "daily")]
> head(order(dat2$daily, decreasing = TRUE))

[1] 888 887 886 971 880 866

> head(sort(dat2$daily, decreasing = TRUE))

[1] 22075 21951 17580 16714 16366 16150

4/26

Sorting and ordering
> datSorted = dat2[order(dat2$daily, decreasing = TRUE),]
> datSorted[1:5,]

 day date orangeAverage purpleAverage greenAverage
888 Saturday 06/16/2012 6322 7797 3338
887 Friday 06/15/2012 6926 8090 3485
886 Thursday 06/14/2012 5618 6521 2770
971 Friday 09/07/2012 5718 7007 2688
880 Friday 06/08/2012 5782 6882 2858
 bannerAverage daily
888 4617.0 22075
887 3450.0 21951
886 2672.0 17580
971 1301.0 16714
880 844.5 16366

5/26

Sorting and ordering
Note that the row names refer to their previous values. You can do something like this to fix:

> rownames(datSorted) = NULL
> datSorted[1:5,]

 day date orangeAverage purpleAverage greenAverage
1 Saturday 06/16/2012 6322 7797 3338
2 Friday 06/15/2012 6926 8090 3485
3 Thursday 06/14/2012 5618 6521 2770
4 Friday 09/07/2012 5718 7007 2688
5 Friday 06/08/2012 5782 6882 2858
 bannerAverage daily
1 4617.0 22075
2 3450.0 21951
3 2672.0 17580
4 1301.0 16714
5 844.5 16366

6/26

Creating categorical variables
the rep() ["repeat"] function is useful for creating new variables

> bg = rep(c("boy", "girl"), each = 50)
> head(bg)

[1] "boy" "boy" "boy" "boy" "boy" "boy"

> bg2 = rep(c("boy", "girl"), times = 50)
> head(bg2)

[1] "boy" "girl" "boy" "girl" "boy" "girl"

> length(bg) == length(bg2)

[1] TRUE

7/26

Creating categorical variables
One frequently-used tool is creating categorical variables out of continuous variables, like generating

quantiles of a specific continuously measured variable.

A general function for creating new variables based on existing variables is the ifelse() function,

which "returns a value with the same shape as test which is filled with elements selected from either yes

or no depending on whether the element of test is TRUE or FALSE."

ifelse(test, yes, no)

test: an object which can be coerced to logical mode.
yes: return values for true elements of test.
no: return values for false elements of test.

8/26

Creating categorical variables
For example, we can create a new variable that records whether daily ridership on the Circulator was

above 10,000.

> hi_rider = ifelse(dat$daily > 10000, 1, 0)
> head(hi_rider)

[1] 0 0 0 0 0 0

> table(hi_rider)

hi_rider
 0 1
740 282

9/26

Creating categorical variables
You can also nest ifelse() within itself to create 3 levels of a variable.

> riderLevels = ifelse(dat$daily < 10000, "low", ifelse(dat$daily > 20000, "high",
+ "med"))
> head(riderLevels)

[1] "low" "low" "low" "low" "low" "low"

> table(riderLevels)

riderLevels
high low med
 2 740 280

10/26

Creating categorical variables
However, it's much easier to use cut() to create categorical variables from continuous variables.

'cut divides the range of x into intervals and codes the values in x according to which interval they fall.

The leftmost interval corresponds to level one, the next leftmost to level two and so on.'

x: a numeric vector which is to be converted to a factor by cutting.

breaks: either a numeric vector of two or more unique cut points or a single number (greater than or

equal to 2) giving the number of intervals into which x is to be cut.

labels: labels for the levels of the resulting category. By default, labels are constructed using "(a,b]"

interval notation. If labels = FALSE, simple integer codes are returned instead of a factor.

cut(x, breaks, labels = NULL, include.lowest = FALSE,
right = TRUE, dig.lab = 3,
ordered_result = FALSE, ...)

11/26

Factors
Factors are used to represent categorical data, and can also be used for ordinal data (ie categories

have an intrinsic ordering)

Note that R reads in character strings as factors by default in functions like read.table()

'The function factor is used to encode a vector as a factor (the terms 'category' and 'enumerated type'

are also used for factors). If argument ordered is TRUE, the factor levels are assumed to be ordered.

For compatibility with S there is also a function ordered.'

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion

functions for these classes.

factor(x = character(), levels, labels = levels,
 exclude = NA, ordered = is.ordered(x))

12/26

Factors
Suppose we have a vector of case-control status

> cc = factor(c("case", "case", "case", "control", "control", "control"))
> cc

[1] case case case control control control
Levels: case control

> levels(cc) = c("control", "case")
> cc

[1] control control control case case case
Levels: control case

13/26

Factors
Note that the levels are alphabetically ordered by default. We can also specify the levels within the

factor call

> factor(c("case", "case", "case", "control", "control", "control"), levels = c("control",
+ "case"))

[1] case case case control control control
Levels: control case

> factor(c("case", "case", "case", "control", "control", "control"), levels = c("control",
+ "case"), ordered = TRUE)

[1] case case case control control control
Levels: control < case

14/26

Factors
Factors can be converted to numeric or character very easily

> x = factor(c("case", "case", "case", "control", "control", "control"), levels = c("control",
+ "case"))
> as.character(x)

[1] "case" "case" "case" "control" "control" "control"

> as.numeric(x)

[1] 2 2 2 1 1 1

15/26

Cut
Now that we know more about factors, cut() will make more sense:

> x = 1:100
> cx = cut(x, breaks = c(0, 10, 25, 50, 100))
> head(cx)

[1] (0,10] (0,10] (0,10] (0,10] (0,10] (0,10]
Levels: (0,10] (10,25] (25,50] (50,100]

> table(cx)

cx
 (0,10] (10,25] (25,50] (50,100]
 10 15 25 50

16/26

Cut
We can also leave off the labels

> cx = cut(x, breaks = c(0, 10, 25, 50, 100), labels = FALSE)
> head(cx)

[1] 1 1 1 1 1 1

> table(cx)

cx
 1 2 3 4
10 15 25 50

17/26

Cut
Note that you have to specify the endpoints of the data, otherwise some of the categories will not be

created

> cx = cut(x, breaks = c(10, 25, 50), labels = FALSE)
> head(cx)

[1] NA NA NA NA NA NA

> table(cx)

cx
 1 2
15 25

18/26

Adding to data frames
> dat2$riderLevels = cut(dat2$daily, breaks = c(0, 10000, 20000, 1e+05))
> dat2[1:2,]

 day date orangeAverage purpleAverage greenAverage
1 Monday 01/11/2010 952 NA NA
2 Tuesday 01/12/2010 796 NA NA
 bannerAverage daily riderLevels
1 NA 952 (0,1e+04]
2 NA 796 (0,1e+04]

> table(dat2$riderLevels, useNA = "always")

 (0,1e+04] (1e+04,2e+04] (2e+04,1e+05] <NA>
 731 280 2 12

19/26

Making 2D objects
We can make matrices from "scratch" using the matrix() function.

data: a data vector.

nrow: the number of rows

ncol: the number of columns

byrow: does the data fill in the matrix across the rows or down the columns?

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
 dimnames = NULL)

20/26

Matrices
> m1 = matrix(1:9, nrow = 3, ncol = 3, byrow = FALSE)
> m1

 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

> m2 = matrix(1:9, nrow = 3, ncol = 3, byrow = TRUE)
> m2

 [,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

21/26

Adding rows and columns
More generally, you can add columns (or another matrix/data frame) to a data frame or matrix using

cbind() ('column bind'). You can also add rows (or another matrix/data frame) using rbind() ('row

bind').

Note that the vector you are adding has to have the same length as the number of rows (for cbind())

or the number of columns (rbind())

When binding two matrices, they must have either the same number of rows or columns

> cbind(m1, m2)

 [,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 4 7 1 2 3
[2,] 2 5 8 4 5 6
[3,] 3 6 9 7 8 9

22/26

Adding rows and columns
> rbind(m1, m2)

 [,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
[4,] 1 2 3
[5,] 4 5 6
[6,] 7 8 9

23/26

Adding columns manually
> dat2$riderLevels = NULL
> rider = cut(dat2$daily, breaks = c(0, 10000, 20000, 1e+05))
> dat2 = cbind(dat2, rider)
> dat2[1:2,]

 day date orangeAverage purpleAverage greenAverage
1 Monday 01/11/2010 952 NA NA
2 Tuesday 01/12/2010 796 NA NA
 bannerAverage daily rider
1 NA 952 (0,1e+04]
2 NA 796 (0,1e+04]

24/26

Making a data frame
data.frame(col1 = [vector], col2 = [vector], ..., stringsAsFactors=FALSE)

> df = data.frame(Date = dat$day, orangeLine = dat$orangeAverage, purpleLine = dat$purpleAverage)
> df[1:5,]

 Date orangeLine purpleLine
1 Monday 952 NA
2 Tuesday 796 NA
3 Wednesday 1212 NA
4 Thursday 1214 NA
5 Friday 1644 NA

25/26

Other manipulations

(via: http://statmethods.net/management/functions.html)

abs(x): absolute value

sqrt(x): square root

ceiling(x): ceiling(3.475) is 4

floor(x): floor(3.475) is 3

trunc(x): trunc(5.99) is 5

round(x, digits=n): round(3.475, digits=2) is 3.48

signif(x, digits=n): signif(3.475, digits=2) is 3.5

cos(x), sin(x), tan(x) also acos(x), cosh(x), acosh(x), etc.

log(x): natural logarithm

log10(x): common logarithm

exp(x): ex

·

·

·

·

·

·

·

·

·

·

·

26/26

http://statmethods.net/management/functions.html

