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We are grateful for the opportunity to discuss this paper. In this discussion, we i)

question the plausibility of the authors’ substantive assumptions, ii) discuss the authors’

choice of scientific goals and their attainability, iii) comment on statistical issues and iv)

describe a sensitivity analysis approach to the authors’ problem.

i) Substantive assumptions. In §3 the authors show that under no interference

and assumptions (I) (A,S (0) , S (1))⊥⊥Z|X,C = 1 where C is the binary indicator of the

critical event, e.g. car accident, and (II) S (1) = 1 w.p.1, an application of Bayes’ theo-

rem implies identification of the joint distribution f (A,S|C = 1, X) from the distributions

f (A|S = 1, C = 1,X) and f (S|C = 1, X).

Assumption 2 stipulates a dichotomous treatment factor Z which is guaranteed to pre-

vent death. In the authors’ example, Z was transport time to hospital, a continuous variable

that was dichotomized at 10 mins. As the authors recognize, treatments Z satisfying (II)

rarely exist. For instance, a fraction of individuals injured in car accidents die almost imme-

diately. For them, a "transport time to hospital" of less than 10 mins cannot prevent death.

Yet, the empirical analysis of §4 reports that no deaths occurred in subjects with transport

times of less than 10 mins. Possible explanations for the lack of deaths in the rapidly trans-

ported would include (i) ambulance paramedics appropriately transport victims found dead

at the scene less quickly than injured survivors, (ii) the chosen cutpoint of 10 minutes was

data driven, and (iii) the number of high risk rapidly transported subjects (i.e. 11) was

sufficiently small that all survived by chance.

In §5 the authors replace assumption (II) with the monotonicity assumption that Z

cannot cause death. However, it can be difficult to find variables Z that satisfy monotonicity.

For instance, the authors suggest that thrombolytic drug therapy after stroke is a treatment
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that never causes death. Yet, physicians are well aware that thrombolytic drugs can cause

intracerebral hemmorraghe and death. Similarly, rapid transport to a hospital may cause

death if, in their hurry, the paramedics fail to properly stabilize the patient. Indeed, it is a

matter of debate whether fast transport is harmful or beneficial for accident victims[1].

We also question the validity of assumption (I). Subjects with limited pre-accident phys-

ical mobility (X) both have difficulty with activities of daily living (A) and are difficult to

quickly extract from a wrecked automobile. We doubt one could measure physical mobility

sufficiently well to insure A⊥⊥Z|X,C = 1 holds, for Z "transport time".

In conclusion, we regard neither the monotonicity assumption (much less the stronger

assumption (II)) nor the ignorability assumption (I) as plausible in the authors’ examples.

ii) Scientific goals. In §2.1 the authors list their scientific goals as estimation of (a)

f (A|S = 0, C = 1) and (b) P (S = 0|A = a, C = 1) as a function of a.

Attainability of the Authors Goals. The authors show that f (A|S = 0, C = 1)

and P (S = 0|A = a,C = 1) are identified under (I) and (II). In fact, a calculation using

Bayes rule shows that they are identified under the weaker assumptions A⊥⊥Z|X,C = 1

and P(S = 1|Z = C = 1,X) = 1. These assumptions do not require any reference to or

assumptions about counterfactuals. Unfortunately, the arguments in i) above show that

these weaker assumptions are also unrealistic.

In spite of our concerns about the monotonicity assumption, we now examine whether

the authors’ goals are attainable when this assumption holds. In §5.1, the authors state

that the importance of their approach ‘is essentially intact for addressing scientific goals’,

even when (II) is replaced by the weaker monotonicity assumption. We disagree because

f (A|S = 0, C = 1) and P (S = 0|A = a, C = 1) are not identified, and thus not consistently

estimable, when only (I) and monotonicity are imposed.

Perhaps the authors’ claim is predicated on the fact that under (I) and monotonicity, the
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principal stratum distributions f (A|C = 1, P = ‘Z prevents death’) and

f (A |C = 1, P = ‘always survive’) are identified. However, the following example demon-

strates that knowledge of these distributions does not suffice to address important scientific

questions when f (A|S = 0, C = 1) , and thus f (A|C = 1) , remain unidentified.

Example: Suppose Z is an anti-bird flu drug that is in limited supply and C = 1 is con-

tracting bird flu. Clearly, all else being equal, we should give the drugs to those most likely to

be helped by the drug. Thus, we would like to know if P (Z prevents death|A = 1, C = 1) >

P (Z prevents death|A = 0, C = 1) for, then, we should give the drug to subjects with A = 1

rather thanA = 0. ByBayes theorem, this inequality is P (A = 1|C = 1, P = ‘Z prevents death’)

/P (A = 0|C = 1, P = ‘Z prevents death’) > P (A = 1|C = 1 ) /P (A = 0|C = 1). When Z

does not cause death but is not guaranteed to prevent death, we can identify the left hand

side of the inequality but we cannot identify its right hand side and thus cannot determine

whether the inequality is true.

Relevance of the authors’ goals: The preceding example illustrates that knowl-

edge of f (A|S = 0, C = 1) can help address substantive questions. However, we argue that

P (S = 0|A = a,C = 1) is not relevant for predicting survival when Z is available. If, as the

authors assume, data on a strong predictor Z are available, then clearly

P (S = 0|A = a,C = 1, Z = z) is a more relevant predictive distribution than

P (S = 0|A = a,C = 1) . Indeed, if Z were a widely available non-toxic medical treatment

that never caused death, it would be unethical to withhold Z and so P (S = 0|A = a, C = 1, Z = 1)

would be the only predictive distribution of interest. Note that this implies that obtaining

data on Z is a good idea irrespective of whether data on A are missing.

The authors state that knowledge of P (S = 0|A = a, C = 1) [or, when data on X are

collected, of P (S = 0|A = a, C = 1,X)] helps "medical research understand the pathways

through which those inputs relate to critical events and death". The authors did not provide
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any justification for this claim. Furthermore, they did not define what they meant by the

term "pathway". To evaluate the authors’ claim we first clarify the meaning of this term.

Because our discussion applies even when no data are missing, we may assume A is always

observed.

The term ‘pathways’ is generally used as shorthand for ‘causal pathways’. Consider the

query: does A have a causal effect on survival S through a pathway that does not involve

the critical event C?. This query is often rephrased as whether A has a direct causal effect

on survival not through C. The concept of direct effect has been formalized in three different

ways. Let S (a) and C (a) denote a subject’s counterfactual survival and critical event

outcome when A is set to a, which we take to be well-defined. The subject’s observed data S

and C are S = S (A) and C = C (A) with A the observed treatment. Let the counterfactual

S (a, c) denote a subject’s survival when A and C are set to a and c. When S (a, c) is well

defined, S (a) equals S (a,C (a)) . Suppose that, unlike earlier subsections, X is a variable

that is causally unaffected by either A or C. The average controlled direct effect of A on S

when C is set to c within levels of X is defined as CDE (c) = E [S (1, c)− S (0, c) |X][2],[3] .

The average pure direct effect of A on survival not through C given X is defined as PDE =

E [S (1, C (0))− S (0, C (0)) |X] = E [S (1, C (0))− S (0) |X] . This contrast measures the

average effect of A on survival when C is set to its value C (0) under A = 0[4],[5]. The

principal stratum average direct effect of A on survival at level c given X is defined as

PSDE (c) = E [S (1)− S (0) |X,C (0) = C (1) = c][13].

The conditioning subset in PSDE (c = 1) consists of those with covariate X who always

suffer the critical event. Robins[2] §12.2 used this contrast to address the problem of censoring

by competing causes of death, with S = 1 denoting death from a cause of interest (subsequent

to a time t) and C = 0 denoting death from competing causes (before t). Subsequently,

Robins[6], Robins and Greenland[7], Rubin[8],[9],[10], Little and Rubin[11] and Frankagis and
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Rubin[12] also employed this contrast in addressing ’censoring by death’. Baker[12], Frankagis

and Rubin[13], Rubin[14], Gilbert et. al.[15], Shepherd et. al.[16], Hudgens and Halloran[17],

Matsuyama and Morita[18] used this contrast to address a number of other causal issues.

The contrasts CDE (c) and PDE are well-defined only when S (a, c) is well defined.

In contrast PSDE (c) is well defined whenever S (a) and C (a) are well defined. How do

we decide whether a counterfactual is well-defined? This has been a hotly debated issue in

philosophy. The following example, due to Quine[19], effectively ended counterfactual analysis

among philosophers until the late 60’s. "If Bizet and Verdi had been of the same nationality,

they both would have been French." Quine argued that, since Bizet was French and Verdi

Italian, by symmetry considerations, this counterfactual was neither true nor false and thus

was ill-defined. David Lewis[20] later rejoined that, even though some counterfactuals may

be ill-defined and all are somewhat vague, many are useful. Robins and Greenland[7] agreed

but went further. They argued that counterfactuals are “vague” to the degree to which one

fails to make precise the hypothetical interventions.

Following REFS [7] and [12], we believe that for subjects with C = 0, the intervention

corresponding to setting C to 1 is ill-defined because (i) C = 1 only encodes the occurrence of

an accident, failing, for example, to distinguish high speed head-on collisions from rear-enders

at moderate speed and (ii) there is no basis for choosing among them as the intervention. As

a consequence S (a, c) is ill-defined. Thus among the three direct effects, only PSDE (c) is

well-defined. Unfortunately, the following somewhat humourous example demonstrates that

knowledge of PSDE (c) may add little to our understanding of the pathways by which A

relates to critical events and death. Like the authors, we restrict attention to PSDE (c = 1).

Example: Suppose a psychiatrist hypothesizes that, conditional on pre-accident health

and the seriousness of the crash injury, hypervigilant, controlling individuals (A = 1) have

higher post-accident in-hospital mortality (S = 0) than distractible laid-back individuals
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(A = 0) . His theory is that the loss of personal control during hospitalization causes con-

trolling individuals to have serious life threatening arrhythmias. Suppose intervention on A

is well defined. For example, there might exist drugs that can change a person from state

A = 1 to A = 0 (Prozac and Valium) and vice-versa (amphetamines). Suppose, conditional

on X, PSDE (c = 1) is very negative. Does this refute a skeptic who believes the psychia-

trist’s hypothesis is false? It does not because PSDE (c = 1) would also be negative under

the following scenario. The psychiatrist’s hypothesis is false. However, hypervigilant indi-

viduals avoid most potential accidents. Those they cannot avoid are usually serious head-on

collisions with speeding cars that cross the centerline, leaving no time to react. In contrast,

distractible, laid-back individuals have frequent, less serious collisions, because they are nei-

ther in a hurry nor do they look where they are going. Thus, individuals in the stratum

‘always an accident’ will tend to have serious accidents and thus a high in-hospital mortality

rate when A = 1, but less serious accidents when A = 0. Thus, a negative PSDE (c = 1)

may arise because A = 1 increases mortality over A = 0; (i∗) by directly causing increased

in-hospital mortality, as hypothesized by the psychiatrist or, (ii∗) solely by preventing minor

accidents, as in the last scenario. We conclude that negative values of PSDE (c = 1) fail to

indicate the presence of direct effects of A not through its effect on accidents.

The difficulties with PSDE (c = 1) are due to the fact that the event C = 1 lumps to-

gether the occurrence of accidents of varying severity. Thus, the natural solution is to replace

C with a multivariate variable C∗ that records relevant details of an accident including the

type and seriousness of the injuries sustained. Then a non-zero c∗-specific principal stratum

contrast PSDE (c∗) could still be explained by pathway (i∗) but no longer by (ii*), thus

surmounting the difficulties of PSDE (c = 1).Unfortunately, replacing C with C∗ creates a

major problem for the principal stratum approach: there is no subject with C∗ (0) = C∗ (1) if,

as is likely, A has an effect on at least one component of every subject’s C∗. In that case, the
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event C∗ (0) = C∗ (1) = c∗ has probability zero for all c∗, rendering the principal stratum ap-

proach useless. Even if there were subjects with C∗ (0) = C∗ (1) , their numbers would likely

be few. Consequently, the principal stratum approach would only apply to a small subset

of the population. Robins and Rotnitzky[21]catalogue analogous difficulties in substantively

important examples. We believe these difficulties are sufficiently problematic to suggest that

the principal stratum approach to direct effects is, at times, of little scientific value.

Counterfactuals regained. As we record more details in C∗, the intervention that sets

C∗ to c∗ and the counterfactual S (a, c∗) becomes less and less vague. Consequently, CDE (c∗)

and PDE∗ = E [S (1, C∗ (0))− S (0, C∗ (0)) |X] will often be reasonably well-defined. In our

opinion, these are the contrasts that best serve to distinguish among different pathways. For

example, they distinguish pathway (i∗) from (ii∗) above: PDE∗ or CDE (c∗) equal to 0 for

all c∗ is consistent with (ii∗) but not with (i∗), while non-zero values of PDE∗ or CDE (c∗)

can be explained by (i∗) but not by (ii∗). Of course, even S (a, c∗) is somewhat vague. The

only counterfactuals free of vagueness are the treatment-assignment potential outcomes of a

randomized experiment, but they are often uninformative about pathways. Because PDE∗

only requires S (a, c∗) to be defined for a = 1 and c∗ = C∗ (0) , there exist studies in which

PDE∗ may be regarded as well-defined even when CDE (c∗) is not for some c∗[22].

We end this section by noting that none of the three contrasts CDE (c∗) , PDE∗ and

PSDE (c) are identifiable from knowledge of P (S = 0|A = a,C = 1, X) , f (A|C = 1,X) and

f (X|C = 1) without additional strong assumptions that were not either assumed or con-

sidered by the authors. We conclude that, even had the authors succeeded in their goal of

learning these distributions, this success would not have helped ‘understand the pathways

through which inputs relate to critical events and death’.

iii) Statistical issues. In §6 the authors discuss similarities between the problem

treated in §5 and the problem of treatment noncompliance in randomized trials. We now
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show that these problems are statistically not merely similar but isomorphic. As a conse-

quence, i) some of the material in §5 simply reproves previously published results and, ii)

doubly robust semiparametric methods already exist[23] that address the modelling issues of

§5.2 and do not require that Z be dichotomous.

Assumptions of §5.2 are exactly the same as the monotonicity, exclusion and randomiza-

tion assumptions considered in the non-compliance literature, upon appropriate identification

of the authors’ variables with those in a non-compliance model. Specifically, identify X with

a pre-randomization variable, Z with randomized arm and S (z) with the actual treatment

received when Z = z. Then S = S (Z). In the authors’ problem, A is a variable that is unin-

fluenced by Z and would be recorded, if, possibly contrary to fact, the person survived. Thus,

we can regard A as the potential outcome A (s = 1, z) = A (s = 1) for any z. This identity is

the exclusion restriction. Further, assumption (I) is the assumption that Z is randomized and

the assumption that Z never causes death is the monotonicity assumption. Under these as-

sumptions, Abadie[24] has shown that E [A|S (1) > S (0) , X ] = π(X,1)η(X,1)−π(X,0)η(X,0)
π(X,1) −π(X,0)

where

η (x, z) = E [A|S = 1, X = x,Z = z] and π (x, z) = P [S = 1|X = x,Z = z]. The right hand

side is precisely the right hand side of the last displayed equation in §5.1 in the case of

no X 0s. Tan[23] showed how to obtain doubly-robust estimators of E [A|S (z) > S (z0)] =

E[π(X,1)η(X,1)−π(X,0)η(X,0)]
E[π(X,1) −π(X,0)]

when z > z0, with high dimensional X and Z possibly non-binary,

even continuous, that are consistent if either a working model for fZ [z|X = x] is correct or

working models for both π (x, z) and η (x, z) are correct.

iv) A sensitivity analysis. Because we wish not to impose assumptions (I) and

(II), the distributions f (A|S = 0, C = 1) and P (S = 0|A = a,C = 1) of interest are not

identified. Instead we suggest a sensitive analysis motivated by the observations that a)

f (A|S = 0, C = 1) and P (S = 0|A = a, C = 1) would be identified were P (A = 1|C = 1)

identified and (ii) with W ≡ (X,Z) , P (A = 1|C = 1) is identifed under the non-parametric
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just-identified non-ignorable model for π (W,A) ≡ P (S = 0|W,A,C = 1) that speci-

fies π (W,A) = {1 + exp {− [h (W ) +Q]}}−1 where h (W ) is an unknown function and

Q = q (A,W ) is a user-specified selection bias function. However, because Q itself is

not identified, we later vary it in a sensitivity analysis. Since W is high-dimensional,

we also specify flexible parametric models B (η) = b (W ; η) and h (W ;α) for b (W ) ≡

E [A exp (Q) |C = S = 1,W ] /E [exp (Q) |C = S = 1,W ] and h (W ). We compute the es-

timators (bα, bη) given in Scharfstein et al.[25] and bP (A = 1|C = 1) as the sample average over
C = 1 of

£
S {1− π (W,A; bα)}−1 {A−B (bη)}+B (bη)¤ . bP (A = 1|C = 1) is a doubly robust

estimator of P (A = 1|C = 1). That is, with q (A,W ) known, the estimator is consistent and

asymptotically normal if either model h (W ;α) or model B (η) is correct. Final substantive

conclusions depend on the set of functions q (A,W ) considered scientifically plausible[26].

Robins et al.[27] showed this sensitivity analysis can be used as input for a full Bayesian

analysis.
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