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Lecture 1

Lecturer: Michael I. Jordan Scribe: Karl Rohe

Reading: Chapter two of van der Vaart’s book Asymptotic Statistics.

1 Convergence

There are four types of convergence that we will discuss.

Definition 1. Weak convergence, also known as convergence in distribution or law, is denoted

Xn
d−→ X

A sequence of random variables Xn converges in law to random variable X if P (Xn ≤ x) → P (X ≤ x) for
all x at which P (X ≤ x) is continuous.

Definition 2. Xn is said to converge in probability to X if for all ε > 0, P ( d(Xn, X) > ε) → 0. This is

denoted Xn
P−→ X.

Definition 3. Xn is said to converge in rth mean to X if E( d(Xn, X)r) → 0. This is denoted Xn
r−→ X.

Definition 4. Xn is said to converge almost surely to X if P ( limn d(Xn, X) = 0) = 1. This is denoted

Xn
a.s.−→ X.

Theorem 5. • A.s. convergence implies convergence in probability.

• Convergence in rth mean also implies convergence in probability.

• Convergence in probability implies convergence in law.

• Xn
d−→ c implies Xn

P−→ c. Where c is a constant.

Theorem 6. The Continuous Mapping Theorem

Let g be continuous on a set C where P (X ∈ C) = 1. Then,

1. Xn
d−→ X ⇒ g(Xn)

d−→ g(X)

2. Xn
P−→ X ⇒ g(Xn)

P−→ g(X)

3. Xn
a.s.−→ X ⇒ g(Xn)

a.s.−→ g(X)

Example 7. Let Xn
d−→ X, where X ∼ N(0, 1). Define the function g(x) = x2. The CMT says g(Xn)

d−→
g(X). But, X2 ∼ χ2

1. So, g(Xn)
d−→ χ2

1.

Example 8. Let Xn = 1
n

and g(x) = 1x>0. Then Xn
d−→ 0 and g(Xn)

d−→ 1. But, g(0) 6= 1.
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Theorem 9. Slutsky’s Theorems

1. Xn
d−→ X and Xn − Yn

P−→ 0 together imply Yn
d−→ X.

2. Xn
d−→ X and Yn

P−→ c together imply

(

Xn

Yn

)

d−→
(

X
c

)

3. Xn
d−→ X and Yn

P−→ c together imply Xn + Yn
d−→ X + c.

4. Xn
d−→ X and Yn

P−→ c together imply XnYn
d−→ Xc.

5. Xn
d−→ X and Yn

P−→ c together imply Xn

Yn

d−→ X
c

when c 6= 0.

Example 10. Let Xn be iid with mean µ and variance σ2. From the Weak Law of Large Numbers we know

the sample mean X̄n
P−→ µ. Similarly, 1

n

∑

i X2
i

P−→ E(X2). By Slutsky’s Theorem we know S2
n = 1

n

∑

i X2
i −

X̄2 d−→ σ2. Together with the CMT, this implies Sn
P−→ σ. From the CLT

√
n(X̄n − µ)/σ

d−→ N(0, 1).
Together these facts imply

t =
√

n − 1
X̄n − µ

Sn

=
√

n
X̄n − µ

σ

σ

Sn

√

n − 1

n

d−→ N(0, 1)

Where this last equality is due to Slutsky. So, the t-statistic is asymptotically normal.

Definition 11. Xn = op(Rn), pronounced “Xn is little oh-pee-Rn,” means Xn = YnRn, where Yn
P−→ 0.

Definition 12. Xn = Op(Rn), pronounced “Xn is big oh-pee-Rn,” means Xn = YnRn, where Yn = Op(1).
Op(1) denotes a sequence Zn which for any ε > 0 there exists an M such that P (|Zn| > M) < ε.

Lemma 13. Let R : R
k → R and R(0) = 0. Let Xn = op(1). Then, as h → 0, for all p > 0

1. R(h) = o(‖h‖p) implies R(Xn) = op(‖Xn‖p).

2. R(h) = O(‖h‖p) implies R(Xn) = Op(‖Xn‖p).

To prove this, apply the CMT to R(h)
‖h‖p .

• Any random variable is tight. I.e. for all ε > 0, there exists and M such that P (‖X‖ > M) < ε.

• {Xα : α ∈ A} is called Uniformly Tight (UT) if for all ε > 0, there exists and M such that
supα P (‖Xα‖ > M) < ε.

Theorem 14. Prohorov’s theorem (cf. Heine-Borel)

1. If Xn
d−→ X, then Xn is UT.

2. If {Xn} is UT, then there exits a subsequence {Xnj} with Xnj
d−→ X as j → ∞ for some X.

As we move on in the course we will wish to describe weak convergence for things other than random
variables. At this point, the our previous definition will not make sense. We can then use this following
theorem as a definition.
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Theorem 15. Portmanteau

Xn
d−→ X ⇐⇒ Ef(Xn) → Ef(X) for all bounded continuous f.

In this theorem, “bounded and continuous” can be replaced with

• “continuous and vanishes outside of compacta”

• “bounded and measurable, such that P (X ∈ C(g)) = 1” where C(g) is the set of g’s continuity points.

• “bounded Lipshitz”

• “f(X) = eitX .” This is the next theorem.

Theorem 16. Continuity theorem

Xn
d−→ X ⇐⇒ E exp(itT Xn) → E exp(itT X)

Example 17. To demonstrate why f must be bounded, observe what happens if g(x) = x and

Xn =

{

n w.p. 1/n
0 otherwise

Xn
d−→ 0, Eg(Xn) = 1 6= Eg(0) = 0.

Example 18. To demonstrate why f must be continuous, observe what happens if Xn = 1/n and

g(x) =

{

1 if x > 0
0 if x = 0

Theorem 19. (Scheffè) For random variables, Xn ≥ 0, if Xn
a.s.−→ X and EXn → EX < ∞, then

E|Xn − X| → 0. For densities, if fn(x) → g(x) for all x, then
∫

|fn(x) − g(x)|dx → 0.
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Lemma 1 (Fatou). If Xn
a.s.−→ X and Xn ≥ Y with E[|Y |] < ∞, then

lim inf
n−→∞

E[Xn] ≥ E[X].

Theorem 2 (Monotone Convergence Theorem). If 0 ≤ X1 ≤ X2 · · · and Xn
a.s.−→ X, then

E[Xn] −→ E[X].

Note that the Monotone Convergence Theorem can be proven from Fatou’s Lemma.

Theorem 3 (Dominated Convergence Theorem). If Xn
a.s.−→ X and |Xn| ≤ Y,E[|Y |] < ∞, then

E[Xn] −→ E[X].

Theorem 4 (Weak Law of Large Numbers). If Xi
i.i.d.∼ X and E[|X|] < ∞, then

X̄n
P−→ E[X],

where X̄n = 1
n

∑n

i=1 Xi.

Theorem 5 (Strong Law of Large Numbers). If Xi
i.i.d.∼ X and E[|X|] < ∞, then

X̄n
a.s.−→ E[X].

Definition 6 (Empirical Distribution Function). Given n i.i.d. data points Xi
i.i.d.∼ F , the empirical

distribution function is defined as

Fn(x) =
1

n

n
∑

i=1

1[Xi,∞)(x).

Note that Fn(x)
a.s.−→ F (x), for each x.

Theorem 7 (Glivenko-Cantelli). Given n i.i.d. data points Xi
i.i.d.∼ F ,

P{sup
x

|Fn(x) − F (x)| −→ 0} = 1

That is, the random variable supx |Fn(x) − F (x)| converges to 0, almost surely.

Theorem 8 (Central Limit Thorem). Given n i.i.d. random variables Xi from some distribution with

mean µ and covariance Σ (which are assumed to exist),

√
n(X̄n − µ)

d−→ N(0,Σ).
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The following theorem is a generalization of the Central Limit Theorem. It applies to non-i.i.d. (i.e.,
independent but not identically distributed) random variables as might be arranged in a triangular array as
follows, where the random variables within each row are independent:

Y11

Y21 Y22

Y31 Y32 Y33

...

Theorem 9 (Lindeberg-Feller). For each n, let Yn1, Yn2, . . . , Ynkn
be independent random variables with

finite variance such that
∑kn

i=1 Var(Yni) → Σ and

kn
∑

i=1

E
[

‖Yni‖2 � {‖Yni‖ > ε}
] n→∞−→ 0, ∀ε > 0.

Then,

kn
∑

i=1

(Yni − E[Yni])
d−→ N(0,Σ).

We now consider an example illustrating application of the Lindeberg-Feller theorem.

Example 10 (Permutation Tests). Consider 2n paired experimental units in which we observe the results
of n treatment experiments Xnj and n control experiments Wnj . Let Znj = Xnj − Wnj . We would like to
determine whether or not the treatment has had any effect. That is, are the Znj significantly non-zero? To
test this, we condition on |Znj |. This conditioning effectively causes us to discard information regarding the
magnitude of Znj and leaves us to consider only signs. Thus, under the null hypothesis H0, there are 2n

possible outcomes, all equally probable. We now consider the test statistic

Z̄n =
1

n

n
∑

i=1

Zni

and show that, under H0,
√

nZ̄n

σn

d−→ N(0, 1),

where σ2
n = 1

n

∑n

i=1 Z2
ni, and we assume that

max
j

Z2
nj

∑

i Z2
ni

−→ 0.

Proof. Let

Ynj =
Znj

(
∑

i Z2
ni)

1/2
.

Note that, under H0, E[Ynj ] = 0 because H0 states that Xj and Yj are identically distributed. Additionally,
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we have
∑

j Var(Ynj) = 1. Now observe that, ∀ε > 0,

∑

j

E
[

|Ynj |2
� {|Ynj | > ε}

]

=
∑

j

Z2
nj

∑

i Z2
ni

�

{

Z2
nj

∑

i Z2
ni

> ε2

}

≤





∑

j

Z2
nj

∑

i Z2
ni





�

{

max
j

Z2
nj

∑

i Z2
ni

> ε2

}

=
�

{

max
j

Z2
nj

∑

i Z2
ni

> ε2

}

→ 0

where the equality in the first line follows from the definition of Ynj and the fact that we are conditioning on
the magnitudes of the Znj , thus rendering Z2

nj deterministic. The desired result now follows from application
of the Lindeberg-Feller theorem.

We now move on to Chapter 3 in van der Vaart.

Theorem 11 (Delta Method, van der Vaart Theorem 3.1). Let φ : Dφ ⊆ R
k → R

m, differentiable

at θ. Additionally, let Tn be random variables whose ranges lie in Dφ, and let rn → ∞. Then, given that

rn(Tn − θ)
d−→ T ,

(i) rn(φ(Tn) − φ(θ))
d−→ φ′

θ(T )

(ii) rn(φ(Tn) − φ(θ)) − φ′
θ(rn(Tn − θ))

P−→ 0

Proof. Given that rn(Tn − θ)
d−→ T , it follows from Prohorov’s Theorem that rn(Tn − θ) is uniformly tight

(UT). Differentiability implies that

φ(θ + h) − φ(θ) − φ′
θ(h) = o(‖h‖)

(from the definition of the derivative). Now consider h = Tn − θ and note that Tn − θ
P−→ 0 by UT and

rn → ∞. By Lemma 2.12 in van der Vaart, it follows that

φ(Tn) − φ(θ) − φ′
θ(Tn − θ) = oP (‖Tn − θ‖).

Multiplying through by rn, we have

rn(φ(Tn) − φ(θ) − φ′
θ(Tn − θ)) = oP (1),

thus proving (ii) above. Slutsky now implies that rnφ′
θ(Tn − θ) and rn(φ(Tn) − φ(θ)) have the same weak

limit. As a result, using the fact that φ′
θ is a linear operator and the Continuous Mapping Theorem, we have

rnφ′
θ(Tn − θ) = φ′

θ(rn(Tn − θ))
d−→ φ′

θ(T )

and so
rn(φ(Tn) − φ(θ))

d−→ φ′
θ(T ).

We now jump ahead to U -statistics.
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Definition 12 (U-Statistics). For {Xi} i.i.d. and a symmetric kernel function h(X1, . . . , Xr), a U -statistic
is defined as

U =
1

(

n

r

)

∑

β

h(Xβ1
, . . . , Xβr

)

where β ranges over all subesets of size r chosen from {1, . . . , n}.

Note that, by definition, U is an unbiased estimator of θ = E[h(X1, . . . , Xr)] (i.e., E[U ] = θ).

Example 13. Consider

θ(F ) = E[X] =

∫

xdF (x).

Taking h(x) = x,

U =
1

n

∑

i

Xi.

As an exercise, consider

θ(F ) =

∫

(x − µ)2dF (x)

and identify h for the corresponding U -statistic, where µ =
∫

xdF (x).
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1 U-statistics

U-statistics are a useful tool. The beauty of the U-statistics framework is that by abstracting away some
details, can have a general representation of various meaningful quantities. The theory of U-statistics was
initially developed by Hoeffding, one of the pioneers of non-parametric statistics.

Definition 1 (U-statistic). Let Xi
i.i.d.∼ F , h(x1, x2, . . . , xr) be a symmetric kernel function, and θ(F ) =

E[h(X1, X2, . . . , Xr)]. A U-statistic Un is defined as

Un =
1

(

n

r

)

∑

β

h(X1, X2, . . . , Xr) (1)

where β ranges over all subsets of size r chosen from {1, 2, . . . , n}. E[Un] = θ(F ) (i.e. U-statistics are
unbiased).

Example 2 (Sample Variance). Let θ(F ) = σ2 =
∫

(X − µ)2dF where µ =
∫

xdF (x).

θ(F )
(a)
=

∫
(

x1 −
∫

x2dF (x2)

)2

dF (x1)

=

∫

x2
1dF (x1) − 2

∫

x1dF (x1)

∫

x2dF (x2) +

(
∫

x2dF (x2)

)2

=

∫

x2
1dF (x1) −

(
∫

x2dF (x2)

)2

=
1

2

∫

x2
1dF (x1) +

1

2

∫

x2
2dF (x2) −

∫

x1x2dF (x1)dF (x2)

=
1

2

∫

(x1 − x2)
2dF (x1)dF (x2)

⇒ h(X1, X2) =
1

2
(X1 − X2)

2.

Where (a) follows by expanding µ to
∫

x2dF (x2). Thus, the U-statistic for the variance is

Un =

(

n

2

)−1
∑

1≤i<j≤n

1

2
(Xi − Xj)

2

=
1

n(n − 1)

1

2

∑

i

∑

j

(Xi − Xj)
2

1
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where the last equality follows because taking the sum over all indices results in double counting the (Xi−Xj)
2

terms. Continuing the simplification shows that

Un =
1

2n(n − 1)

∑

i

∑

j

[

(Xi − X̄) − (Xj − X̄)
]2

=
1

2n(n − 1)

∑

i

∑

j

(Xi − X̄)2 + (Xj − X̄)2

=
1

n − 1

∑

i

(Xi − X̄)2

= s2
n.

Thus, s2
n is the U-statistic for the variance of a set of samples. Unbiasedness of this statistic follows imme-

diately from the unbiasedness of U-statistics.

1.1 Novel U-statistics

Example 3 (Gini’s mean difference).

θ(F ) =

∫

|x1 − x2|dF (x1)dF (x2) (2)

and the corresponding U-statistic is

Un =
2

n(n − 1)

∑

i<j

|Xi − Xj |. (3)

Example 4 (Quantile statistic.).

θ(F ) =

∫ t

−∞

dF (x). (4)

Un =
1

n

∑

1Xi≤t = Fn(t) (5)

where
h(x) = 1x≤t. (6)

Example 5 (Signed rank statistic). The following statistic can be used in testing whether the location
of the samples is 0.

θ(F ) = P (X1 + X2 > 0) (7)

Un =
2

n(n − 1)

∑

i<j

1X1+X2>0 (8)

where
h(x1, x2) = 1x1+x2>0 (9)

Definition 6 (Two-sample U-statistics). Given {X1, . . . , Xm} and {Y1, . . . , Yn} define

Un =
1

(

m

r

)(

n

s

)

∑

α

∑

β

h(

not symmetric
︷ ︸︸ ︷

Xα1
, . . . , Xαr

︸ ︷︷ ︸

symmetric

, Yβ1
, . . . , Yβs

︸ ︷︷ ︸

symmetric

) (10)

where h(·, ·) is symmetric in x1, . . . , xr and y1, . . . , ys, but not across both sets of inputs.
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Example 7 (Mann-Whitney statistic). This statistic is “used to test for a difference in location between
the two samples” (van der Vaart, 1998).

Un =
1

n1n2

∑

i

∑

j

1Xi≤Yj
(11)

1.2 Variance of U-statistics

The analysis was first done by Hoeffding.

Assume E[h] < ∞ and Xi
i.i.d∼ F . Define hc(x1, . . . , xc) for c < r as

hc(x1, . . . , xc) = E[h(x1, . . . , xc, Xc+1, . . . , Xr)] (12)

Remark 8. The following facts follow from the above definition:

1. h0 = θ(F )

2. E[hc(X1, . . . , Xc)] = E[h(X1, . . . , Xc, Xc+1, . . . , Xr)] = θ(F ).

Let ̂hc = hc − E[hc] = hc − θ(F ), which follows from remark 8. Thus, E[̂hc] = 0. Define ζc as

ζc = Var(hc(X1, . . . , Xc)) = E[̂h2
c(X1, . . . , Xc)]. (13)

Let B = {β1, . . . , βr} and B′ = {β′
1, . . . , β

′
r} be two subsets of {1, . . . , n}. Let c be the number of integers in

common between each of the sets. Let S = B ∩B ′, S1 = S \B, and S2 = S \B′, which implies that |S| = c,
and |S1| = |S2| = r − c. For some subset A = {α1, . . . , αr} of {1, . . . , n} let XA = {Xα1

, . . . , Xαr
}. Thus,

E[̂h(Xβ1
, . . . , Xβr

)̂h(Xβ′

1
, . . . , Xβ′

r
)] = E[̂h(XB)̂h(XB′)] (14)

= E[̂h(XS , XS1
)̂h(XS , XS2

)] (15)

= E[E[̂h(XS , XS1
)̂h(XS , XS2

)|XS ]] (16)

= E[̂h2
c(XS)] (17)

= ζc , (18)

where the second equality follows because h is a symmetric kernel function and the third and fourth equalities
follow from iterated expectations, the fact that each Xi is i.i.d., and the definition of hc.

Remark 9. The number of distinct choices for two sets having c elements in common is
(

n

r

)(

r

c

)(

n − r

r − c

)

(19)

From the definitions

Un − θ(F ) =
1

(

n

r

)

∑

β

̂h(Xβ1
, . . . , Xβr

). (20)

Thus,

Var(Un) =

(

n

r

)−2
∑

β

∑

β′

E[̂h(Xβ1
, . . . , Xβr

)̂h(Xβ′

1
, . . . , Xβ′

r
)] (21a)

=

(

n

r

)−2 r
∑

c=0

(

n

r

)(

r

c

)(

n − r

r − c

)

ζc and ζc = 0 (21b)

=

r
∑

c=1

r!2

c!(r − c)!2
(n − r)(n − r − 1) · · · (n − 2r + c + 1)

n(n − 1) · · · (n − r + 1)
ζc, (21c)
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where the term in the summation corresponding to some c is O( 1
nc ). Thus,

Var(Un) = O(
1

n
) + O(

1

n2
) + · · · + O(

1

nr
). (22)

Example 10 (Sampling variance of the variance). Let θ(F ) = σ2. Thus by example 2

h(X1, X2) =
1

2
(X1 − X2)

2 and r = 2. (23)

Therefore,

̂h(X1, X2) =
1

2
(X1 − X2)

2 − σ2,

h1(X1) =
1

2
(X2

1 − 2X1µ + σ2 + µ2),

so
̂h1(X1) =

1

2
((X1 − µ)2 − σ2)

E[h2(X1, X2)] =
1

4
E[((X1 − µ) − (X2 − µ))4]

=
1

4

4
∑

j=0

(

4

j

)

E[(X1 − µ)j ]E[(X2 − µ)4−j ]

=
1

4
(2µ4 + 6σ4),

where the final equality follows because E[(X − µ)4] = µ4, E[(X − µ)2] = σ2, and E[(X − µ)] = 0. Thus,
the following equalities follow:

ζ2 = E[h2] − σ4 =
µ4

2
+

σ4

2

ζ1 = E[̂h2
1] =

1

4
Var((X1 − µ)2) =

1

4
(µ4 − σ4).

Applying equation 21 yields:

Var(s2
n) =

(

n

2

)−1

(2(n − 2)ζ1 + ζ2)

=
2

n(n − 1)
[2(n − 1)ζ1 − 2ζ1 + ζ2]

=
4ζ1

n
− 4ζ1

n(n − 1)
+

2ζ2

n(n − 1)

=
µ4 − σ4

n
+

2σ4

n(n − 1)
=

µ4 − σ4

n
+ O(n−2).

The variance is asymptotically the same as what was found in homework 1. However, using the above
method also gives the exact value of all higher order terms.

The variance of U-statistics is known, however the question of whether or not U-statistics are asymptotically
normal has yet to be answered. Hájek projections will help prove that U-statistics do indeed asymptotically
go to Gaussians.
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1 Recap

Define the following:

hc(x1, . . . , xc) = E(h(x1, . . . , xc, Xc+1, . . . , Xr))

ζc = V ar(hc(X1, . . . , Xc))

Now consider a U-Statistic:

Un =
1
(

n

r

)

∑

β

h(Xβ1
, . . . , Xβr

)

where E(h) = θ and

Var(Un) =

(

n

r

)−2 r
∑

c=0

(

n

r

)(

r

c

)(

n − r

r − c

)

ζc

Note that

Var(Un) =
r2ζ1

n
+ O(n−2)

1.1 Rao-Blackwellization

Note that we can write Un = E(h(X1, . . . , Xr)|X(1), . . . , X(r)). Thus, we have the following inequality:

E(U2
n) = E(Eh(X1, . . . , Xr)|X(1), . . . , X(r))

2

≤ E(Eh2(X1, . . . , Xr)|X(1), . . . , X(r))

= h2

2 Projections

Define L2(P ) as the set of functions that are finite when squared, and let T and {S : S ∈ S} belong to L2(P ).

Definition 1. Ŝ ∈ S is a projection of T on S if and only if E((T − Ŝ)S) = 0 for all S ∈ S

Corollary 2 (From van der Vaart Chapter 11). E(T 2) = E(T − Ŝ)2 + E(Ŝ2)

1



2 Lecture 4

Now consider a sequence of statistics Tn and spaces Sn (that contain constant real variables) with projections
Ŝn.
Theorem 3. If Var(Tn)

Var(Ŝn)
→ 1 then

Tn − E(Tn)

stdev(Tn)
− Ŝn − E(Ŝn)

stdev(Ŝn)

P−→ 0

Proof: Let An = Tn−E(Tn)
stdev(Tn) − Ŝn−E(Ŝn)

stdev(Ŝn)
. Note that E(An) = 0 and

Var(An) = 2 − 2

(

Cov(Tn, Ŝn)

stdev(Tn)stdev(Ŝn)

)

Since (Tn − Ŝn) ⊥ Ŝn ((Tn − Ŝn) is orthogonal to Ŝn), we have:

E(TnŜn) = E(Ŝn

2
) ⇒

Cov(Tn, Ŝn) = Var(Ŝn) ⇒
An

r=2→ 0 ⇒
An

P−→ 0

2.1 Conditional Expectations are Projections

S ≡ linear space of all measurable functions g(Y ) of Y . Define E(X|Y ) as a measurable function of Y that
satisfies E(X − E(X|Y ))g(Y ) = 0. As a consequence, we have the following:

• Setting g ≡ 1, then E(X − E(X|Y )) = 0 ⇒ E(X) = E(E(X|Y ))

• E(f(Y )X|Y ) = f(Y )E(X|Y ) because
E [f(Y )X − f(Y )E(X|Y )] g(Y ) = E(X − E(X|Y ))f(Y )g(Y ) = 0

• E(E(X|Y,Z)|Y ) = E(X|Y )

2.2 Hájek Projections

Let X1, X2, . . . , Xn be independent, S = {∑n

i=1 gi(xi) : gi ∈ L2(P )}. S is a Hilbert space.

Lemma 3 (11.10 in van der Vaart). Let T have a finite 2nd moment. Then

Ŝ =

n
∑

i=1

E(T |Xi) − (n − 1)E(T )

Proof:

E(E(T |Xi)|Xj) =

{

E[E(T |Xi)] = E(T ) if i 6= j
E(T |Xi) if i = j

E(Ŝ|Xj) =
∑

i6=j

E(T ) − (n − 1)E(T ) + E(T |Xj) = E(T |Xj)

Thus we have that
E[(T − Ŝ)g(Xj)] = E[(E(T − Ŝ)|Xj)g(Xj)] = 0.

And we conclude (T − Ŝ) ⊥ S.
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3 Asymptotic Normality of U-Statistics

Assume E(h2) < ∞. Take Hájek projection of (Un − θ) onto {
∑n

i=1 gi(xi) : gi ∈ L2(P )}. Define Ûn =

Ûn − θ =
∑n

i=1 E((U − θ)|Xi). We have that

E(h(Xβ1
, . . . , Xβr

) − θ|Xi = x) =

{

h1(x) if i ∈ β
0 otherwise

Where h1(x) = E(h(x1, X2, . . . , Xr) − θ). Now

E(Un − θ|Xi) =
1
(

n

r

)

∑

β

E(h(xβ1
, . . . , xβr

|Xi) − θ) =

(

n−1
r−1

)

(

n

r

) =
r

n
h1(xi) ⇒

Ûn =
r

n

n
∑

i=1

h1(xi)

Note that EÛn = 0 and

Var(Ûn) =
r2

n2
[n[Var(h(X1))]] =

r2

n
ζ1

And so we have Var(Un)

Var(Ûn)
→ 1. By our previous theorem we have that

Un − θ

( r2

n
ζ1 + O(n−2))

1

2

− Ûn

( r2

n
ζ1)

1

2

P−→ 0

By Slutsky we have √
n(Un − θ − Ûn)

P−→ 0

By CLT we have √
nÛn

d−→ N(0, r2ζ1)

And by Slutsky again we have √
n(Un − θ)

d−→ N(0, r2ζ1)
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Lecture 4

Lecturer: Michael I. Jordan Scribe: Sriram Sankararaman

Empirical Process theory allows us to prove uniform convergence laws of various kinds. One of the ways to
start Empirical Process theory is from the Glivenko-Cantelli theorem. Recall the Glivenko-Cantelli theorem.

Fn(t) =
1

n

n
∑

i=1

1{ξi≤t} (1)

F (t) = P{ξ ≤ t} (2)

We would like to show that sup
t

|Fn(t)−F (t)| P−→ 0. The proof makes use of the compactness of the class of

indicator functions on the real line to break this class into bins and bound the oscillations in each bin. This
leads to the question of whether the same idea can be generalized to other function classes.

1 Empirical Process Theory

Denote sup
t

| · | by || · ||. To bound the difference ||Fn(t) − F (t)||, we compare two independent copies of the

empirical quantity - Fn(t) and F ′
n(t). A symmetrization lemma is used to bound the former in terms of the

latter.

1.1 First Symmetrization

Lemma 1. (Pollard, 1984, Section II.8, p. 14) Let Z(t) and Z ′(t) be independent stochastic processes.

Suppose that ∃α, β > 0 such that P{|Z ′(t)| ≤ α} ≥ β, ∀t. Then

P{sup
t

|Z(t)| > ε} ≤ β−1
P{sup

t

|Z(t) − Z ′(t)| > ε − α} (3)

An application of Lemma 1 can be seen by setting Z(t) = Fn(t) − F (t) and Z ′(t) = F ′
n(t) − F (t).

Proof. Suppose that the event {sup
t

|Z(t)| > ε} occurs. Choose τ 3 |Z(τ)| > ε. Note that τ is a random

variable. By definition of τ ,

P{sup
t

|Z(t)| > ε} ≤ P{|Z(τ)| > ε} (4)

From the independence of Z and Z ′, we have

P{|Z ′(t)| < α|Z} ≥ β (5)

Suppose that both {|Z(τ)| > ε} and {|Z ′(τ)| ≤ α} occur. Then we have

{|Z(τ) − Z ′(τ)| ≥ ε − α} (6)

1
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Also

β{|Z(τ)| > ε} ≤ P{|Z ′(τ)| ≤ α, |Z(τ)| > ε|Z}
≤ P{|Z ′(τ)| > α, |Z(τ)| > ε} (7)

Here {|Z(τ)| > ε} is an indicator function on the event {|Z(τ)| > ε}. The inequality 7 uses the independence
of Z and Z ′. From Equation 6

β{|Z(τ)| > ε} ≤ P{|Z ′(τ) − Z(τ)| ≥ ε − α}
≤ P{sup

t

|Z(t) − Z ′(t)| ≥ ε − α} (8)

The proof follows from Equations 8 and 4.

1.1.1 Example

Un(ω, t) = n− 1

2

n
∑

i=1

({ξi(ω) ≤ t} − t)

where ξi
iid∼ Unif(0, 1).

For fixed value of t,

Un ∼ Bin(n, t)

n
1

2

− t

n
1

2

P{|Fn(t) − F (t)| >
ε

2
} ≤ 4

ε2
E(Fn(t) − F (t))2

=
4

ε2
E(

1

n

∑

i

{ξ ≤ t} − F (t))2

=
4

nε2
E({ξ ≤ t} − F (t))2

=
4F (t)(1 − F (t))

nε2

≤ 1

nε2

=
1

2
for n ≥ 2

ε2

1.2 Second Symmetrization

The second symmetrization lemma allows us to replace the difference Fn−F ′
n with a single empirical quantity

consisting of n observations. We can further bound the latter so that the bound is independent of the data
ξ.

Define Rademacher variables {σi}
iid∈ {−1,+1}. For any choice of {σi}, the distribution of ({ξi ≤ t} −

{ξi

′ ≤ t}) is equal to the distribution of σi({ξi ≤ t} − {ξi

′ ≤ t}). We change notation here so that
Pn = 1

n

∑n

i=1 1{ξi≤t}. P ′
n is defined similarly.
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Lemma 2. Pollard (1984, II.8,p. 15) P{||Pn − P ′
n|| > ε

2} ≤ 2P{sup
t

| 1
n

∑

i σi{ξi ≤ t}| ≥ ε
4}

Proof.

P{||Pn − P ′
n|| >

ε

2
}

= P{ 1

n
sup

t

|
∑

i

σi({ξi ≤ t} − {ξ′i ≤ t})| ≥ ε

2
}

≤ P{sup
t

| 1
n

∑

i

σi{ξi ≤ t}| ≥ ε

4
} + P{sup

t

| 1
n

∑

i

σi{ξ′i ≤ t}| ≥ ε

4
} (9)

= 2P{sup
t

| 1
n

∑

i

σi{ξi ≤ t}| ≥ ε

4
}

Inequality 9 was derived using the equivalence of the two random quantities and the triangle inequality.

1.3 Hoeffding bound for independent RVs

We state here the Hoeffding bound which we use to bound the quantity 1
n

∑

i σi{ξi ≤ t}. Consider n
independent RVs {Yi}s so that EYi = 0 and ai ≤ Yi ≤ bi.

Theorem 3 (Hoeffding Bound). P{∑n

i=1 Yi > η} ≤ 2e
− 2η

2

P

i
(b

i
−a

i
)2

The proof proceeds by considering the random variable es
P

i
Yi where s is a free parameter. Using Markov’s

inequality,

P{es
P

i
Yi > esη} ≤ Ees

P

i
Yi

esη

≤
∏

i EesYi

esη

Minimizing s gives the necessary bound.
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Uniformly Strong Law of Large Numbers

Lecturer: Michael I. Jordan Scribe: Jian Ding

In this lecture, we try to generalize the Glivenko-Cantelli theorem.

Let ξ1, ξ2, · · · , ξn ∼ P and are i.i.d. sequences. We define Pf := E(f(X)), in which X ∼ P . We also
define Pnf with respect to the empirical measure but puts mass 1

n
at {ξ1, · · · , ξn}. Notice that by definition

Pnf = 1
n

∑n

i=1 f(ξi).

We point out that Pnf − Pf is an object of interest; and supf∈F |Pnf − Pf | is of even more interest.
For example, let F = { �

(−∞,t] : t ∈ R}, then Pnf − Pf becomes Fn(t) − F (t) and supf∈F | · | becomes
supt |Fn(t)−F (t)|. In general, we are interested in statistics defined on a family of stochastic processes with
index set F .

Uniform Law of Large Numbers

Define ‖Pn − P‖ := supf∈F |Pnf − Pf |. Recalling the discussion in last lecture, we get

P{‖Pn − P‖ > ε} ≤ 2P{‖Pn − P ′
n‖ >

ε

2
}

≤ 4P{‖P 0
n‖ >

ε

4
}

where P 0
n is a signed measure putting mass 1

n
σi at {ξ1, · · · , ξn}. Again, σi independently pick value uniformly

on {1,−1}.

Specialize F to indicators

Let Ij = (−∞, tj ] where {tj} lie between the points ξi, i.e., t0 < ξ1 < t1 < ξ2 < t2 < · · · . Consider

P{‖P 0
n‖ >

ε

4
|ξ}

= P{
n
⋃

j=0

{|P 0
nIj | >

ε

4
}|ξ}

≤
n

∑

j=0

P{|P 0
nIj | >

ε

4
|ξ}

≤ (n + 1)max
j

P{|P 0
nIj | >

ε

4
|ξ}.

Recall Hoeffding’s inequality. Let Yi be independent, E(Yi) = 0, ai ≤ Yi ≤ bi. Then, P{|Y1 +Y2 + · · ·+Yn| >

η} ≤ exp{− 2η2

P

i
(bi−ai)

}. We apply this to σi{ξi ≤ t}, and conclude

P{|P 0
n{(−∞, t]}| >

ε

4
|ξ} ≤ 2 exp(−2(nε/4)2

4n
)

≤ 2 exp(−nε2

32
),

1



2 Uniformly Strong Law of Large Numbers

notice that this is independent of ξ, so P{‖Pn − P‖ > ε} ≤ 8(n + 1) exp(−nε2

32 ), i.e., we get Uniform Law of
Large Numbers in probability and also almost surely (by Borel-Cantelli).

The conclusion, namely, Glivenko-Cantelli theorem is not new. However, this method can be generalized to
richer class of functions immediately.

VC Classes

Consider a collection C of subsets of some set X , and consider points ξ1, · · · , ξn from X . Define ∆C
n :=

#{C ⋂{ξ1, · · · , ξn} : C ∈ C}; m(n) := maxξ1,··· ,ξn
∆C

n(ξ1, · · · , ξn); V C := min{n : m(n) < 2n}.

Examples

1, X = R, C = {(−∞, t]}. Then, V C = 2.

2, X = R, C = {(s, t] : s < t}. Then, V C = 3.

3, X = R
d, C = {(−∞, t] : t ∈ R

d}. Then, V C = d + 1.

4, Rectangles in R
d. V C = 2d + 1.

Sauer’s Lemma

Lemma 1.

m(n) ≤
V C

∑

j=0

(

n

j

)

≤ (
ne

V C − 1
)V C−1.

Proof. We prove the second part.

S
∑

j=0

(

n

j

)

= 2n

S
∑

j=0

(

n

j

)

(
1

2
)n

= 2n
P(Y ≤ S), Y ∼ Bin(n,

1

2
)

≤ 2n
E(θ)Y −S , 0 ≤ θ ≤ 1

= 2nθ−S(
1

2
+

θ

2
)n, take θ =

S

n

= (
n

S
)S(1 +

S

n
)n

≤ (
n

S
)SeS .

This suggests

P{‖P 0
n‖ >

ε

4
|ξ} = P{

m(n)
⋃

i=0

|P 0
n

˜fi| >
ε

4
|ξ}

( ˜fi are indicators of subsets that achieve m(n)).

≤
m(n)
∑

i=1

P{|P 0
n

˜fi| >
ε

4
|ξ}

≤ mn max(·).
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Then if F is a VC class, (i.e., V C < ∞), then

P{‖Pn − P‖ > ε} ≤ (Poly in n)(exp(−Cn)).
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Lecture 7

Lecturer: Michael I. Jordan Scribe: Kurt Miller

1 Properties of VC-classes

1.1 VC preservation

Let C and D be VC-classes (i.e. classes with finite VC-dimension). Then so are

• {C{ : C ∈ C}
• {C ∪ D : C ∈ C, D ∈ D}
• {C ∩ D : C ∈ C, D ∈ D}
• φ(C) where φ is 1-1

• {C × D : C ∈ C, D ∈ D}

1.2 Half spaces

Let G be a finite-dimensional vector space of functions. Let C = {g ≥ 0 : g ∈ G} or more formally
C = {{ω : g(ω) ≥ 0} : g ∈ G}. Then V C ≤ dimG + 1.

1.3 Subgraphs

Definition 1. A subgraph of f : X → R is the subset X ×R given by {(x, t) : t ≤ f(x)}.

A collection F is a VC-subgraph class if the collection of subgraphs is a VC-class.

2 Covering Number

We now begin to explore a more powerful method of defining complexity than VC-dimension.

2.1 Definitions

Definition 2 (Covering Number). (Pollard, 1984, p. 25) Let Q be a probability measure on S and F be
a class of functions in L1(Q), i.e. ∀f ∈ F ,

∫

|f |dQ < ∞ . For each ε > 0 define the L1 covering number
N1(ε,Q,F) as the smallest value of m for which there exist functions g1, . . . , gm (not necessarily in F) such
that minj Q|f − gj | ≤ ε for each f in F . For definiteness set N1(ε,Q,F) = ∞ if no such m exists.

1



2 Lecture 7

Note that the set {gj} that achieves this minimum is not necessarily unique.

Definition 3 (Metric Entropy). Define H1(ε,Q,F) = log N1(ε,Q,F) as the L1 metric entropy of F .

More generally, Hp(ε,Q,F) uses the Lp(Q) norm. Write this as ‖g‖p,Q = (
∫

|g|pdQ)1/p.

Definition 4 (Totally bounded). A class is called totally bounded if ∀ε, Hp(ε,Q,F) < ∞

Another kind of entropy:

Definition 5 (Entropy with bracketing). Let Np,B(ε,Q,F) be the smallest value of m for which there
exist pairs of functions {(gL

j , gU
j )}m

j=1 such that ∀j, ‖gU
j −gL

j ‖p,Q < ε and ∀f ∈ F , ∃j(f) s.t. gL
j(f) ≤ f ≤ gU

j(f).

Then we define the entropy with bracketing as Hp,Q(ε,Q,F) = log Np,Q(ε,Q,F).

Finally, using ‖g‖∞ , supx∈X |g(x)|, let N∞(ε,F) be the smallest m such that there exists a set {gj}m
j=1

such that supf∈F minj=1,...,m ‖f − gj‖∞ < ε. Then H∞(ε,F) = log N∞(ε,F).

2.2 Relationship of the various entropies

Using the definitions above, we have that

1. H1(ε,Q,F) ≤ Hp,B(ε,Q,F), ∀ε > 0

2. Hp,B(ε,Q,F) ≤ H∞(ε/2,F), ∀ε > 0

Can these quantities be computed for normal classes of functions? Yes, but you would generally look them
up in a big book. We’ll look at how to compute one of these quantities here.

2.3 Examples

Example 6. Let F = {f : [0, 1] → [0, 1], |f ′| ≤ 1} (i.e. functions from [0, 1] to [0, 1] with first derivatives
bounded by 1). Then H∞(ε,F) ≤ A 1

ε
where A is a constant that we will compute.

Proof. Let 0 = a0 < a1 < · · · < am = 1 where ak = kε and k = 0, . . . ,m. Let B1 = [a0, a1] and
Bk = (ak−1, ak]. For each f ∈ F , define

f̃ =
m

∑

k=1

ε

⌊

f(ak)

ε

⌋

1Bk

f̃ takes on values in εk where k is an integer. We also have ‖f̃ − f‖∞ ≤ 2ε, because |f̃(ak−1)− f(ak−1)| ≤ ε
by construction and |f(ak)− − f(ak−1)| ≤ ε since f ′ is bounded by 1.

We now count the number of possible f̃ obtained by this construction. At a0, there are b1/εc+ 1 choices for
f̃(a0) since f̃ only takes on values of εk in [0, 1]. Furthermore, combining previous results gives us

|f̃(ak) − f̃(ak−1)| ≤ |f̃(ak) − f(ak)| + |f(ak) − f(ak−1)| + |f(ak−1) − f̃(ak−1)|
≤ 3ε.
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Therefore, having chosen f̃(ak−1), f̃ can take on at most 7 distinct values at ak. Therefore

N∞(2ε,F) ≤
(⌊

1

ε

⌋

+ 1

)

7b1/εc

which gives us that

H∞(2ε,F) ≤ 1

ε
log 7 + log(b1/εc + 1)

so our constant can be chosen as any constant that > log 7.

A seminal paper in this field is by Birman and Solomjak in 1967. They present other examples of metric
entropy calculations, including:

Example 7. Let F = {f : [0, 1] → [0, 1] :
∫

(f (m)(x))2dx ≤ 1}. Then H∞(ε,F) ≤ Aε−1/m.

Example 8. Let F = {f : R → (0, 1) : f is increasing}. Then Hp,B(ε,Q,F) ≤ A 1
ε
.

Example 9. Let F = {f : R → [0, 1] :
∫

|df | ≤ 1}, the class of bounded variation. Then Hp,B(ε,Q,F) ≤ A 1
ε
.

Lemma 10 (Ball covering lemma). A ball Bd(R) in Rd of radius R can be covered by

(

4R + ε

ε

)d

balls of radius ε.

Proof. Let {cj}m
j=1 be a packing of size ε (Euclidean norm). This implies that balls of radius ε with centers

at {cj} cover Bd(R) (otherwise we could add more points cj to the packing). Let Bj be the ball of radius
ε/4 centered at cj . We must have that Bi ∩ Bj is empty for i 6= j. Therefore {Bj} are disjoint and

∪jBj ⊂ Bd(R + ε/4).

A ball of radius ρ has volume Cdρ
d where Cd is a constant that depends on the dimension d. Therefore, the

volume of the union ∪jBj is MCd(ε/4)
d and since it is a subset of Bd(R + ε/4), we have

MCd

(ε

4

)d

≤ Cd

(

R +
ε

4

)d

.

With a simple manipulation of this equation, we get that

M ≤
(

4R + ε

ε

)d

References

Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.



Stat210B: Theoretical Statistics Lecture Date: February 13, 2007

P -Glivenko-Cantelli

Lecturer: Michael I. Jordan Scribe: Christopher Hundt

1 P -Glivenko-Cantelli

Definition 1 (P -Glivenko-Cantelli). A class F is P -Glivenko-Cantelli if

sup
f∈F

|Pnf − Pf |
a.s.
−→ 0.

Definition 2 (envelope). An envelope for a class F of functions is a function F such that PF < ∞ and,
for all f ∈ F , |f | ≤ F .

Theorem 3. (Pollard, 1984, Theorem 24) Let F be a permissible1 class of functions with envelope F . If
1
nH1(ε, Pn,F)

P
−→ 0 for all ε > 0 then ‖Pn − P‖

∆
= supf∈F |Pnf − Pf |

a.s.

−→ 0.

Remark 4. The condition that 1
nH1(ε, Pn,F)

P
−→ 0 is natural in the sense that we want to make sure that

the covering number does not grow exponentially fast. See Pollard (1984) for more discussion of this theorem
and its conditions.

Proof. In lectures 5 and 6, we proved Glivenko-Cantelli for a special class of functions, namely indicators.
This proof extends it to more general classes of functions. The proof will be similar, but some changes will
need to be made.

As before, we will prove convergence in probability. A reverse-martingale argument can be used to extend
the proof to show convergence almost surely.

Since PF < ∞, for any ε > 0 there exists a K such that PF{F > K} < ε. It follows that

sup
f∈F

|Pnf − Pf | ≤ sup
f∈F

|Pnf{F ≤ K} − Pf{F ≤ K}| + sup
f∈F

|Pnf{F > K}| + sup
f∈F

|Pf{F > K}|. (1)

Furthermore, since F is an envelope,

sup
f∈F

|Pnf{F > K}| + sup
f∈F

|Pf{F > K}| ≤ PnF{F > K} + PF{F > K}
a.s.
−→ 2PF{F > K} < 2ε.

Since this is true for all ε, inequality (1) means that

sup
f∈F

|Pnf{F ≤ K} − Pf{F ≤ K}|
P
−→ 0 =⇒ sup

f∈F

|Pnf − Pf |
P
−→ 0.

This tells us that we can proceed under the assumption that |f | ≤ K for all f ∈ F .

1Permissibility is a concept from measure theory that is not important for this class; see Pollard (1984, Appendix C,
Definition 1) for details.

1
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Now lecture 5 used two symmetrization arguments to establish bounds that helped in proving Glivenko-
Cantelli for indicator functions. Both these bounds apply in this more general case, and the proofs are
similar, so we will repeat only the conclusion from lecture 6, which is

P{‖Pn − P‖ > ε} ≤ 4P{‖P 0
n‖ > ε

4} for n ≥
2

ε2
,

where P 0
n is the signed measure putting mass ± 1

n at each of the observed data points ξ = {ξ1, . . . , ξn}. We
will now continue, working conditionally with ξ.

Given any ξ, choose g1, . . . , gM , where M = N1(
ε
8 , Pn,F) such that minj Pn|f − gj | < ε

8 for all f ∈ F .
Denote f∗ as the gj that achieves the minimal Pn-norm distance from f . Now

P{‖P 0
n‖ > ε

4 |ξ} ≤ P{sup
f∈F

(|P 0
nf∗| + |P 0

n(f − f∗)|) > ε
4 |ξ}

≤ P{sup
f∈F

(|P 0
nf∗| + Pn|f − f∗|) > ε

4 |ξ}

≤ P{max
j

|P 0
ngj | > ε

8 |ξ} since Pn|f − f∗| < ε
8

= P{

M⋃

j=1

|P 0
ngj | > ε

8 |ξ}

≤

M∑

j=1

P{|P 0
ngj | > ε

8 |ξ}

≤ N1(
ε
8 , Pn,F)max

j
P{|P 0

ngj | > ε
8 |ξ}

≤ N1(
ε
8 , Pn,F)max

j
2 exp

(

−2

(
nε
8

)2

∑n
i=1(2gj(ξi))2

)

by Hoeffding

≤ 2N1(
ε
8 , Pn,F) exp

(

−
nε2

128K2

)

since |gj | ≤ K

Note that this bound does not depend on the data!

To complete the proof we must integrate over ξ: for the event {log N1(
ε
8 , Pn,F) ≤ nε2

256K2 } we can use the

bound just obtained, replacing N1(
ε
8 , Pn,F) with the upper bound enε2/256K2

. Otherwise, we will use 1 as
a bound. That is,

P{‖P 0
n‖ > ε

4} ≤ P{log N1(
ε
8 , Pn,F) ≤ nε2

256K2 }2 exp

(

−
nε2

256K2

)

+ P{log N1(
ε
8 , Pn,F) > nε2

256K2 }

≤ 2 exp

(

−
nε2

256K2

)

︸ ︷︷ ︸

→0

+P{log N1(
ε
8 , Pn,F) > nε2

256K2

︸ ︷︷ ︸

P

−→0

}.

Example 5 (A non-GC class). Suppose F = {1A : A ⊂ R}, P = U(0, 1), and X = (0, 1). Consider
A = {x1, . . . , xn}. Then P1A ≡ 0, but Pn1A = 1 for some subsets.
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2 Glivenko-Cantelli and VC dimension

Lemma 6 (Approximation Lemma). (Pollard, 1984, Lemma 25) Let F be a class of functions with envelope
F and let Q be a probability measure such that QF < ∞. Suppose graphs of F have finite VC dimension V.
Then

N1(εQF,Q,F) ≤ AV(16e)Vε−(V−1).

Remark 7. The exponential dependence of N1 on V shown in this lemma gives an intuition for the use of
the word “dimension” in VC dimension.

Remark 8. This lemma implies that H1 ≤ C + (V − 1) log 1
ε .

Remark 9. See van der Vaart (1998, Lemma 19.15) for a tighter result.
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Applications of ULLNs: Consistency of M-estimators

Lecturer: Michael I. Jordan Scribe: Blaine Nelson

1 M and Z-estimators (van der Vaart, 1998, Section 5.1, p. 41–54)

Definition 1 (M-estimator). An estimator θ̂n defined as a maximizer of the expression:

Mn(θ) ,
1

n

n∑

i=1

mθ(Xi) (1)

for some function mθ(·). If there is a unique solution, the estimator can be expressed simply as

θ̂n = argmaxθ∈ΘMn(θ) .

Definition 2 (Z-estimator (estimating equations)). An estimator θ̂n that can be expressed
as the root of the expression:

Φn(θ) ,
1

n

n∑

i=1

φθ(Xi)

for some function φθ(·); that is, a solution to

Φn

(

θ̂n

)

= 0

M-estimators first were introduced in the context of robust estimation by Peter J. Huber as a generalization
of the maximum likelihood estimator (MLE): mθ(x) = log pθ(x). In the literature, they are often confused
with Z-esimators because of the relationship between optimization and differentiation. In fact under certain
conditions, they are equivalent via the relationship φθ(x) = ∇θ[mθ(x)]. If mθ is everywhere differentiable
w.r.t. θ then the M-estimator is a Z-estimator. A simple example where this fails is the estimation of the
parameter θ for the distribution Un(0, θ). In this model, the log-likelihood is discontinuous in θ but the MLE

is well defined as θ̂n = max{Xi}
n
i=1, which occurs at this discontinuity as show in the following figure:

1
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As is clear, the log-likelihood is −∞ before the MLE and decreasing after it. Hence, the maximum of the
log-likelihood occurs at this point of discontinuity even though the derivative is not 0 there (it is not defined).

2 Consistency of M-estimators (van der Vaart, 1998, Section 5.2,

p. 44–51)

Definition 3 (Consistency). An estimator is consistent if θ̂n
P
→ θ0 (alternatively, θ̂n

a.s.
→ θ0) for any θ0 ∈ Θ,

where θ0 is the true parameter being estimated.

Theorem 4. (van der Vaart, 1998, Theorem 5.7, p. 45) Let Mn be random functions and M be
a fixed function such that ∀ ǫ > 0:

sup
θ∈Θ

|Mn(θ) − M(θ)|
P
→ 0 (2)

sup
{θ | d(θ,θ0)≥ǫ}

M(θ) < M(θ0) (3)

Then, any sequence θ̂n with Mn(θ̂n) ≥ Mn(θ0) − op(1) converges in probability to θ0.

Notice, condition (2) is a restriction on the random functions Mn, whereas condition (3) ensures that θ0 is
a well-separated maximum of M ; i.e., only θ close to θ0 achieve a value M(θ) close to the maximum (See
figure below):

 

M 

θ0 

Finally it is worth noting that sequences θ̂n that nearly maximize Mn (i.e., Mn(θ̂n) ≥ supθMn(θ) − op(1))

meet the above requirement on θ̂n.
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Proof. We are assuming that our θ̂n satisfies, Mn(θ̂n) ≥ Mn(θ0) − op(1). Then, uniform convergence of Mn

to M implies

⇒ Mn(θ0)
P
→ M(θ0)

⇒ Mn(θ̂n) ≥ M(θ0) − op(1)

⇒ M(θ0) ≤ Mn(θ̂n) + op(1)

⇒ M(θ0) − M(θ̂n) ≤ Mn(θ̂n) − M(θ̂n) + op(1)

≤ sup
θ∈Θ

|Mn(θ) − M(θ)| + op(1)

P
→ 0 (by condition (2))

Now, by condition (3), ∀ ǫ > 0, ∃ η such that M(θ) < M(θ0) − η is satisfied ∀ θ : d(θ, θ0) ≥ ǫ. Thus

{d(θ̂n, θ0) ≥ ǫ} ⊆ {M(θ̂n) < M(θ0) − η}.

⇒ P
(

d(θ̂n, θ0) ≥ ǫ
)

≤ P
(

M(θ̂n) < M(θ0) − η
)

︸ ︷︷ ︸

P
→0 (as shown above)

The primary drawback of this approach is that it requires the metric entropy to achieve condition (2).

3 Consistency of the MLE (non-parametric)

We assume that we have n i.i.d. samples from some (unknown) distribution P ; i.e., X1, . . . ,Xn
i.i.d.
∼ P .

Further, we assume P has a density p0 = dP
dµ . For the family of densities, P, we will consider the maximum

likelihood estimator (MLE) amongst P as

p̂n = argmaxp∈P

∫

log pdPn

where Pn = 1
n

∑n
i=1 δXi

—the empirical distribution. To further formalize this, we consider the following
definitions.

Definition 5 (Kullback-Leibler (KL)-divergence). The Kullback-Leibler divergence between two den-
sities is defined as,

K (p0, p) =

∫

log
p0(x)

p(x)
dP (x) .

(Recall, K(p0, p) is always non-negative and is 0 if and only if p0(x) = p(x) almost everywhere.)

Definition 6 (Maximum Likelihood Estimator (MLE)). The maximum-likelihood estimator p̂n is the
minimizer of ∫

log
p0(x)

p̂n(x)
dP (x)

where P has a density p0. This implies ∫

log
p̂n

p0
dPn ≤ 0 (4)
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Given these definitions, we now derive a bound on the KL-divergence between the true density p0 and the
MLE p̂n:

⇒

∫

log
p0(x)

p̂n(x)
dPn(x) ≤ 0

⇒

∫

log
p0(x)

p̂n(x)
dPn(x) − K (p0, p̂n) + K (p0, p̂n) ≤ 0

⇒ K (p0, p̂n) ≤

∣
∣
∣
∣

∫

log
p0(x)

p̂n(x)
dPn(x) −

∫

log
p0(x)

p̂n(x)
dP (x)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

log
p̂n(x)

p0(x)
d(Pn − P )(x)

∣
∣
∣
∣

.

Thus, we need a ULLN for the family of functions: F = {log p
p0

{p0 > 0} | p ∈ P}. To this end, we use the
following distance measure:

Definition 7 (Hellinger Distance).

h (p1, p2) =

(
1

2

∫ (

p
1/2
1 (x) − p

1/2
2 (x)

)2

dµ(x)

) 1

2

Unlike the KL-divergence, Hellinger distance is a proper distance metric (non-negative, symmetric, transitive,
and 0 if and only if p1 = p2 almost everywhere). Moreover, Hellinger is appealing as the square-root of a
density lies in L2. Further we have the following:

Lemma 8.

h2(p1, p2) ≤
1

2
K(p1, p2)

Proof. We use the inequality log(x) ≤ x − 1 in the form 1
2 log(v) ≤ v1/2 − 1. This gives the following:

⇒
1

2
log

p2(x)

p1(x)
≤

p
1/2
2 (x)

p
1/2
1 (x)

− 1

⇒
−1

2
K(p1, p2) ≤

∫

p1>0

p
1/2
2 (x)

p
1/2
1 (x)

p1(x)µ(dx) − 1

⇒
1

2
K(p1, p2) ≥

1

2
︸︷︷︸

1

2

R

p1>0
p1(x)µ(dx)

+
1

2
︸︷︷︸

1

2

R

p1>0
p2(x)µ(dx)

−

∫

p1>0

p
1/2
2 (x)

p
1/2
1 (x)

p1(x)µ(dx)

⇒
1

2
K(p1, p2) ≥

∫

p1>0

1

2
p1(x) − p

1/2
1 (x)p

1/2
2 (x) +

1

2
p2(x)µ(dx)

⇒
1

2
K(p1, p2) ≥

1

2

∫ (

p
1/2
1 (x) − p

1/2
2 (x)

)2

µ(dx)

︸ ︷︷ ︸

=h2(p1,p2)

Unfortunately, though, F is hard to work with (p’s are not bounded away from 0). Instead we will work with
the family

G , {
1

2
log

p + p0

2p0
{p0 > 0} | p ∈ P}
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which is bounded below by 1
2 log 1

2 .

Lemma 9.

h2

(
p̂n + p0

2
, p0

)

≤

∫

p0>0

1

2
log

p̂n + p0

2p0
d(Pn − P )

Proof. Concavity of the logarithm implies

⇒ log
p̂n + p0

2
≥

1

2
log p̂n +

1

2
log p0

⇒ log
p̂n + p0

2
− log p0 ≥

1

2
log p̂n −

1

2
log p0

⇒ log
p̂n + p0

2p0
{p0 > 0} ≥

1

2
log

p̂n

p0
{p0 > 0}

Now, by the definition of the MLE (Eq. (4)):

⇒ 0 ≤

∫

p0>0

1

4
log

p̂n

p0
dPn

⇒ 0 ≤

∫

p0>0

1

2
log

p̂n + p0

2p0
dPn

=

∫

p0>0

1

2
log

p̂n + p0

2p0
d(Pn − P ) +

∫

p0>0

1

2
log

p̂n + p0

2p0
dP

︸ ︷︷ ︸

=−
1

2
K(p0,

p̂n+p0

2 )

≤

∫

p0>0

1

2
log

p̂n + p0

2p0
d(Pn − P ) − h2

(
p̂n + p0

2
, p0

)

(by Lemma 8)

⇒ h2

(
p̂n + p0

2
, p0

)

≤

∫

p0>0

1

2
log

p̂n + p0

2p0
d(Pn − P )

Thus, elements of our family G have Hellinger distance 0 that goes to 0. To connect this back to our orginal
family F, we have the following Lemma:

Lemma 10.

h2 (p, p0) ≤ 16h2 (p̄, p0)

where p̄ ,
p+p0

2 .

Finally, we arrive at the following Theorem:

Theorem 11. Let G = { 1
2 log p̄

p0

{p0 > 0} | p ∈ P} and let G = supg∈G |g|. Assume that
∫

GdP < ∞ and ∀ǫ > 0 1
nH1(ǫ, Pn,G)

P
→ 0, then

h(p̂n, p0)
a.s.
→ 0
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Example 12 (Logistic Regression for nonparameteric links). We are given data pairs: (Yi, Zi) and
we assume the conditional distribution of Y follows a particular functional form:

P (Y = 1|Z = z) = Fθ0
(z)

where Fθ is an increasing function of z for every θ ∈ Θ and θ0 ∈ Θ is the true parameter.

Let µ be (counting measure on {0, 1})×Q where Q is the distribution of Z. Now, the family of joint densities
we obtain is

P = {pθ(y, z) = yFθ(z) + (1 − y)(1 − Fθ(z))}

which has the following properties:

• supp∈P p ≤ 1.

• HB(ǫ, µ,P) ≤ Aǫ−1 (for increasing functions).

Hence we have
h (p̂n, p0)

P
→ 0
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Lecture 10

Lecturer: Michael I. Jordan Scribe: Alex Shyr

In Empirical Process theory, the notion of a sequence of stochastic processes converging to another process
is important. The scalar analogy of this convergence is the CLT. This lecture is an introduction to Donsker’s
Theorem, one of the fundamental theorems of Empirical Process theory.

1 Weak Convergence (aka Conv. in Law, Conv. in Distribution)

Given the usual sample space (Ω,F , P ), random element X : Ω → X . Let A be a σ-field of X .

Define C(X ,A) to be the space of continuous, bounded function class on X , which is measurable on A.

A sequence of probability measures Qn converges weakly to Q if Qnf → Qf,∀f ∈ C(X ,A). Note that
A must be smaller than the Borel σ-field B(X ). An alternative field that works is the projection σ-field
generated by the coordinate projection maps.

2 Continuous Mapping Theorem (van der Vaart, 1998, Cha.18)

Since weak convergence does not hold for all probability measures, we need conditions on the set C on which
the limiting random element concentrates.

Definition 1. A set C is separable if it has a countable, dense subset.

A point X in X is regular if

∀ neighborhood V of X, ∃ a uniformly continuous g with g(X) = 1 and g ≤ V .

Theorem 2. Let H be an A/A′ measurable map from X into another metric space X ′. If H is continuous

at each point of some separable, A-measurable set C of regular points, then

Xn
L−→ X and P (X ∈ C) = 1 ⇒ HXn

L−→ HX

Some useful notes:

• a common function space X is D[0, 1], which is the set of all R-valued, cadlag functions

• d(x, y) = sup0≤t≤1 |x(t) − y(t)| defines a metric, and closed balls for d generate the projection σ-field

• every point of D[0, 1] is regular, but D[0, 1] is not separable ...

• BUT the limit processes we will talk about concentrate on C[0, 1], which is separable.

1



2 Lecture 10

Theorem 3 (“Stochastic equicontinuity” or “Asymptotic tightness”). Let X1, ..., Xn be random

elements of D[0, 1]. Suppose that P (X ∈ C) = 1 for some separable C. Then Xn
L−→ X iff

(i) Fidi convergence of Xn to X (ie. ΠSXn
L−→ ΠSX ∀ finite S ⊆ [0, 1] )

(ii) ∀ε > 0, δ > 0,∃ a grid 0 = t0 < t1 < ... < tn = 1 s.t. lim supn P{maxi supJi
|Xn(t) − Xn(ti)| > δ} < ε,

where Ji = [ti, ti+1)

3 Donsker’s Theorem (for standard empirical process)

The first version of Donsker’s theorem deals with the convergence of the empirical process Un of random
variables drawn uniformly from the unit interval, where

Unt =
√

n(
1

n

n
∑

i=1

1{ξi≤t} − t), and ξi
iid∼ U [0, 1]

Definition 4 (Brownian Bridge). U is a Brownian Bridge iff
(i) ∀ finite subset S ∈ [0, 1], ΠSU is Gaussian with zero mean,
(ii) covariances E[U(s)U(t)] = s(1 − t), ∀0 ≤ s ≤ t ≤ 1, and
(iii) U only has continuous sample paths.

Theorem 5. Un
L−→ U, where U is a Brownian Bridge.

Proof. First check (i) of Theorem 3.

E[UnsUnt] =
1

n

∑

i

E[(1{ξi≤t} − t)(1{ξi≤s} − s)]

=
1

n

∑

i

{P (ξi ≤ s) − tP (ξi ≤ s) − sP (ξi ≤ t) + st}

= s(1 − t)
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Weak Convergence in General Metric Spaces

Lecturer: Michael I. Jordan Scribe: Yueqing Wang

1 General Metric (Norm) Space

The objects of interest are functions from a sample space to a general metric space, where each point is a
function. Then we can try to use statistical properties, e.g. goodness of fit, to test certain assumptions.

Example 1 (Cramér-von Mises). Let Pn be the empirical probability measures of a random sample
X1, . . . ,Xn of real-valued random variables. The Cramér-von Mises statistic for testing the (null) hypoth-
esis that the underlying probability measure is a given P is given by

∫

(Pnf − Pf)2dP,

which can be considered as a measure for the distance between Pn and P . If the distribution of this statistic
is known, we can test the hypothesis. P can be very complex. But if the class F of measurable functions is
P -Donsker, the Cramér-von Mises statistic converges to a Brownian Bridge.

Definition 2 (Uniform Norm). The uniform norm on function spaces is defined as

‖Z‖ = sup
t∈T

|Z(t)|. (1)

Example 3. Some commonly used general metric spaces:

• C[a, b]. All the continuous functions on [a, b] ∈ R.

• D[a, b]. (Cadlag functions). All the functions that have limit from the left and are continuous from
the right.

• ℓ∞[a, b]. All bounded functions.

And we have,
C[a, b] ⊆ D[a, b] ⊆ ℓ∞[a, b]

Note. C[a, b] is separable, i.e. it has a countable dense subset. D[a, b] isn’t separable. Hence, ℓ∞[a, b] is
not separable, neither. Most of the empirical processes are in D[a.b] because of the jumps; most limiting
processes are in C[a, b].

2 Weak Convergence

Definition 4 (Random Element). The Borel σ-field on a metric space D is the smallest σ-field that
contains the open sets (and then also the closed sets). A function defined relative to (one or two) metric

1
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spaces is called Borel-measurable if it is measurable relative to the Borel σ-field(s). A Borel-measurable
map X : Ω → D defined on a probability space (Ω,U , P ) is referred to as a random element with values in
D.

Definition 5. Random Elements (R.E.) Xn converging weakly to the random element X means Ef(Xn) →
Ef(X), for all bounded and continuous function f .

Note. For random elements, Continuous Mapping Theorem still holds. If random elements Xn
d
−→ X and

functions gn → g are continuous, it follows that

gn(Xn)
d
−→ g(X)

Definition 6. A random element is tight if ∀ǫ > 0, ∃ a compact set K such that

P(X /∈ K) ≤ ǫ.

Definition 7. X = {Xt : t ∈ T} is a collection of random variables, where Xt : Ω → R is defined on
(Ω,U , P ). A sample path is defined as t → Xt(ω).

Theorem 8 (Converge Weakly to a Tight Random Element). A sequence of maps Xn : Ωn → l∞(T )
converge weakly to a tight R.E. iff

(i) (Fidi Convergence) (Xn,t1 , . . . ,Xn,tk
) converges weakly in Rk for each finite set (t1, . . . , tk).

(ii) (Asymptotic Partition) ∀ǫ, η > 0, exists a partition of T into finitely many sets T1, . . . , Tk such that

lim sup
n→∞

P(sup
i

sup
s,t∈Ti

|Xn,s − Xn,t| > ǫ) 6 η.

3 The Donsker Theorems

Theorem 9 (Classical Donsker Theorem). If X1, . . . are i.i.d. random variables with distribution
function F, where F is uniform distribution function on the real line and {Fn} are the empirical processes:
Fn(t) = 1

n

∑

i=1 1{Xi≤t}. Then for fixed (t1, . . . , tk), it follows that,

√
n(Fn(t1) − F (t1), . . . , Fn(tk) − F (tk))

d
−→ (GF (t1), . . . , GF (tk)),

where {GF (ti)} are zero-mean Gaussian with covariance ti ∧ tj − titj.

Theorem 10 (Donsker). If X1, . . . are i.i.d. random variables with distribution function F, then the
sequence of empirical processes

√
n(Fn − F ) converges in distribution in the space D[−∞,∞] to a tight

random element GF (i.e. a Brownian Bridge), whose marginal distributions are zero-mean normal with
covariance function: EGF (ti)GF (tj) = F (ti ∧ tj − F (ti)F (tj)).

Denote empirical processes as follows: Gn =
√

n(Pn − P ) and thus Gnf =
√

n(Pfn − Pf).

Definition 11 (P-Donsker). F is P − Donsker if Gn converges weakly to a tight limit process in l∞(F)
which is a P-Brownian Bridge GP with zero mean and covariance function EGP fGP g = Pfg − PfPg.

Definition 12. Define the Bracketing Integral as,

J[](δ,F , L2(P )) =

∫ δ

0

√

log N[](ǫ,F , L2(P ))dǫ
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Theorem 13. If J[](1,F , L2(P )) < ∞, F is P-Donsker.

Example 14. F = {1(−∞,t] : t ∈ R}. By calculating the bracketing number, it follows that log N[] →
1
ǫ2 .

Hence there exists limits for J[](1,F , L2(P )). By the above theorem we know that this function space is
P -Donsker and the empirical processes will converge to a Brownian Bridge.

Example 15 (Lipschitz Classes are P-Donsker). Let F = {fθ : θ ∈ Θ ⊂ Rd} be a Lipschitz function class.
i.e. given x (fixed), if

|fθ1
(x) − fθ2

(x)| 6 m(x)‖θ1 − θ2‖,∀θ1, θ2,

then,

N[](ǫ‖m‖p,r,F , Lr(P )) 6 k(
diameter Θ

ǫ
)d,

where k is a certain constant.

Proof. The brackets (fθ − ǫm, fθ + ǫm) for θ have size smaller than 2ǫ‖m‖p,r. And they cover F because,

fθ1
− ǫm ≤ fθ2

≤ fθ1
+ ǫm, if ‖θ1 − θ2‖ ≤ t.

Hence, we need at most (diam Θ
ǫ )d cubes of size ǫ to cover Θ, and then use balls to cover the cubes.

References
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The Chaining Lemma

Lecturer: Michael I. Jordan Scribe: Fabian Wauthier

Recall from last time the definition of a P-Donsker class.

Definition. A class of functions is called P-Donsker if Gn converges weakly to a tight limit process in l∞(F),
which is a P-Brownian bridge Gp with zero mean and covariance function E(GpfGpg) = Pfg−PfPg. Here
the empirical process Gn is defined as Gn =

√
n(Pn − P ). This means in particular, that for any finite

collection of functions, the elements Gnf converge to a zero mean multivariate Gaussian, with aforementioned
covariance function.

Furthermore, recall Theorem 19.5 stated last time.

Theorem 19.5 (Donsker). Every class F of measurable functions with J[](1,F , L2(P )) < ∞ is P-Donsker.

Here we defined J[](δ,F , L2(P )) =
∫ δ

0

√
log N[](ε,F , L2(P ))dε.

In this lecture we will be concerned mostly with proving the Chaining Lemma, which is instrumental to the
proof of this theorem. Before commencing the presentation, we first illustrate some properties of P-Donsker
classes.

Combining P-Donsker classes

The definition of P-Donsker classes gives rise to an algebra for combining any two P-Donsker classes. In
particular, suppose that f ∈ F and g ∈ G are both P-Donsker. If φ(·, ·) is a Lipschitz transformation, then
φ(f, g) is P-Donsker. Examples of such Lipschitz transformations include: f + g, f ∧ g, f ∨ g, fg if F and G
are uniformly bounded, and 1/f if F is bounded away from zero.

Chaining Lemma

In this lecture we give a thorough treatment of the core of empirical process theory by proving the Chaining
Lemma (lemma 19.34 in van der Vaart). The presentation is based on section 19.6 in van der Vaart (1998).
We begin by stating two relevant lemmas. The first one, Bernstein’s inequality, represents a tightening of the
Hoeffding bound we previously discussed. This strengthening will be required for the following argument.

Lemma 19.32 (Bernstein’s inequality). For one function f and any x > 0,

P (|Gnf | > x) ≤ 2 exp

{

−
1

4

x2

Pf2 + x||f ||∞/
√

n

}

. (1)

Note that as in Hoeffding, the upper bound is twice the exponential of some function. Here, the Pf2 term in
the exponential accounts for something like the variance, whereas in Hoeffding there was an upper bound on
the variance through terms

∑

i(bi − ai)
2. An additional term has also been introduced to the denominator.

The next lemma will relate Bernstein’s inequality to finite collections.

1



2 The Chaining Lemma

Lemma 19.33. For any finite class F of bounded, measurable and square-integrable functions, with |F|
elements, we have

E(||Gn||F ) . max
f

||f ||∞√
n

log(1 + |F|) + max
f

||f ||P,2

√

log(1 + |F|). (2)

Here, we have adopted the notation . to express that the left hand side is less than the right hand side, up
to a universal multiplicative constant. The proof idea behind this Lemma lies in breaking the left hand side
into two pieces using the triangle inequality, and then applying Bernstein’s inequality to both.

We now turn to the Chaining Lemma. The motivation for this lemma lies in the difficulty of carrying out
an independent analysis of fluctuations for each element f of an uncountably infinite set of functions F . To
get control over the infinite set, we need to tie functions together to a finite number of grid cells. We can
introduce suitable structure on F via a multi-resolution grid. At the coarse top level very few cells partition
F ; at progressively deeper levels each grid cell is partitioned into a set of smaller cells. By choosing one
representative function for each grid cell, the fluctuations between any two functions in F can be related to
fluctuations along edges on the grid tree.

Lemma 19.34 (Chaining Lemma). Define Log x = 1∨ log(x) and a(δ) = δ/
√

Log N[](δ,F , L2(P )). For
any class F of functions f : X → R so that, for some common δ2, Pf2 ≤ δ2,∀f ∈ F , and F an envelope
function,

E(||Gn||F ) . J[](δ,F , L2(P )) +
√

nPF
{
F >

√
na(δ)

}
. (3)

Proof. We begin the proof by focussing on the first term on the right hand side. For |f | ≤ g by the triangle
inequality

|Gf | =
√

n|Pnf − Pf | (4)

≤
√

n(Pn|f | + P |f |) (5)

≤
√

n(Png + Pg). (6)

This implies that for an envelope function F

E
(
||Gnf

{
F >

√
na(δ)

}
||F

)
≤

√
nE

(
PnF

{
F >

√
na(δ)

}
+ PF

{
F >

√
na(δ)

})
(7)

= 2
√

nPF
{
F >

√
na(δ)

}
. (8)

This demonstrates the inequality for the second term on the right hand side. We continue the derivation on
||Gnf {F ≤

√
na(δ)} || and show that it is less than or equal to J[](δ,F , L2(P )). Since the set of remaining

functions we work with has shrunk, it has smaller bracketing number than F . For notational convenience,
continue by assuming that f ≤

√
na(δ),∀f ∈ F . At this point we turn to the multi-resolution structure

on F which we previously noted. Choose an integer q0 such that 4δ ≤ 2−q0 ≤ 8δ. Also choose a nested
sequence of partitions Fqi

of F indexed by integers q ≥ q0; that is, if at level q there are Nq disjoint sets,

then F = ∪
Nq

i=1Fqi
. Choose this nested sequence of partitions and measurable functions ∆qi

≤ 2F , so that

∑

q≥q0

2−q
√

Log Nq .

∫ δ

0

√

Log N[](ε,F , L2(P ))dε (9)

supf,g∈Fqi
|f − g| ≤ ∆qi

, P∆2
qi

< 2−2q. (10)

The functions ∆qi
are the difference between upper and lower brackets and act as envelopes.
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We continue by choosing a representative function within each cell of each level. Fix for each level q > q0

and each partition Fqi
one representative fqi

and define, if f ∈ Fqi

πqf = fqi
(Nearest neighbor function) (11)

∆qf = ∆qi
. (12)

Here is where F is attributed a finite representation. At scale q, πqf and ∆qf run over Nq functions as f

runs over F . Define

aq = 2−q/
√

Log Nq+1, (13)

Aq−1f = I
{
∆q0

f ≤
√

naq0
, . . . ,∆q−1f ≤

√
naq−1

}
, (14)

Bqf = I
{
∆q0

f ≤
√

naq0
, . . . ,∆q−1f ≤

√
naq−1,∆qf >

√
naq

}
. (15)

Now decompose the difference between any f and the representative πq0
f using the newly defined sets as a

telescoping sum,

f − πq0
f =

∞∑

q0+1

(f − πqf)Bqf +
∞∑

q0+1

(πqf − πq−1f)Aq−1f. (16)

We observe that either all of the Bqf are zero1 in which case the Aq−1f are 1 (we always have small
fluctuations). Alternatively, one Bq1

f = 1 for some q1 > q0 (and zero for all other q), in which case Aqf = 1
for q < q1 and Aqf = 0 for q ≥ q1 . In that last case we have a sequence of small fluctuations, followed by
one large fluctuation

f − πq0
f = (f − πq1

f) +

q1∑

q0+1

(πqf − πq−1f)Aq−1f. (17)

By the construction of partitions and our choice of q0 we have

2a(δ) =
2δ

√
Log N[](δ,F , L2(P ))

(18)

≤
2−q0

√
Log Nq0+1

(19)

= aq0
. (20)

This implies that ∆q0
f ≤ aq0

√
n and therefore Aq0

f = 1. Furthermore, nesting implies ∆qfBqf ≤
∆q−1fBqf ≤

√
naq−1. The last inequality holds if Bqf = 0 and also if Bqf = 1 by definition. It follows that

since Bqf is an indicator where ∆qf >
√

naq that
√

naqP (∆qfBqf) ≤ P (∆qfBqf)2 = P (∆qf)2Bqf ≤ 2−2q

by the choice of ∆qf . We now apply the empirical process Gn to both series on the right of the equation 16
and use the triangular inequality on the supremum over absolute values. Because |Gnf | ≤ Gng + 2

√
nPg

for |f | < g we get, by applying Lemma 19.33

E

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

q0+1

Gn(f − πqf)Bqf

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
F

≤

∞∑

q0+1

E||Gn∆qfBqf ||F +

∞∑

q0+1

2
√

n||P∆qfBqf ||F (21)

19.33

.

∞∑

q0+1

[

aq−1Log Nq + 2−q
√

Log Nq +
4

aq
2−2q

]

. (22)

We note that the third term arises in part from our earlier observation that P (∆qfBqf) ≤ 2−2q/
√

naq.
However, it was unclear in class where the additional factor of 2 stems from. All three terms in the infinite

1There is a typo in van der Vaart (1998) page 287, where the author states that “either all Bqf are 1”.
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sum will become essentially like the middle one, which we know from inequality 9 can be bounded by a
multiple of J[](δ,F , L2(P )). Thus we have bounded one more term.

To establish a similar bound for the second part of equation 16, note that there are at most Nq functions
πqf − πq−1f and at most Nq−1 indicators Aq−1f . Nesting implies |πqf − πq−1f |Aq−1f ≤ ∆q−1fAq−1f ≤√

naq−1. The L2(P ) norm of |πqf − πq−1f | is upper bounded by 2−(q+1). Now using Lemma 19.33 we find
that

E

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∞∑

q0+1

Gn(πqf − πq−1f)Aq−1f

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
F

.

∞∑

q0+1

[

aq−1Log Nq + 2−q
√

Log Nq

]

. (23)

As before, note that the first and second terms on the right are identical and that each can be bounded by
a multiple of J[](δ,F , L2(P )).

As the final step in this proof we need to establish a bound for terms πq0
f . Note that for the envelope

function F , we have |πq0
f | ≤ F . Also, recall that since early in the derivation we are only considering the

class of functions f {F ≤
√

na(δ)} where f ranges over F , so that F ≤
√

na(δ). Moreover,
√

na(δ) ≤
√

naq0

by a similar argument as in derivation 18-20. Recall also that one of the preconditions of this lemma is that
Pf2 < δ2,∀f ∈ F , so that in particular P (πq0

f)2 ≤ δ2. Applying Lemma 19.33 again, we find that

E||Gnπq0
f ||F . aq0

Log Nq0
+ δ

√

Log Nq0
. (24)

By the choice of q0 at the onset and inequality 9, both terms can be bounded by a multiple of J[](δ,F , L2(P )).

This concludes the proof of Lemma 19.34. We summarise briefly. The proof was carried out by using an
envelope function F to split the function space F into two sets. In inequality 8 we quickly saw that one set
gives rise to one of the terms in the final result. We then defined a multi-resolution tree on the remaining
subset of F so that we could consider fluctuations via suitably defined events Aq−1f and Bqf . In the
following we repeatedly applied Lemma 19.33 to yield inequalities 22, 23, and 24, each of which can be upper
bounded by a multiple of J[](δ,F , L2(P )). In the final result, these three parts are represented by one copy
of J[](δ,F , L2(P )).
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Asymptotics of Empirical Processes
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1

Lemma 1. (van der Vaart, 1998, lemma 19.24) Let F be P -donsker, and f̂n be a random sequence of

functions taking values in F s.t.
∫

(fn(x) − f0(x))
2dP (x)

P−→ 0

for some f0 in L2(P ), then we have

Gn(f̂n − f0)
P−→ 0,

and

Gnf̂n
d−→ GP f0

with Gn =
√
n(Pn − P ).

Proof. Sketch: Uses uniform continuity of sample paths of Gp with CMT.

2 An Example: Mean Absolute Deviation

Define mean absolute deviation

Mn =
1

n

∑

i

|Xi − X̄n|

Let F denote the unknown CDF. W.l.o.g, let Fx = 0. Let Fn|X − θ| = 1
n

∑

i |Xi − θ|. If Fx2 < ∞, and if
θ ∈ Θ for a compact Θ, then {|x− θ|} is F -Donsker (van der Vaart, 1998, example 19.7)

F (|x− X̄n| − |x|)2 ≤ |X̄n|2 P−→ 0

By Lemma 1, we have

Gn|x− X̄n| −Gn|x| P−→ 0 (1)

Consider √
n(Mn − F |x|) =

√
n(F |x− X̄n| − F |x|) +Gn|x| + oP (1), (2)

assume that θ 7→ F |x− θ| is differentiable at θ = 0, differentiate F |x− θ| at θ = 0 we have the derivative:

2F (0) − 1.

1



2 Asymptotics of Empirical Processes

Apply Delta Method on
√
n(F |x− X̄n| − F |x|), we have

√
n(F |x− X̄n| − F |x|) = −(2F (0) − 1)

√
n((x− X̄n) − x) + oP (1) (3)

= (2F (0) − 1)
√
nX̄n (4)

= (2F (0) − 1)
√
n(Fn − F )x+ oP (1) (5)

= (2F (0) − 1)Gnx+ oP (1). (6)

Therefore, we have

√
n(Mn − F |x|) = ((2F (0) − 1)x+ |x|) + oP (1) (7)

d−→ GP ((2F (0) − 1)x+ |x|). (8)

Thus, Mn is AN with mean 0 and variance equals to variance of (2F (0)−1)X1 + |X1|. We lose (2F (0)−1)X
term by not knowing the mean of X. When the mean and median are the same, 2F (0) − 1 = 0, in which
case we don’t incur any extra variance by having to estimate the location parameter.

3 AN of Z-estimators

Definition 2. A function ψθ(x) is Lipschitz if ∃ a function ψ̇(x) s.t.

||ψθ1
(x) − ψθ2

(x)|| ≤ ψ̇(x)||θ1 − θ2||

∀θ1, θ2 in some neighborhood of θ0 and Pψ̇2 ≤ ∞.

Theorem 3. (van der Vaart, 1998, Theorem 5.21) For each θ0 in an open subset of Euclidean space, let

ψθ(x) be Lipschitz. Assume P ||ψθ0
||2 ≤ ∞, Pψθ is differentiable at θ0 with derivative Vθ0

(note that it is

different from “ψθ is differentiable”). Let

Pnψθ̂n

= oP (n−1/2)( a “near zero”). (9)

Assume θ̂n
P−→ θ0 (consistency). Then we have

√
n(θ̂n − θ0) = −V −1

θ0

1√
n

∑

i

ψθ0
(xi) + oP (1),

and

θ̂n − θ0 is AN with zero mean and covariance V −1
θ0

(Pψθ0
ψ′

θ0
)V −T

θ0

Proof. (van der Vaart, 1998, example 19.7) shows that Lipschitz functions are P -Donsker. Apply Lemma 1
we have

Gnψθ̂n

−Gnψθ0

P−→ 0

By assumption that
√
nPnψθ̂n

= oP (1), we have

Gnψθ̂n

= −
√
nPψ

θ̂n

+ oP (1) (10)

=
√
nP (ψθ0

− ψ
θ̂n

) + oP (1), (11)

with Pψθ0
= 0 by definition. Apply Delta Method, or (van der Vaart, 1998, Lemma 2.12), we have

√
nVθ0

(θ0 − θ̂n) +
√
n oP (||θ̂n − θ0||) = Gnψθ0

+ oP (1). (12)
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By invertability of Vθo
, we have

√
n||θ̂n − θo|| ≤ ||V −1

θ0
||
√
n||Vθ0

(θ̂n − θ0)|| (13)

= OP (1) + oP (
√
n||θ̂n − θ0||). (14)

Inequality (14) is obtained by plugging (12) into (13) and using triangle inequality. Therefore, we have

θ̂n is
√
n− consistent. (15)

By (12) and (15), we have √
nVθ0

(θ̂n − θ0) = −Gnψθ0
+ oP (1). (16)

Multiply both side by V −1
θ0

to get the result.

References

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.



Stat210B: Theoretical Statistics Lecture Date: 3/8/2007

Lecture 15: Asymptotic Testing

Lecturer: Michael I. Jordan Scribe: Dapo Omidiran

Reading: Chapter 7 of van der Vaart (1998).

1 Asymptotic Testing

Setup: We are given:

• A parametric model: Pθ, θ ∈ Θ

• A null hypothesis: θ = θ0

• An alternative hypothesis: θ = θ1

Our test then consists of computing the log likelihood ratio:

λ = log

(∏

i pθ1
(Xi)

∏

i pθ0
(Xi)

)

,

and accepting the alternative hypothesis if λ is sufficiently large.

Example 1. (Normal location model)

Let Pθ = N(θ, σ2), with σ2 known. After some algebra, we see that

λ =
n

σ2
[(θ1 − θ0)X̄n − 1

2
(θ2

1 − θ2
0)].

We can study the distribution under each hypothesis.

Under θ0, we can use the WLLN to conclude:

λ
P−→ − n

σ2

1

2
(θ1 − θ0)

2 → −∞

Notice that this a good thing. Asymptotically, we will never reject the null hypothesis; our test is “consistent”.
However, this is also somewhat vacuous, as almost any reasonable test will give the same result.

We should instead look at the rates at which our test converges. One approach is to use large deviations
(pioneered by Hoeffding in the ’60s?) However, we won’t go that route. Instead, we will “shrink” θ towards
θ0 as n increases (e.g., θ1 = θ0 + h√

n
.)

In some sense, this
√

n behavior is the right shrinkage factor for “regular” data, such as iid data.

This approach was first developed for testing, but is applicable to estimation as well.

So, let’s study shrinking alternatives:

1



2 Lecture 15: Asymptotic Testing

Example 2. (Normal location model revisited)

λ = h
√

n X̄n−θ0

σ2 − h2

2σ2 = hZ̄n − h2

2σ2 (where Zn =
√

n X̄n−θ0

σ2

H0∼ N(0, 1

σ2 ))

Note that this is a quadratic in h. Hence:

λ ∼ N(− h2

2σ2
,
h2

σ2
)

The mean is - 1

2
the variance!

Is this behavior specific to the Normal distribution? Let’s check the exponential family:

Example 3. (Exponential Family)

pθ(x) = exp [θT (x) − A(θ)]

λ = hn− 1

2

∑

i

T (Xi) − n[A(θ0 + hn− 1

2 ) − A(θ0)]

= hn− 1

2

∑

i

T (Xi) − n[A′(θ0)hn− 1

2 +
1

2
A′′(θ0)h

2n−1 + o(n−1)]

= hZn − 1

2
h2A′′(θ0) + o(1)

Where Zn = n
1

2

∑

i T (Xi) − Eθ0
[T (Xi)] (As A′(θ0) = Eθ0

[T (Xi)]).

Asymptotically, the mean is again -1/2 the variance.

How much further can we go?

The key property is quadratic mean differentiability (QMD), essentially a notion of smoothness relevant for
asymptotic statistics.

In particular, we want a smoothness condition. However, we are constrained by the following:

• We want to avoid assuming that derivatives exist for all x (i.e., for each x, a derivative exists at each
value of θ)

• We also want to avoid explicit conditions on higher derivatives.

Solution: We will work with square roots of densities. Classical (Frechet) differentiability of
√

pθ (Again,
note that x is held fixed, and θ is the variable):

√
pθ0+h −√

pθ0
− hT ηθ0

(x) = o(||h||).

To weaken this somewhat stringent condition, we only ask that it hold in the quadratic mean:

Definition 4. QMD

Pθ is QMD at θ0 if
∫
(

√
pθ0+h −√

pθ0
− 1

2
hT ˙̀

θ0

√
pθ0

)2

dµ = o(||h2||)

for some function ˙̀
θ0

.
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Keep in mind that these (pθ0
, pθ, etc) are all functions of x. ˙̀

θ0
is not the derivative of some `θ0

, but is
instead some function.

Why do we define things in this weird way? If classical derivatives do exist:

∂

∂θ

√
pθ =

1

2

√
pθ

∂

∂θ
log pθ.

So we associate ˙̀
θ is the score function, in this case.

Theorem 5 (Theorem 7.2, van der Vaart (1998) p94). If Θ is an open subset of RK and Pθ, θ ∈ Θ is QMD.

Then:

• Pθ
˙̀
θ = 0 (Like score functions),

• and Iθ = Pθ
˙̀
θ
˙̀T
θ exists (Fisher information),

• and λ =

∏

i

pθ+
hn
√

n

(Xi)

∏

i

pθ(Xi)
= 1√

n

∑

i hT ˙̀
θ(Xi) − 1

2
hT Iθh + opθ

(1).

Where hn → h 6= 0. Note that this implies that:

λ
d−→ N(−1

2
hT Iθh, hT Iθh) .

Proof. (Partial Proof) Let

pn = pθ +
hn√

n
,

p = pθ ,

g = hT ˙̀
θ .

By the definition of QMD, it follows that:
∫

(
√

pn −√
p − 1

2
g
√

p)2dµ = o(n−1) ,

=⇒ n1/2(
√

pn −√
p)

QM−→ 1

2
g
√

p ,

=⇒ √
pn

QM−→ √
p .

We recall that
∫

fngn →
∫

fg if fn → f and gn → g.

By continuity of the inner product:

Pg =

∫

gpdµ =

∫

1

2
g
√

p2
√

pdµ = lim
n→∞

∫ √
n(
√

pn −√
p)(

√
pn +

√
p)dµ = 0 .

Define:

Wn,i = 2

(

√

pn(Xi)
√

p(Xi)
− 1

)

We use the fact that log (1 + x) = x − 1

2
x2 + x2R(x) (where R(x) → 0 as x→ 0) to conclude that:
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log
∏

i

pn(Xi)/p(Xi) = 2
∑

i

log(1 +
1

2
Wn,i) =

∑

i

Wn,i −
1

4

∑

i

W 2
n,i +

1

2

∑

i

W 2
i R(Wn,i) .

As:

Ep

(

∑

i

Wn,i

)

= 2n

(
∫ √

pn
√

pdµ − 1

)

= −n

∫

(
√

pn −√
p)2dµ → −

∫

1

4
g2pdµ ,

where Pg2 =
∫

1

4
g2pdµ = hT (

∫

˙̀
θ
˙̀T
θ dP )h = hT Iθh.

Look at the remainder of the proof in van der Vaart (1998).
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Lemma 1 (Sufficient conditions for QMD). Fix θ0 ∈ Θ\∂Θ.

• assume p
1/2
θ is an absolutely continuous function of θ in some neighbourhood of θ0 for µ-almost all x.

• assume the derivative p′θ at θ0 exists for µ-almost all x.

• asume that the Fisher information exists and is continuous at θ0.

Then pθ is QMD.

Example 2. • exponential families

• location families pθ(x) = f(x−θ) where f1/2 is absolutely continuous and f ′ exists almost everywhere.

Note: I = −E

(

(

f ′(x−θ)
f(x−θ

)2
)

exists!

• e.g. the Cauchy location model f(x) = 1
π

1
1+x2

• e.g. the Laplace location model f(x) = 1
2e−|x|

Example 3. A family that is not QMD: The Uniform[0, θ] distributions. Proof:

∫

(√
n
(

p
1/2

θ+h/
√

n
(x) − p

1/2
θ (x)

))2

≥ n

(

∫ θ+h/
√

n

θ

1

θ + h/
√

n
dx

)

→ ∞ as n → ∞

Reminder of the definition of absolute continuity: Q << P iff P (A) = 0 ⇒ Q(A) = 0, ∀A

Theorem 4 (Radon Nikodym).

Q << P ⇒ ∃g : Q(A) =

∫

A

g dP

Write: g =: dQ

dP

Likelihood ratio=Radon Nikodym derivative=g

Lemma 5 (Lemma 6.2, van der Vaart (1998) p86). Let P and Q have densities p and q w.r.t. µ.

Then we can write:

Q = Qa + Q⊥, where (1)

Qa(A) = Q(A ∩ p > 0) (2)

Q⊥(A) = Q(A ∩ p = 0) (3)

With this notation we have:

1



2 Quadratic Mean Differentiability and Contiguity

1. Qa << P,Q⊥⊥P

2. Qa(A) =
∫

A
(q/p)dP for all measurable sets A

3. Q << P iff Q(p = 0) = 0 iff
∫

(q/p)dP = 1

Corollary 6 (change of measure). Let Q << P , let P X,V denote the law of the pair (X,V ) = (X, dQ

dP
)

under P . Then

Q(X ∈ B) = EP

[

1B(X)
dQ

dP

]

=

∫

B×R

vdPX,V (x, v)

Definition 7 (Contiguity). Qn is contiguous with respect to Pn, in symbols Qn/Pn, if ∀{An} : Pn(An) → 0
implies Qn(An) → 0

Example 8 (Absolute continuity does not imply contiguity). Let Pn = N(0, 1), Qn = N(ξn, 1),
ξn → ∞, An = {x : |x − ξn| < 1}. Then Qn << Pn but not Qn / Pn.

Example 9 (Contiguity does not imply absolute continuity). Let Pn = Uni[0, 1], Qn = Uni[0, θn],
θn → 1, θn > 1. Then Qn / Pn but not Qn << Pn.

EPn

[

dQn

dPn

]

=

∫

qn

pn

pndµ =

∫

pn>0

qndµ = Qn{x : pn > 0} ≤ 1

Hence dQn

dPn
is uniformly tight. Prohorov’s theorem then implies that for all subsequences of dQn

dPn
there exists a

further weakly converging subsequence. As the following lemma shows, the limit points determine contiguity.

Lemma 10 (Le Cam’s first lemma, Lemma 6.4, van der Vaart (1998) p88). The following statements

are equivalent:

• Qn / Pn

• If dQn

dPn

Pn
 V along a subsequence, then EV = 1

• Tn
Pn→ 0 implies Tn

Qn→ 0

Corollary 11 (Asymptotic log normality, van der Vaart (1998) p89). Suppose dQn

dPn

Pn
 exp

[

N(µ, σ2)
]

.

Then Qn / .Pn iff µ = − 1
2σ2.

Proof. Idea of proof: Let Z ∼ N(µ, σ2). By Le Cam’s first lemma, we need EeZ = 1 for Qn / Pn. But
EeZ = exp(µ + 1

2σ2). (Characteristic functions!)

Example 12. Let Pn = N(0, 1), Qn = N(ξn, 1). Then dQn

dPn
= exp[ξnx − 1

2ξ2
n]. This converges if ξn → ξ

with |ξ| < ∞ which yields exp[ξx − 1
2ξ2] in the limit, hence we get contiguity for |ξ| < ∞

Example 13. Let Xi
i.i.d.∼ N(ξ, 1), let Pn be the joint distribution for ξ = 0, i = 1 . . . n and Qn for

ξ = ξn, i = 1 . . . n. Then log dQn

dPn
= ξn

∑

i Xi − nξ2

n

2 , hence dQn

dPn
∼ exp{N(−nξ2

n

2 , nξ2
n)}. Therefore we need

ξn = O(n−1/2).

Example 14 (QMD families, Theorem 7.2, van der Vaart (1998) p94).

log
dPθ0+h/

√
n

dPθ0

=
1√
n

∑

i

ht l̇θ0
(Xi) −

1

2
htIθ0

h + oPθ0
(1)

We get mean = − 1
2 variance in the limit, i.e. for qmd families Pθ0+h/

√
n / Pθ0

.
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Stat210B: Theoretical Statistics Lecture Date: March 15, 2007

Change of Measure and Contiguity

Lecturer: Michael I. Jordan Scribe: Aria Haghighi

In the last lecture, we discussed contiguity of measure as the analogue of absolute continuity for asymptotic
statistics. In this lecture, we will use contiguity to establish results change-of-measure results for statistical
hypothesis testing. We briefly recall the definition of contiguity here,

Definition 1 (Contiguity). Let Qn and Pn be sequences of measures. We say that Qn is contiguous w.r.t
to Pn, denoted Qn ⊳ Pn, if for each sequence of measurable sets An,1 we have that

Pn(An) → 0 ⇒ Qn(An) → 0

We also showed that Qn ⊳ Pn if and only if whenever the Radon-Nikodym derivative, dQn

dPn
, converges weakly

under Pn to a random variable V (i.e.dQn

dPn

Pn

 V ), then we have EV = 1.2 We also saw that a distribution
being in the Quadratic Mean Derivative (QMD) family implied contiguity for shrinking alternatives in
statistical testing. Formally, for QMD families Pθ, we have that Pn

θ0+
h√
n

⊳ Pn
θ0

(by Theorem 7.2 in van der

Vaart (1998) pg. 94). We now state an important result regarding the joint distribution of test statistics
and the likelihood ratio:

Lemma 2 (Theorem 6.6 in van der Vaart (1998) pg. 90). Let Pn and Qn be sequences of measures such
that Qn ⊳ Pn. Let Xn be a sequence of test statistic random variables. Suppose that we have,

(

Xn,
dQn

dPn

)
Pn

 (X,V )

for limiting random variables X and V . Then we have that L(B) = E1B(X)V defines a measure. Further-

more, Xn
Qn

 L.

Proof. By contiguity, we have that EV = 1, which in turn implies that L must be a probability measure.

Using Portmanteau’s lemma and a standard induction over measurable functions gives that Xn
Qn

 L.

Typically, we have that (X,V ) is bi-variate normal. In this case we have a very appealing result about the
asymptotic distribution of the test statistic under Qn.

Lemma 3 (LeCan’s Third Lemma, pg. 90 van der Vaart (1998)). Suppose that

(Xn, log
dQn

dPn
)

Pn

 N

((
µ

− 1
2σ

2

)

,

(
Σ τ

τT σ2

))

,

where τ and σ are scalars.3 Then we have that

Xn
Qn

 N (µ+ τ,Σ)

1Where measurable means with respect to the underlying Borel set of Qn, which may change with n.
2Note that by Prohorov’s theorem that dQn

dPn
has a convergent subsequence so the theorem isn’t vacuous.

3Note that we have that the mean of log dQn

dPn
must be −

1

2
σ2.

1



2 Change of Measure and Contiguity

This lemma shows that under the alternative distribution Qn, the limiting distribution of the test statistic
Xn is also normal but has a mean shifted by τ = limn→∞ Cov(Xn, log dQn

dPn
).

Proof. Suppose that (X,W ) be the limiting distribution on the RHS of the above. By the continuous
mapping theorem we have that,

(Xn,
dQn

dPn
)

Pn

 (X, eW )

Since we have that W ∼ N (− 1
2σ

2, σ2), we have that Qn ⊳ Pn. We have by theorem 6.4 then, that Xn

converges weakly to L under Qn, where L = E1B(X)eW . We are going to determine the distribution of L
via it’s characteristic function,4

∫

eitT xdL(x) = E
[

eitT X+W
]

= E
[

eitT X+i(−i)W
]

= exp

{

itTµ−
1

2
σ2 −

1

2
(tT ,−i)

(
Σ τ

τT σ2

)(
t

−i

)}

= eitT (µ+τ)− 1

2
tT Σt

⇒ L ∼ N (µ+ τ,Σ)

where the last line is obtained by recognizing the form of the RHS of the previous equation as the charac-
teristic function of the normal distribution.

Example 4 (Asymptotically Linear Statistics). Suppose that Pθ is a family of QMD measures. We are

interested in the asymptotic behavior of
√
n(θ̂n − θ0). We will consider the following setting,

√
n(θ̂n − θ0) =

1
√
n

∑

i

ψθ0
(Xi) + oP (1)

where Varθ0
ψθ0

(X) = τ2 < ∞ and Eθ0
ψθ0

= 0. Furthermore, we assume that under H0 (i.e. when θ = θ0),
we have by the CLT that,

√
n(θ̂n − θ0)

d
−→ N (0, τ2)

Since Pθ is in the QMD family, we have the following expression,
(

√
n(θ̂n − θ0),

dPθ0+
h√
n

dPθ0

)

=

(

1
√
n

∑

i

[

ψθ0
(Xi), h

T ℓ̇θ0
(Xi)

]

+

[

0,−
1

2
hT Iθ0

h

]

+ oP (1)

)

Using the bivariate CLT, we have that the RHS above converges to a normal distribution where the covariance

between
√
n(θ̂n − θ0) and

dP
θ0+

h√
n

dPθ0

is given by τ = Covθ0
(ψθ0

(X), hT ℓ̇θ0
(X)).

Our next example builds upon the previous one:

Example 5 (T-Statitic for Location Families). Suppose that f(X − θ) is a density for a QMD location
family. We are interested in testing θ0 = 0. We define the t-statitic as,

tn =
√
n
Xn

Sn
=

√
n
Xn

σ
+ oPθ0

(1)

4Which uniquely determines a distribution.



Change of Measure and Contiguity 3

where the second equality uses a delta method argument. This yields that the t-statistic is an asymptotic
linear statistic as in example 4. We are interested in the behavior of tn under the alternative θh = h

√
n
.

Recall that, ℓ̇θ0
= − f ′(x)

f(x) . Using example 4 and the fact that ψθ0
(Xi) = Xi

σ , we have that

τ = −
h

σ
Cov(Xi,

f ′θ0
(Xi)

fθ0
(Xi)

)

= −
h

σ

∫

x
f ′

f
df = −

h

σ

∫

xf ′dx

=
h

σ
, using integration by part.

We therefore have that under shrinking alternatives, tn

h√
n

 N (h
σ , 1).

Example 6 (Sign Test for Location Families). We suppose again that f(X−θ) is a density for QMD family
of distributions. We also suppose that f(·) is continuous at the origin and that Pθ=0(X > 0) = 1

2 . We define
the sign statistic,

sn =
1
√
n

∑

i

(1X>0 −
1

2
)

We again suppose we are interested in testing whether θ0 = 0. Under the alternative hypothesis θh = h
√

n
,

we have

τ = −hCovθ0
(1X>0,

f ′(X)

f(X)
)

= −h

∫ ∞

0

f ′(X)dx = hf(0)

Under the alternative hypothesis, the asymptotic distribution of sn is normal with mean hf(0).
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