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1 Introduction

Biological systems and problems arising in medicine and public health are often complex.
To be understood quantitatively we reduce complexity by making simplifying assumptions.
This replaces the system under investigation by an imaginary model which is simple
enough to be described mathematically and verified experimentally. The results of any
mathematical and statistical analysis will be applicable to the imaginary model. The results
will be applicable to the original biological system only to the extent that the assumptions
are reasonable.

Because modern public health and medical research focuses on quantitative relationships
we use mathematical and statistical models to develop hypotheses subject to experimental
verification. Such models ought not to be taken too lightly or too seriously, they are simply
inevitable tools of modern research and not too modern at that:

When Issac Newton communicated the manuscript of his Methodus fluxionum to
his friends in 1669 he furnished science with its most powerful and subtle instrument
of research.

J.W. Mellor (1931) Higher Mathematics, Longmans, Greena and Company

Since mathematical work is inevitable we need to be aware of some basic principles:

(1) Mathematical derivations of any use take much time and work and thought.

The first thing to be attended to in reading any algebraic treatise is the gaining
of a perfect understanding of the different processes there exhibited, and of their
connection with each other. This cannot be attained by a mere reading of the
book, however great the attention which may have been given. It is impossible
in a mathematical work to fill up every process in the manner in which it must
be filled up in the mind of the student before he can be said to have completely
mastered it. Many results must be given of which the details are suppressed, such
as the additions, multiplications, extractions of square roots, etc. with which the
investigations abound. These must not be taken in trust by the student, but must
be worked by his own pen, which must not be out of his hand, while engaged in
any algebraical process.

DeMorgan (1831) On the Study and Difficulties of Mathematics
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(2) Mathematical work is either correct or incorrect which implies that we must constantly
ask whether the result makes sense.

(3) Terms must be defined clearly and precisely.

(4) Symbols should be selected to add to clarity, not to detract from it.

(5) Complicated expressions which occur frequently should be replaced by a single symbol.

(6) Be consistent in the use of symbols.

(7) Check all equations for misprints, etc. caveat emptor !

1.1 Numbers and Dimensions

Since modelling involves quantitative relationships we note several general properties of
numbers. Numbers can be described in two general ways, quantitatively or qualitatively.

Quantitative: Quantitative descriptions of numbers include the actual numerical value and
its classification into either a discrete or continuous type.

• The discrete classification includes the nominal numbers in which the number
merely serves as a label and the ordinal numbers which define an ordered label.
Nominal number are not subject to the usual arithmetic operations such as ad-
dition, subtraction, multiplication and division and there is no ordering. Ordinal
numbers may be ordered but no other algebraic operations are permitted.

• Continuous numbers include interval and ratio numbers. Interval numbers may
be added or subtracted as well as ordered but not multiplied or divided. Ratio
numbers are subject to all arithmetic operations and ordering.

Qualitative: Qualitative descriptions of numbers specify their dimension. Analysis of the
dimensions of numbers (called dimensional analysis) provides an extraordinarily simple,
yet powerful, method of checking the correctness of models. Any equation in a model
must be dimensionally correct. That is, it must satisfy the following conditions:

(1) Quantities added and subtracted and the result of such operations must have the
same dimensions.

(2) Quantities equal to each other must have the same dimension.
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(3) Quantities may be multiplied or divided without regard to dimension but the
result must have dimension satisfying (2).

(4) Dimensions of a qunatity are independent of its magnitude.

(5) Numbers such as π, e and probabilities do not have a dimension.

(6) Dimensions of a quantity are not changed by multiplication by a dimensionaless
number.

The two properties of numbers are related by the folowing two principles:

(1) The units of measurement must not change in any set of calculations

(2) In empirically derived equations (e.g. regression equations) the coefficients implicitly
have units equal to

response dimension

covariate dimension

2 Numbers

The different types of numbers are as follows:

(1) The natural numbers N = {1, 2, . . .}

(2) The integers I = {. . . ,−2,−1, 0,+1,+2, . . .}

(3) The rational numbers R = {x : x = p/q , p, q ∈ I , q 6= 0}

(4) The irrational numbers needed to solve certain equations e.g. (x2 = 2). Includes
numbers such as

√
2, e, π, log(3)

(5) The real numbers R which include the rational numbers and the irrational numbers.

(6) The complex numbers needed to solve equations such as z2 = −1. They are used in
statistics in the analysis of time series data. They are discussed in the appendix.
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3 Sets

3.1 Definitions

Definition 3.1 A set is a collection of points or elements.

(1) The empty set ∅, is the set containing no points.

(2) All sets under consideration are assumed to consist of points of a fixed non-empty set
Ω (called a space).

(3) Points of Ω are denoted by ω or x

(4) Capital letters such as E1, E2, . . . denote sets and {ω} denotes the set consisting of the
single point ω.

(5) If ω is a point in the set E we write ω ∈ E while if ω is not a point in the set E we
write ω 6∈ E.

(6) To describe a set E we write
E = {ω : S(ω)}

i.e. E is the set of all points such that the statement S(ω) is true. Alternatively we
shall write {. . . . . .} where all points in E are written down inside the brackets.

Definition 3.2 A set of sets is called a class. Classes are denoted by script letters e.g. W .
The set of all subsets of Ω is called the power set of Ω and is denoted by 2Ω.

Definition 3.3 (set inclusion) A set E is said to be contained in a set F if ω ∈ E implies
ω ∈ F . This relation is written E ⊂ F .

Note that ∅ ⊂ E ⊂ Ω for every set E and that the relation of set inclusion is reflexive and
transitive i.e.

E ⊂ E ; E ⊂ F, F ⊂ G⇒ E ⊂ G

Definition 3.4 (set equality) Sets E and F are said to be equal if E ⊂ F and F ⊂ E.
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Note that set equality is reflexive, symmetric and transitive i.e.

E = E, E = F ⇒ F = E and E = F, F = G⇒ E = G

Definition 3.5 (difference of two sets ) The difference of two sets E − F is the set defined
as

E − F = {ω : ω ∈ E and ω 6∈ F}

Definition 3.6 complement The complement of E is denoted by Ec and is equal to Ω−E.

Definition 3.7 (intersection of two sets) The intersection of two sets E and F is defined as

E ∩ F = {ω : ω ∈ E and ω ∈ F}

Definition 3.8 (mutually exclsive) If E∩F = ∅, E and F are said to be disjoint or mutually
exclusive.

Definition 3.9 (union of two sets) The union of two sets E and F is defined as

E ∪ F = {ω : ω ∈ E or ω ∈ F}

Definition 3.10 More generally if T is any set then

∪t∈TEt = {ω : ω ∈ Et for some t ∈ T}

∩t∈TEt = {ω : ω ∈ Et for all t ∈ T}

3.2 Properties of Set Operations

(1) (E ∪ F ) ∪G = E ∪ (F ∪G) and (E ∩ F ) ∩G = E ∩ (F ∩G)

(2) E ∪ F = F ∪ E and E ∩ F = F ∩ E

(3) (E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G) and E ∪ (F ∩G) = (E ∪ F ) ∩ (E ∪G)

(4) E ∪ Ec = Ω and E ∩ Ec = ∅
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(5) (E ∪ F )c = Ec ∩ F c

(6) E − F = E ∩ F c

(7) (Ec)c = E

(8) Ωc = ∅ and ∅c = Ω

(9) E ⊂ F ⇒ F c ⊂ Ec

(10) (E1 × E2) ∩ (E3 × E4) = (E1 ∩ E3)× (E2 ∩ E4)

(11) (E × F )c = (Ec × F c) ∪ (E × F c) ∪ (Ec × F )

(12) (∪t∈TEt)c = ∩t∈TEt

(13) (∩t∈TEt)c = ∪t∈TEt

4 Counting and Combinatorics

Definition 4.1 (n-tuple) If E1, E2, . . . , En are sets an n-tuple is an element of the form

(a1, a2, . . . , an) where a1 ∈ E1, a2 ∈ E2, . . . , an ∈ En

ai is called the ith coordinate of the n-tuple.

Two n-tuples are said to be equal if each coordinate of one is equal to the corresponding
coordinate of the other.

Note: An ordered pair with first coordinate a and second coordinate b is an element of
the form (a, b). Also note that (a, b) = (c, d) if and only if a = c and b = d. n-tuples are
natural generalizations of this concept. A formal (set) definition of an ordered pair is

(a, b) = {{a}, {a, b}}

.

Definition 4.2 (Cartesian product) If E1, E2, . . . , En are sets then their Cartesian product
is defined as

E1 × E2 × · · · × En = {(ω1, ω2, . . . , ωn) : ω1 ∈ E1, ω2 ∈ E2, . . . , ωn ∈ En}
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Definition 4.3 A set will be said to be:

(1) finite if its elements can be put into a one to one correspondence with the integers
1, 2, . . . , n for some finite integer n.

(2) denumerable if its elements can be put into a one to one correspondence with the
natural numbers N where N = {1, 2, 3, ...}

(3) non-denumerable otherwise.

Result 4.1 Elementary Counting Rules

(1) Given two sets A and B having m and n elements respectively there are m×n ordered
pairs of the form (ai, bj) where ai ∈ A and bj ∈ B

(2) Given r sets A1, A2, . . . , Ar containing m1,m2, . . . ,mr elements respectively, there are
m1 ×m2 × · · · ×mr r-tuples of the form

(a1, a2, . . . , ar); ai ∈ Ai for i = 1, 2, . . . , r

(3) A permutation of a set containing n elements is an arrangement of the elements of
the set to form an n-tuple. There are n! permutations of a set containing n elements
where n! is defined as n(n − 1) · · · 3 · 2 · 1. By convention 0! = 1. This convention is
related to the Gamma function.

(4) Given a set containing n elements the number of subsets of size x is given by(
n
x

)
=

n!

x!(n− x)!
=

(n)x
x!

where

(n)x = (n− x+ 1) · · ·n =
x−1∏
i=0

(n− i)

This expression is read as n choose x and is called the number of combinations of n
items taken x at a time.

(5) Given a population of size N there are

(i) Nn samples of size n with replacement.

(ii) (N − n+ 1)× · · · ×N ≡ (N)n samples of size n without replacement.
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4.1 Occupancy Numbers

Consider N urns and n balls. Assume the urns are distinguisable, numbered 1, 2, . . . , N

(i) The balls can be distinguishable (d) or not (d)

(ii) The urns can contain more than one ball, called an exclusion property (e) can contain
at most one ball, (e) can contain more than one ball.

The occupancy problem is to determine the number of ways in which the n balls can be
placed (occupy) in the urns.

Case 1 : Distinguishable balls, no exclusion

Od,e(n,N) = Nn

Case 2 : Distinguishable balls, exclusion

Ode(n,N) = (N)n

Case 3 : Non-distinguishable balls, no exclusion

Od,e =

(
N + n− 1

n

)
Case 4 : Non-distinguishable balls, exclusion

Od,e(n < N) =

(
N

n

)
All of the occupancy problems are easy except for Case 3. Here we argue that

N ways to place the first ball
(N + 1) ways to place the second ball
...................................................
(N + n− 1) ways to place the nth ball

This assumes that the ordering within an urn is important. To remove this divide by n! to
get

Od,e =
(N + n− 1)n

n!
=

(
N + n− 1

n

)
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5 Functions

5.1 Introduction

Definition 5.1 If A and B are any two sets then any rule which assigns to each x ∈ A a
unique y ∈ B is called a function on A to B.

(1) We denote a function on A to B by a letter, say f , and write

f : A 7→ B

(2) The value of a function at a point x ∈ A will be denoted by f(x).

(3) The set A is called the domain of f and B is called the codomain of f .

(4) The range of f is the set Rf defined by

Rf = {y : y = f(x) for some x ∈ A}

(5) If f : A 7→ B and g : B 7→ C are two functions then the composite of g with f , g ◦ f ,
is the function mapping A to C defined by g ◦ f(x) = g(f(x)) for each x ∈ A

Definition 5.2 Indicator function The function IE defined by

IE(x) =

{
1 x ∈ E
0 x 6∈ E

is called the indicator function of the set E.

The following are some properties of indicator functions:

(1) IE ≤ IF if and only if E ⊂ F

(2) E = F if and only if IE = IF

(3) IE∩F = 0 if and only if E ∩ F = ∅

(4) I∅ = 0, IΩ = 1

(5) IEc = 1− IE

(6) I∩ni=1Ei
=
∏n

i=1 IEi

(7) I∪ni=1Ei
=
∑n

i=1 IEi if Ei ∩ Ej = ∅ for i 6= j
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6 Sequences and Series

Definition 6.1 A sequence of real numbers is a function from the set of natural numbers
N = {1, 2, 3, . . .} to the set of real numbers. We denote a sequence of real numbers by
{yn : n ∈ N} or simply by {yn}. Similarly a sequence of complex numbers is denoted by
{zn : n ∈ N} or by {zn}

6.1 Limits of Sequences

A sequence is said to have a limit c as n tends to infinity if the terms of the sequence are
“close” to c for large n. A more precise definition is the following:

Definition 6.2 A sequence of real numbers {yn} is said to converge to the limit c as n tends
to infinity if for every ε > 0 there exists an integer Nε such that n ≥ Nε implies

| yn − c |< ε

We write limn→∞ yn = c or yn → c when {yn} converges to c

Definition 6.3 A sequence of real numbers is said to be monotone increasing if xn ≤ xn+1

for all n and monotone decreasing if xn ≥ xn+1 for all n. In either case the sequence is said
to be monotone.

Definition 6.4 A sequence of real numbers is bounded above (below) if there exists a real
number B (b) such that yn < M for all n (yn > b for all n. The sequence is bounded if it is
bounded above and below.

Results:

◦ A monotone increasing sequence (decreasing) sequence which is bounded above (below)
has a limit.

◦ If limn→∞ xn = c and limn→∞ yn = d then

lim(xn+yn) = c+d lim(xnyn) = cd if c 6= 0 and yn 6= 0 for all n then lim 1/yn) = 1/c

◦ (Squeeze Theorem) If xn ≤ yn ≤ zn for all n and lim xn = c, lim zn = c then lim yn = c
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6.2 Some Particular Sequences

(1) For any real number a let xn = an for n an integer, then

(a) xn converges to 0 if | a |< 1

(b) xn converges to 1 if a = 1

(c) xn is bounded but does not converge if a = −1

(d) xn is not bounded and hence does not converge if | a |> −1

(2) (geometric series) For any real number a let xn = 1 +a+a2 + · · ·+an for n an integer.
Then xn converges to 1/(1− a) if | a |< 1 and does not converge otherwise .

(3) For any real number a let xn = 1 + a + (a2/2!) + · · · + (an/n!) for n an integer, then
xn converges to ea.

(4) For any real number a let xn = (1 + a
n
)n for n an integer, then xn converges to ea.

6.3 o,O Notation for Sequences

Definition 6.5 Write
sn ≺ tn ⇐⇒ lim

n→∞

sn
tn

= 0

We say that sn is of smaller order than tn. We also write

sn = o(tn) if sn ≺ tn

and say that sn is “little o” of tn.

Result 6.1 ≺ is transitive i.e.

If sn ≺ tn and tn ≺ un then sn ≺ un

or
sn = o(tn) and tn = o(un) =⇒ sn = o(un)

Result 6.2
1 ≺ ln[ln(n)] ≺ ln(n) ≺ nε ≺ nc ≺ nln(n) ≺ cn ≺ nn ≺ cc

n

where 0 < ε < 1 < c
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A useful notation for sequences is provided by the “little o”- “big O” notation.

Definition: If {an} and {bn} are two sequences of real numbers we write

• an = O(bn) read as “an is big O of bn” if there exists a positive number K and an
integer NK such that n ≥ NK implies

| an |≤ K | bn |

• an = o(bn) read as “an is little o of bn” if for any ε > 0 there exists an integer Nε such
that n ≥ Nε implies

| an | ≤ ε | bn |

• We use o and O to compare the magnitude or order of two sequences.

6.4 Properties of o, O notation:

(1) A finite number of initial terms does not matter

(2) If c is a constant the statements

an = O(bn) and an = O(cbn)

an = o(bn) and an = o(cbn)

are equivalent. In particular the sign of an o or O term can be ignored.

(3) an = o(1) means that limn→∞ an = 0

(4) an = O(1) means that an is bounded.

(5) Multiplication of o and O terms obey the following rules

(a) O(an)O(bn) = O(anbn)

(b) o(an)o(bn) = o(anbn)

(c) o(an)O(bn) = o(anbn)
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(6) When o and O terms are added, the order of magnitude of the sum is equal to the
largest order of magnitude of the individual terms provided that the number of terms
added does not depend on n. Thus

o(1) + o(n− 1) = o(1)

o(n− 1) + o(n− 2) = o(n− 1)

O(n− 1) +O(n− 2) = O(n− 1)

(7) The sequence 1/n+ 1/n+ · · ·+ 1/n = an = 1 shows that the order of magnitude of a
sum is not provided by the largest order of magnitude of the individual terms (which
is 1/n) if the number of terms depends on n.

6.5 Infinite Series

Definition 6.6 Let {an} be a sequence of real numbers. Then

∞∑
n=1

an

is called an infinite series.

Definition 6.7 Sn = a1 + a2 + · · ·+ an is called the nth partial sum of the infinite series.

(1) If limn→∞ Sn = S the infinite series
∑∞

n=1 an is said to converge with sum S. Otherwise∑∞
n=1 an is said to diverge.

(2) The sum, S, of an infinite series is unique.

(3) A series of (real or complex) converges absolutely if
∑∞

n=0 |zn| converges.

Results:

◦ ex = exp{x} =
∑∞

n=0 x
n/n! converges absolutely for all x
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7 Real Valued Functions, Limits and Continuity

Definition 7.1 A function whose domain is a set of real numbers (usually an interval) and
whose range is also a set of real numbers will be called a real valued function.

7.1 Limits of Real Valued Functions

7.1.1 Limit of a Real Valued Function at a Point

Definition 7.2 The limit Lf (x0), written as

lim
∆→0

f(x0 + ∆)

of a function f at x0, if it exists, is that number Lf (x0) such that |f(x0)−Lf (x0)| is “small”
whenever |x− x0| is small.

A more precise definition of limit is as follows:

Definition 7.3 If S is a set of real numbers a point c in S is said to be adherent to S if for
every δ > 0, there is an x ∈ S satisfying | x− c |< δ.

Definition 7.4 Let S be a set of real numbers, c be adherent to S and let f map S into R.
We say that f(x) converges to ` as x tends to c if for every ε > 0 there exists a δ > 0 such
that

x ∈ S and |x− c| < δ ⇒ |f(x)− `| < ε

We say that f(x) tends to ` as x tends to c or ` is the limit of f at c or f has limit ` at
c and write

lim
x→c

f(x) = `

Theorem 7.1 f has limit ` at c if and only if limn→∞ f(xn) = ` for every sequence {xn}
such that

lim
n→∞

xn = c
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7.1.2 Examples of Limits

In these examples the set S is the set of all real numbers and x0 is any real number

(1) f(x) = c = constant Lf (x0) = c
(2) f(x) = a+ bx , a, b constant Lf (x0) = a+ bx0

(3) f(x) = ex Lf (x0) = ex0

(4) f(x) = cos(x) Lf (x0) = cos(x0)
(5) f(x) = sin(x) Lf (x) = sin(x0)
(6) f(x) = c h(x) , c constant Lf (x0) = cLh(x0)
(7) f(x) = g(x)± h(x) Lf (x0) = Lg(x0)± Lh(x0)
(8) f(x) = g(x)h(x) Lf (x0) = Lg(x0)Lh(x0)
(9) f(x) = g(x)/h(x) Lf (x0) = Lg(x0)/Lh(x0) provided h(x) 6= 0
(10) f(x) = g ◦ h(x) Lf (x0) = Lg(Lh(x0))

7.2 o,O Notation for Real Valued Functions

The “little o”, “big O” notation can be used for real valued functions as the definition below
shows.

Definition:

• a(x) = O(b(x)) as x → c if for any sequence {xn} such that limxn = c we have
a(xn) = O(b(xn)).

• a(x) = o(b(x)) as x → c if for any sequence {xn} such that limxn = c we have
a(xn) = o(b(xn)).

7.3 Continuous Real Valued Functions

7.3.1 Definitions

Definition 7.5 The function f is continuous at x0 if Lf (x0) = f(x0) A more precise defini-
tion follows.

Definition 7.6 Let S be a set of real numbers, c ∈ S and let f : S 7→ R. f is said to be

c:/mathematics/mathforbiostatistics.tex



16 July 10, 2008

continuous at c if
lim
x→c

f(x) = f(c)

i.e. if f is continuous at c if for every ε > 0 there exists a δ > 0 such that

|x− c| < δ ⇒ |f(x)− f(c)| < ε

Definition 7.7 A function is said to be continuous on S if it is continuous at every point
in S.

7.4 Exponentials and Logarithms

Definition 7.8 An exponential is a function of the form y = ax where a is called the base
and x is called the exponent.

If a is a positive constant the following defines the exponential function for any positive
constant a

(i) If x is a positive integer n then

a · a · · · a︸ ︷︷ ︸
ntimes

= an

(ii) If x = 0 then a0 = 1

(iii) If x = −n where n is a positive integer then a−n = 1/an

(iv) If x is rational i.e. x = p/q where p and q > 0 are integers then ax = ap/q

(iv) ax for any real number is then defined as ax = lim r → xar where r → x is a sequence
of rational numbers which converge to x

Properties of exponentials:
ax+y = axay ax−y = ax

ay

(ax)y = axy (ab)x = axbx

Definition 7.9 If a > 0 and a 6= 1 the logarithm to the base a is defined by the equation

loga(x) = y ←→ ay = x
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7.5 Examples and Properties of Continuous Functions

(1) f(x) = c = constant
(2) f(x) = a+ bx , a, b constant
(3) f(x) = ex

(4) f(x) = log(x)
(5) f(x) = cos(x)
(6) f(x) = sin(x)
(7) f(x) = c h(x) , c constant , h(x) continuous
(8) f(x) = g(x)± h(x) , g(x), h(x) continuous
(9) f(x) = g(x)h(x) , g(x), h(x) continuous
(10) f(x) = g(x)/h(x) , g(x), h(x) continuous provided h(x) 6= 0
(11) f(x) = g ◦ h(x) , g(x), h(x) continuous

8 Real Valued Functions - Derivatives

8.1 Loose Definition

Definition 8.1 The derivative of f at x0, denoted by f
′
(x) or Df(x0), if it exists, is defined

as

lim
∆→0

f(x0 + ∆)− f(x0)

∆
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8.2 Examples and Properties of Derivatives:

(1) f(x) = c = constant f
′
(x) = 0

(2) f(x) = a+ bx , a, b constant f
′
(x) = b

(3) f(x) = a+ bx+ cx2 , a, b, c constant f
′
(x) = b+ 2cx

(4) f(x) = xn n = 1, 2, . . . f
′
(x) = nxn−1

(5) f(x) = xα f
′
(x) = αxα−1

(6) f(x) = ex f
′
(x) = ex

(7) f(x) = log(x) f
′
(x) = 1

x

(8) f(x) = cos(x) f
′
(x) = sin(x)

(9) f(x) = sin(x) f
′
(x) = cos(x)

(10) f(x) = g(x)± h(x) L
′

f (x) = g
′
(x)± h′(x)

(11) f(x) = g(x)h(x) f
′
(x) = g

′
(x)h(x) + g(x)h

′
(x)

(12) f(x) = g(x)/h(x) f
′
(x) = g

′
(x)

h(x)
− g(x)h

′
(x)

[h(x)]2
provided h(x) 6= 0

(13) f(x) = g ◦ h(x) f
′
(x) = g

′
(h(x))h

′
(x)

8.3 Precise Definition of Derivative

Definition 8.2 The interior of an interval I of real numbers, int (I), is defined as

int (I) = {x : there exists a δ > 0 such that {y : |y − x| < δ} ⊂ I}

Definition 8.3 Let I be an interval of real numbers, f : I 7→ R, c ∈ int(I), and define
g : I − {c} 7→ R by

g(x) =
f(x)− f(c)

x− c
(Note that c is adherent to I) Then f has a derivative, f ′(c), at c if

lim
x→c

g(x) = f ′(c)

Thus we have

Definition 8.4 f has a derivative f ′(c) at c if for every ε > 0 there exists a δ > 0 such that
such that 0 < |x− c| < δ implies ∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < ε
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We denote the derivative of f at c by

f ′(c), Df(c) or
df(c)

dx

and say that f is differentiable at c.

If f : I 7→ R and A ⊂ I we say that f is differentiable on A if f has a derivative at every
point c in A. The function h : A 7→ R defined by h(x) = f ′(x) will be called the derivative
of f on A and will be denoted by

f ′, Df or
df

dx

8.4 Approximation Form of Derivative

Using “little o” notation the definition of a derivative may be rewritten as

f(x)− f(c)

x− c
= f ′(c) + o(1) as x→ c

Equivalently we may write

• f(x)− f(c) = f ′(c)(x− c) + (x− c)o(1)

• f(x) = f(c) + f ′(c)(x− c) + o(|x− c|)

That is, f can be approximated at x by a linear expression of the form

f(x) = a+ bx where a = f(c)− f ′(c)c and b = f ′(c)

8.5 Derivatives of Higher Order

Let I be an interval and let f : I 7→ R. If f is differentiable on I denote its derivative by
Df or f ′. If Df is differentiable on I denote its derivative by D2f i.e. D(Df) = D2f or by
f (2). The nth derivative of f on I if it exists will be denoted by Dnf or f (n).
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8.6 Maxima and Minima

8.6.1 Loose Criteria

Let I ⊂ R , f : I 7→ R, and c ∈ I. Then f

• Has a minimum at c if f (1)(c) = 0 and f (2)(c) > 0

• Has a maximum at c if f (1)(c) = 0 and f (2)(c) < 0

8.6.2 Precise Criteria

1. Let I ⊂ R , f : I 7→ R, and c ∈ I. Then

(a) f has a relative strict minimum at c if there is an ε > 0 such that

x ∈ I and |x− c| < ε⇒ f(c) ≤ f(x)

(b) f has a relative strict maximum at c if there is an ε > 0 such that

x ∈ I and |x− c| < ε⇒ f(c) ≥ f(x)

2. First Derivative Test: Let I ⊂ R be an interval, f : I 7→ R suppose that f is differen-
tiable on I and that c ∈ int (I). Then

(a) c is a point of relative strict minimum of f if there is an α > 0 such that

Df(x) < 0 for x ∈ (c− α, c) and Df(x) > 0 for x ∈ (c, c+ α)

(b) c is a point of relative strict maximum of f if there is an α > 0 such that

Df(x) > 0 for x ∈ (c− α, c) and Df(x) < 0 for x ∈ (c, c+ α)

3. Second Derivative Test: Let I ⊂ R be an interval, f ∈ C(2)(I) and let c ∈ I. Then

(a) c is a point of relative strict minimum if Df(c) = 0 and D2f(c) > 0.

(b) c is a point of relative strict maximum if Df(c) = 0 and D2f(c) < 0.
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8.7 Taylor’s Theorem and the Mean Value Theorem

8.7.1 Most Used Form

f(x) = f(a) + f (1)(a)(x− a) + o(|x− a|)

8.7.2 Precise Form

Theorem 8.1 Mean Value Theorem: Let I be an interval and suppose that [a, b] ⊂ I.
If f ∈ C(I) is differentiable on int(I) then there is a point c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a)

Theorem 8.2 Taylor’s Theorem: Let f have r derivatives at x = a. Then

f(a+ h) = f(a) + f ′(a)h+ · · ·+ f (r)(a)hr

r!
+ o(hr)

or f(a+ h) =
r∑
i=0

f (i)(a)hi

i!
+ o(hr)

or f(x) =
r∑
i=0

f (i)(a)hi

i!
+ o(|x− a|r)

which we may also write as ∣∣∣∣∣f(x)−
r∑
i=0

f (i)(a)hi

i!

∣∣∣∣∣ ≤ o(|x− a|r)

9 Integration

9.1 Definitions

Definition 9.1 Let I be an interval of real numbers and let f : I ⊂ R. A primitive or
indefinite integral of f on I is any function F : I 7→ R such that DF (x) = f(x) for all x ∈ I.
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Definition 9.2 If I is an interval of real numbers, f is continuous on I and F is a primitive
of f on I then for every a ∈ I and b ∈ I the difference F (b)− F (a) is called the integral of
f from a to b and is denoted by

F (b)− F (a) =

∫ b

a

f(x)dx

Definition 9.3 If A is a set of real numbers and f : A 7→ R is non-negative for x ∈ A we
call the set

Of = {(x, y) : x ∈ A, 0 ≤ f(x) ≤ y}
the ordinate set of f .

Theorem 9.1 Fundamental Theorem of the Calculus Let I be an interval of real
numbers and let f be continuous on I. Then f has a primitive on I. Moreover, if I = [a, b],
f(x) ≥ 0 for x ∈ I and A(Of ) denotes the area of Of then

A(Of ) =

∫ b

a

f(x)dx

Note the folowing properties of integrals:∫ b
a
f(x)dx =

∫ b
a
f(t)dt∫ a

a
f(x)dx = 0∫ b

a
f(x)dx = −

∫ a
b
f(x)dx∫ b

a
f(x)dx+

∫ c
b
f(x)dx =

∫ c
a
f(x)dx

9.2 Examples and Properties of Integrals

(1) f(x) = c
∫
f(x)dx = cx

(2) f(x) = xn
∫
f(x)dx = xn+1

n+1
n 6= −1

(3) f(x) = xα
∫
f(x)dx = xα+1

α+1
α 6= −1

(4) f(x) = cg(x)
∫
f(x)dx = c

∫
g(x)dx

(5) f(x) = g(x)± h(x)
∫
f(x)dx =

∫
g(x)dx±

∫
h(x)dx

(6) f(x) = 1
x

∫
f(x)dx = log(x) base e

(7) f(x) = ex
∫
f(x)dx = ex

(8) f(x) = sin(x)
∫
f(x)dx = −cos(x)

(9) f(x) = cos(x)
∫
f(x)dx = sin(x)
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9.3 Integration Methods

Theorem 9.2 Substitution Method Let φ be a real valued function on the closed bounded
interval [a, b] with a derivative φ

′
which is also continuous on [a, b]. Let ψ(x) be the inverse

of φ(x). If f is continuous on φ([a, b]) then∫ b

a

f [φ(x)]dx =

∫ φ(b)

φ(a)

f(u)ψ
′
(u)du

Theorem 9.3 Itegration by Parts Let I be na interval, f and g be continuous on I. If
a and b are in I then ∫ b

a

f(x)g
′
(x)dx = f(x)g(x)

∣∣∣∣∣
b

a

−
∫ b

a

f
′
(x)g(x)dx

We usually write u = f(x) and dv = g
′
(x)dx. Then the formula for integration by parts

becomes ∫
udv = uv −

∫
vdu

9.4 Liebnitz’s Rule

In many distribution problems in statistics we need to find the derivative of an integral.

Theorem 9.4 Liebnitz’s Rule Let

H(α) =

∫ h2(α)

h1(α

h(x;α)dx

then

h
′
(α) =

∫ h2(α)

h1(α

∂h(x;α)

∂α
dx+ h

′

2(α)h[h2(α), α]− h′1(α)h[h1(α), α)]
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9.5 Logarithms and Exponentials

9.6 Logarithmic function

Define the logarithmic function log : (0,∞) 7→ R (also called the natural log) by

log(x) =

∫ x

1

1

y
dy for x ∈ R

Properties

• log is continuous and strictly increasing for x ∈ (0,∞)

• log is differentiable on (0,∞), in fact

d log(x)

dx
=

1

x

• log(xy) = log(x) + log(y)

• log(x/y) = log(x)− log(y)

• log(1) = 0; log(e) = 1

• limx→∞ log(x) =∞; limx→0 log(x) = −∞

•

log(1 + x) =
∞∑
r=1

(−1)r+1xr

r
= x− x

2
+
x3

3
− . . . for x ∈ R

•

log(
1

(1− x)
=
∞∑
r=1

xr

r
= x+

x

2
+
x3

3
+ . . . for x ∈ R

• ∣∣∣∣log(1 + x)−
[
x− x2

2
+ · · ·+ (−1)n+1xn

n

]∣∣∣∣ ≤ xn+1

n+ 1
for x ∈ R
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9.7 Exponential Function

Let exp : R 7→ (0,∞) be defined by

log(exp(x)) = x

Properties

• exp is continuous on R

• exp is differentiable on R, in fact

d exp(x)

dx
= x

• exp(0) = 1, exp(x) > 0 for x ∈ R

• exp(x+ y) = exp(x) exp(y) for x, y ∈ R

• exp(−x) = [exp(x)]−1 for x ∈ R

• exp(nx) = [exp(x)]n for x ∈ R

• limx→∞ exp(x) = +∞; limx→−∞ exp(x) = −∞

• exp(x) = limn→∞[1 + 1
n
]n

• exp(x) =
∑∞

r=1 x
r/r!

• We usually write exp(x) = ex and then

elog(x) = x ; log(ex) = x

10 n-Dimensional Calculus

10.1 n-Dimensional Euclidean Space

Definition 10.1 Rn will denote n-dimensional Euclidean space i.e. the set of all n-tuples
of the form (x1, x2, . . . , xn) where xi is a real number for i = 1, 2, . . . , n.
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A point in Rn is called a vector and we write x to denote such a point. For a vector x, x1

is said to be the first coordinate, x2 the second coordinate and so on.

Multiplication of a vector by a real number and addition of two vectors (having the same
number of coordinates) is coordinate-wise i.e. λx has ith coordinate λxi and x + y has ith
coordinate xi + yi.

Definition 10.2 The distance between two vectors x and y is be

d(x,y) = [(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2]1/2

Definition 10.3 The norm or length of a vector z, ||z|| is

||z||2 = z2
1 + z2

2 + · · ·+ z2
n

Then d(x,y) = ||x− y|| and we note that

(1) d(x,y) = 0 if and only if x = y

(2) d(x,y) = d(y,x)

(3) d(x,y) ≤ d(x, z) + d(z,y) for any z

Definition 10.4 More generally the inner product of two vectors x and y is

(x,y) =
n∑
i=1

xiyi

Thus ||x||2 = (x,x).

Result 10.1 Inner products have the following properties:

(1) (x,x) ≥ 0 with equality holding if and only if x = 0.

(2) (x,y) = (y,x)

(3) (ax + by, z) = a(x, z) + b(y, z)

c:/mathematics/mathforbiostatistics.tex



27 July 10, 2008

(4) |(x,y)| ≤ ||x||||y|| (Cauchy-Schwartz Inequality)

Definition 10.5 Two vectors are said to be orthogonal if (x,y) = 0.

The rationale behind this definition is that the angle θ between two vectors is defined as

cos(θ) =
(x,y)

||x||||y||

and the cosine of a right angle is 0.

10.2 Differentiation in Rn

Definition 10.6 In Rn the vectors e1, e2, . . . , en where

ei = (δ1i, δ2i, . . . , δni)

and

δji =

{
1 j = i
0 j 6= i

is called the natural or canonical basis.

The reason for the term basis is that every x ∈ Rn can be represented as

x =
n∑
i=1

xiei

10.2.1 Directional Derivatives

Definition 10.7 Any vector h ∈ Rn such that ||h|| = 1 is called a direction in Rn.

Thus e1 is the first coordinate direction, e2 the second coordinate direction and so on.

Definition 10.8 Given x0 and a direction h the line through x0 with direction h is the
set

L(x0,h) = {x : x = x0 + th, t ∈ R}
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Definition 10.9 Let S ⊂ Rn, x0 be an interior point of S and let f : S 7→ R. The
directional derivative of f at x0 with direction h is

lim
t→0

[f(x0 + th)− f(x0]

t

provided the limit exists.

10.2.2 Partial Derivatives

Let S ⊂ Rn, x be an interior point of S and let f : S 7→ R

Definition 10.10 The partial derivatives of f at x0 are the directional derivatives of f
at x0 in the directions e1, e2, . . . , en if they exist.

The the ith partial derivative of f is

lim
t→0

f(x1, x2, . . . , xi−1, xi + t, xi+1, . . . , xn)− f(x1, x2, . . . , xn)

t

if the limit exists.

Notation: The usual notation for the ith partial derivative of f at x0 is

Dif(x0) or ∂f(x0)/∂xi

Theorem 10.1 The Chain Rule If f is a function of x1, x2, · · · , xn and each xi is a
function of t then the derivative of f with respect to t is given by

d f

d t
=

n∑
i=1

∂f

∂xi

d xi
d t

10.2.3 Higher Order Partial Derivatives

(1) The partial derivatives D1f(x), D2f(x), . . . , Dnf(x) may themselves possess partial
derivatives. Such a partial derivative is called a partial derivative of order 2 and is
denoted by Dijf(x) or by ∂2f(x)/∂xixj
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(2) In general Di1,i2,...,inf(x) will denote the partial derivative of order i1 + i2 + · · ·+ in

(3) If all partial derivatives of a given order, say m, exist for each x ∈ S and if they are
continuous on S we say that f belongs to the class C(m)(S).

(4) If f ∈ C(2)(S) and if Dijf and Djif are continuous for i 6= j then Dijf = Djif .

10.3 Taylor’s Theorem in Rn

10.3.1 Most Used Form

f(x, y) = f(x0, y0) +
∂f(x0, y0)

∂x
(x− x0) +

∂f(x0, y0)

∂y
(y − y0) + o(

√
(x− x0)2 + (y − y0)2)

10.3.2 General Formulation

If f is a function of x1, x2, . . . , xn with continuous partial derivatives then

f(x1, x2, . . . , xn) = f(a1, a2, . . . , an) +
n∑
i=1

∂f(a)

∂xi
(xi − ai) + o(||x− a||)

More generally we have: Let k be an n-tuple of non-negative integers k1, k2, . . . , kn and
define

(1) |k| =
∑n

i=1 ki

(2) hk = hk11 h
k2
2 · · ·hknn for h ∈ Rn.

(3) k! = k1!k2! · · · kn! and Dk = Dk1Dk2 · · ·Dkn .

Then if f has a continuous (r+1)st differential on an interval I containing the line segment
LS joining a and a + h there is a point θ ∈ LS such that

f(a + h) =
r−1∑
i=0

1

i!

 ∑
k:|k|=i

(
i

k

)
Dkf(a)hk

+
∑

k:|k|=r

(
r

k

)
Dkf(θ)hk

r!

=
r−1∑
i=0

1

i!

∑
k:|k|=i

(
i

k

)
Dkf(a)hk + o(||h||r)
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where (
i

k

)
=

i!

k!(i− |k|)!
for i = 0, 1, . . . , r and D0f(a) = f(a)

10.4 Maxima and Minima

10.4.1 Unconstrained Maxima and Minima

Definition 10.11 The gradient of f at c is

∇f(c) = [
∂f(x)

∂x1

,
∂f(x)

∂x2

, . . . ,
∂f(x)

∂xn
]|x=c

Definition 10.12 The Hessian of f at c is

Hf (c) = det[Dij(f)c)]

where

Dijf(c) =
∂2f(x)

∂xi∂xj

∣∣∣∣
x=c

and det is the determinant function.

Result 10.2 Let U ⊂ Rn be an “open interval” of Rn and suppose that f : U 7→ R is
differentiable on U and has a local minimum or maximum at c. Then c is said to be a
critical point of f and ∇f(c) = 0.

Result 10.3 Let U ⊂ Rn be an “open interval” of Rn, suppose that f : U 7→ R is in C(3)(U)
and that c ∈ U is a critical point of f . Then f has

(1) A local minimum at c if the Hessian, Hf (c) > 0.

(2) A local maximum at c if the Hessian, Hf (c) < 0.

(3) Neither if the Hessian is indefinite.
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10.4.2 Lagrange Multipliers

Result 10.4 Let g : Rn 7→ R be continuously differentiable and let M be the set of points
in R such that g(x) = 0 and ∇g(x) 6= 0. If the differentiable function f : Rn 7→ R attains a
local minimum or maximum at c ∈M then for some λ (called a Lagrange Multiplier)

∇f(c) = λ∇g(c)

Thus to minimize or maximize a function subject to the constraint that g(x) = 0 one
solves the equations

g(c) = 0 and ∇f(c) = λg(c)

for c1, c2, . . . , cn and λ. The values so obtained give the critical point c1, c2, . . . , cn such that
g(c1, c2, . . . , cn) = 0.

For several restrictions one solves the system of equations:

∇f(c) =
m∑
i=1

λigi(c)

gi(c) = 0 for i = 1, 2, . . . ,m

for c1, c2, . . . , cn, λ1, λ2, . . . , λm. Then c1, c2, . . . , cn gives the critical point which satisfies the
restrictions defined by g1, g2, . . . , gn.

10.5 Integration in Rn

Just as the area under the curve of a positive continuous function is given by∫
f(x)dx

the volume under the surface of a positive function of two variables is given by∫ ∫
f(x, y)dxdy

This process can be continued to obtain∫ ∫
· · ·
∫
f(x, y, . . . , z)dxdy · · · dz
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the n dimensional integral.

Fortunately integration in such situations can be handled one variable at a time.

Result 10.5 Let f be defined and bounded on the rectangle R = [a, b] × [c, d]. For each
fixed y in [c, d] assume that the one-dimensional integral

A(y) =

∫ b

a

f(x, y)dx

exists. Then the integral ∫ d

c

A(y)dy

exists and is equal to the double integral of f(x, y) over R i.e.∫ d

c

{∫ b

a

f(x, y)dx

}
dy =

∫ d

c

∫ b

a

f(x, y)dx dy

This is called an iterated integral. It allows multidimensional integrals to be evaluated by
repeated single integration.

11 Matrices

11.1 Basics

11.1.1 Introduction

Definition 11.1 A matrix L is an n× p array of scalars (numbers). The number of rows is
n and the number of columns is p. n× p is called the order of the matrix.

noindent examples:

L1 =

 3 1 0
2 0 4
5 1 3

 L =

 1 0
2 3
2 1


are 3× 3 and 3× 2 matrices.

Notation:
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• The numbers making up the matrix are called the elements of the matrix.

• We write L = {`ij} and call `ij the i, j element of L (Thus `ij is the element in the ith
row and jth column of the matrix L).

• Two matrices are equal, A = B, if and only if aij = bij for all i and j.

• The zero or null matrix is the matrix each of whose elements is 0 and is denoted as 0.

• If n = p the matrix A is said to be a square matrix.

• The identity matrix I is defined by

I = (δij) =

{
1 i = j
0 i 6= j

Thus the jth column of the identity matrix consists of a one in the jth row and zeros
elsewhere.

• A 1× p matrix is called a row vector and is written as

`>i = (`i1, `i2, . . . , `ip)

• Similarly an n× 1 matrix is called a column vector and is written as

`j =


`1j

`2j
...
`nj


• With this notation we can write the matrix L in terms of its rows as

L =


`>1
`>2
...
`Tn


• Alternatively if `j denotes the jth column of L we may write the matrix L in terms of

its columns as
L = [`1, `2, · · · , `p]
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11.1.2 Sums and Products of Matrices

Definition 11.2 The sum of two matrices A and B is defined as

A + B = {aij + bij}

Note that A and B both must be of the same order for the sum to be defined.

Definition 11.3 The multiplication of a matrix by a scalar is defined by the equation

λA = {λ aij}

Matrix and addition and scalar multiplication of a matrix have the following properties:

• A + O = O + A = A

• A + B = B + A

• A + (B + C) = (A + B) + C

• A + (−A) = O

Definition 11.4 The product C of two matrices A and B is defined by the equation

AB = C = {cij} = {
∑
k

aikbkj}

• The matrix of the product can be found by taking the ith row of A times the jth
column of B element by element and summing.

• Note that the product is defined only if the number of columns of A is equal to the
number of rows of B.

• We say that A premultiplies B or that B post multiplies A in the product AB. Matrix
multiplication is not commutative. That is, AB does not equal BA. In fact BA may
not be defined.

Provided the indicated products are defined matrix multiplication has the following prop-
erties:
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• AO = O and OA = O

• A(B + C) = AB + AC

• (A + B)C = AC + BC

• A(BC) = (AB)C

• The identity matrix has the property that if A is a square matrix then

AI = IA = A

11.1.3 Transposes

Definition 11.5 The transpose of A, A> is

A> = {aji}

Thus if A is n by p the transpose A> is p by n with i, j element equal to the j, i element
of A. To find the transpose of a matrix simply write the elements of each row as the columns
of a new matrix. The resulting matrix is the transpose.

The following are some properties of the transpose operation:

(AB)> = BTAT

I> = I
(A + B)> = AT + BT

(αA)> = αAT

Definition 11.6 A column vector is an n by one matrix and a row vector is a one by n
matrix. If x is a column vector then x> is the row vector with the same elements.

If a> is a row vector of length n and b is a column vector of length n then the product
a>b is a 1 by 1 matrix i.e. a number and is given by

∑n
i=1 aibi. This result gives another

way of representing the product of A>B. If aTi is the ith row of A and B is the jth row of
B then the i− j element of the product AB is a>i bj.
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11.1.4 Some Special Matrices

Definition 11.7 A square matrix A is said to be:

• symmetric if A> = A

• diagonal if aij = 0 for i 6= j

• upper right triangular if aij = 0 for i > j

• lower left triangular if aij = 0 for i < j

• idempotent if A2 = A

• orthogonal if A>A = AAT = I

examples:

(1)

B =

[
2 1
1 2

]
is symmetric

(2)

B =

[
2 0
0 1

]
is diagonal

(3)

B =

 1 0 0
3 2 0
4 1 2

 is lower triangular

(4)

B =

 5 4 1
0 2 3
0 0 6

 is upper triangular

(5)

B =

[
1/2 −1/2
−1/2 1/2

]
is idempotent
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(6)

B =

[
1/
√

2 −1/
√

2

−1/
√

2 1/
√

2

]
is orthogonal

11.1.5 Partitioned Matrices

If A is n× p and is written as

A =

[
A11 A12

A21 A22

]
then A is said to be a partitioned matrix.

Result:

A> =

[
A>11 AT

21

AT
12 AT

22

]
Result: If B is also n by p and is similarly partitioned then

A+B =

[
A11 +B11 A12 +B12

A21 +B21 A22 +B22

]
Result: If A (n× p) and B p×m are written as

A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
then the product AB satisfies

AB =

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
if the multiplications are defined.

11.1.6 Inverses

Definition: A square matrix A is said to be invertible or have an inverse if

x1 6= x2 =⇒ Ax1 6= Ax2

Finding the matrix representation of A−1 is not an easy task however.
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• If A is 1× 1 then A = a and the inverse is 1/a.

• If A is 2× 2 then

A =

[
a b
c d

]
and A−1 =

1

D

[
d −c
−b a

]
provided D = ad− bc 6= 0

Some results on inverses are as follows:

1. If A, B and C are matrices such that

AB = CA = I

then A−1 = B = C.

2. A matrix A is invertible if and only if Ax = 0 implies x = 0 or equivalently if and
only if every y can be written as y = Ax.

3. If A and B are invertible so is AB and (AB)−1 = B−1A−1

4. If A is invertible and α 6= 0 then αA is invertible and (αA)−1 = α−1A−1

5. If A is invertible then A−1 is invertible and (A−1)−1 = A

In many problems one “guesses” the inverse of A and then verifies that it is in fact the
inverse. The following results help.

(1) Let [
A B
C D

]
where A has an inverse

Then [
A B
C D

]−1

=

[
A−1 + A−1BQ−1CA−1 −A−1BQ−1

−Q−1CA−1 Q−1

]
where Q = D−CA−1B.

(2) Let [
A B
C D

]
where D has an inverse

Then[
A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1

]
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(3) Let A be n by n, U be m by n, S be m by m and V be m by n. Then if A, A+U>SV
and S + SVA−1UTS are each invertible we have[

A + U>SV
]

= A−1 −A−1U>S
[
S + SVA−1U>S

]−1
SVA−1

(4) If S−1 exists in the preceeding result then[
A + U>SV

]−1
= A−1 −A−1U>

[
S−1 + VA−1UT

]−1
VA−1

(5) If S = I and u and v are vectors then[
A + uv>

]
= A−1 − 1

(1 + v>A−1u)
A−1uv>A−1

11.1.7 Determinants

Definition 11.8 The determinant det(A) of a p by p square matrix A = (aij), is defined as∑
π

sgn(π)aπ(1)1aπ(2)2 · · · aπ(p)p

where

• π is a permutation of the integers 1, 2, . . . , p (a permutation of a set is an ordering of
the set e.g. (2,1) is a permutation of {1, 2} as is (1,2). (There are p! permutations of
the integers {1, 2, . . . , p})

• sgn(π) = 1 if the number of transpositions needed to change

(1, 2, . . . , p) into (π(1), π(2), . . . , π(p))

is even and sgn(π) = −1 if the number of transpositions needed is odd. (A transposition
consists of interchanging two of the coordinates in (1, 2, . . . , p)).

example:

If A =

[
3 1
2 2

]
then p = 2 and {1, 2} has two permutations (1, 2) and (2, 1) so that sgn((1, 2)) = 1 and
sgn((2, 1)) = −1. Thus det(A) = (1)a11a22 − (−1)a12a21 = 3× 2− 1× 2 = 4.

Properties of determinants
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• det(AB) = det(A) det(B)

• det(A>) = det(A)

• det(aA) = ap det(A) for any real number a

11.1.8 Minors, Cofactors and Adjoints

Definition 11.9 A submatrix of a matrix A is any matrix obtained by deleting rows and/or
columns of A.

Definition 11.10 The minor of an element aij of the square matrix A is the determinant
of the submatrix of A defined by deleting the ith row and jth column of A.

Definition 11.11 The cofactor of aij, denoted by Cij is defined as

Cij = (−1)i+j(minor of aij)

If C is the matrix of cofactors of A, C> is called the adjoint of A.

example:

If A =

[
2 1
3 2

]
then C> = adjoint(A) =

[
2 −1
−3 2

]
Since

minor of a11 = |2| ; C11 = 2

minor of a12 = |3| ; C12 = −3

minor of a21 = |1| ; C21 = −1

minor of a22 = |2| ; C22 = 2

Properties of cofactors and adjoints

• det(A) =
∑p

i=1 aijCij =
∑p

j=1 aijCij

• A−1 = [adjoint(A)]/ det(A)
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examples:

det(A) = 2(2) + 1(−3) = 1

det(A) = 3(−1) + 2(2) = 1

det(A) = 2(2) + 3(−1) = 1

det(A) = 1(3) + 2(2) = 1

If A =

[
2 1
3 2

]
then A−1 =

[
2 −1
−3 2

]
Using determinants thus provides us with a method of finding the inverse of a matrix.

11.2 Vector Spaces

11.2.1 Definition and Examples

Definition 11.12 A vector space V is a set of points (called vectors) satisfying the following
conditions:

(1) An operation + exists which satisfies the following properties:

(a) x + y = y + x

(b) x + (y + z) = (x + y) + z

(c) A vector 0 exists in V such that x + 0 = x for every x ∈ V
(d) For every x ∈ V a vector −x exists in V such that −x + x = 0

(2) An operation · exists which satisfies the following properties:

(a) α · (x + y) = α · y + α · x
(b) α · (β · x) = (αβ) · x
(c) (α + β) · x = α · x + β · x
(d) 1 · x = x

where the scalars α and β are real numbers. For ease of notation we shall eliminate
the · for scalar multiplication.
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The 0 vector will be called the null vector or the origin.

example 1: Let x represent a point in two dimensional space with addition and scalar
multiplication defined by[

x1

x2

]
+

[
y1

y2

]
=

[
x1 + y1

x2 + y2

]
and α

[
x1

x2

]
=

[
α x1

α x2

]
The origin and negatives are defined by[

0
0

]
and −

[
x1

x2

]
=

[
−x1

−x2

]
example 2: Let x represent a point in n dimensional space (called Euclidean space and
denoted by Rn) with addition and scalar multiplication defined by

x1

x2
...
xn

+


y1

y2
...
yn

 =


x1 + y1

x2 + y2
...

xn + yn

 and α


x1

x2
...
xn

 =


α x1

α x2
...

α xn


The origin and negatives in this case are defined by

0
0
...
0

 and −


x1

x2
...
xn

 =


−x1

−x2
...
−xn


11.2.2 Linear Independence and Bases

Definition 11.13 A finite set of vectors {x1,x2, . . . ,xk} is said to be a linearly indepen-
dent set if ∑

i

αixi = 0 =⇒ αi = 0 for each i

If a set of vectors is not linearly independent it is said to be linearly dependent.

If the set of vectors is empty we define
∑

i xi = 0 so that, by convention, the empty set
of vectors is a linearly independent set of vectors.

Results on linear independence:
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• The set {x1,x2, . . . ,xk} is linearly dependent if and only if

xt =
t−1∑
i=1

αixi for some t ≥ 2

• A linear basis or coordinate system in a vector space V is a set E of linearly inde-
pendent vectors in V such that each vector in V can be written as a linear combination
of the vectors in E .

• Since the vectors in E are linearly independent the representation as a linear combina-
tion is unique. If the number of vectors in E is finite we say that the vector space V is
finite dimensional.

• The dimension of a vector space is the number of vectors in any basis of the vector
space.

• Every vector space has a basis.

In most applications we will use the canonical basis for Rn defined by

e1, e2, . . . , en

where

ej = (ekj) =

{
1 k = j
0 k 6= j

i.e. ej is n× 1 with j row equal to 1 and 0 in every other row.

Definition 11.14 A non-empty subset M of a vector space V is called a subspace if
x,y ∈ V implies that every linear combination αx + βy ∈M.

Theorem 11.1 If {xi, i ∈ I} is a set of vectors the subspace spanned by {xi, i ∈ I} is the
set of all linear combinations of the vectors in {xi, i ∈ I} and is denoted by sp ({xi, i ∈ I}),

It follows that an alternative characterization of a basis is that it is a set of linearly
independent vectors which spans V .
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example 1: If X is the empty set then the space spanned by X is the 0 vector.
example 2: In R3 let X be the space spanned by e1, e2 where

e1 =

 1
0
0

 and e2 =

 0
1
0


Then X is the set of all vectors of the form

x =

 x1

x2

0


11.2.3 Geometry

Definition: In Rn the inner product of x and y is defined as

x>y

Definition: In Rn the length of x is defined as

√
x>x

Definition: In Rn two vectors x and y are orthogonal if their inner product is 0 i.e. if

x>y = 0

Definition: More generally in Rn the cosine of the angle θ between two vectors x and y is
defined by

cos θ =
x>y√

xTxyTy

Definition: In Rn the distance between two vectors x and y is defined by√
(x− y)>(x− y)

i.e. as the length of x− y.
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Definition: In Rn the distance between a vector x and a subspace Y is defined as

miny∈Y
√

(x− y)>(x− y)

Definition: X is said to be an orthonormal set of vectors if

(x,y) =

{
1 if x = y
0 if x 6= y

X is said to be a complete orthonormal set of vectors if it is not contained in a larger set
of orthonormal vectors.

11.2.4 Basic Results

Result: If X is an orthonormal set then its vectors are linearly independent.

Result: (Cauchy Schwartz Inequality) If x and y are vectors in an inner product space then

|(x,y)| ≤ ||x|| ||y||

Result: If X = {x1,x2, . . . ,xn} is any finite orthonormal set in a vector space V then the
following conditions are equivalent:

(1) X is complete.

(2) (x,xi) = 0 for i = 1, 2, . . . , n implies that x = 0.

(3) The space spanned by X is equal to V .

(4) If x ∈ V then x =
∑

i(x,xi)xi.

(5) If x and y are in V then

(x,y) =
∑
i

(x,xi)(xi,y)

(6) If x ∈ V then

||x||2 =
∑
i

|(xi,x)|2
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11.2.5 Gram Schmidt Process

The Gram Schmidt process can be used to construct an orthonormal basis for a vector space.
Start with a basis for V as {x1,x2, . . . ,xn} and form

y1 =
x1

||x1||

Next define
z2 = x2 − (x2,y1)y1

Since the xi are linearly independent z2 6= 0 and z2 is orthogonal to y1. Hence y2 = z2

||z2|| is
orthogonal to y1 and has unit length. If y1,y2, . . . ,yr have been so chosen then we form

zr+1 = xr+1 −
r∑
i=1

(xr+1,yi)yi

Since the xi are linearly independent ||zr+1|| > 0 and since zr+1 ⊥ yi for i = 1, 2, . . . , r
it follows that

yr+1 =
zr+1

||zr+1||
may be ”added” to the set {y1,y2, . . . ,yr} to form a new orthonormal set. The process
necessarily stops with yn since there can be at most n elements in a linearly independent
set.

11.2.6 Orthogonal Projections

Result: (Orthogonal Projection) Let U be a subspace of an inner product space V and let
y be a vector in V which is not in U . Then there exists a unique vector yU ∈ U and and a
unique vector e ∈ V such that

y = yU + e and e ⊥ U

Definition: The vector e in the previous result is called the orthogonal projection from
y to U and the vector yU is called the orthogonal projection of y on U .

Result: The projection of y on U has the property that

||y − yU || =
min
x {||y − x|| : x ∈ U}
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with the minimum occurring when x = yU . Thus the projection minimizes the distance from
U to x.

11.3 Matrix Rank and Linear Equations

11.3.1 Rank of a Matrix

The rows and columns of a matrix may be considered as vectors in a vector space of the
appropriate dimension.

Definition: If A is an n by p matrix then

(1) The row rank of A is the number of linearly independent rows of the matrix considered
as vectors in p dimensional space.

(2) The column rank of A is the number of linearly independent columns of the matrix
considered as vectors in n dimensional space.

Result: row rank of A = column rank of A

We thus define the rank of a matrix A, ρ(A) to be the number of linearly independent
rows or the number of linearly independent columns in the matrix A. Note that ρ(A) is
unaffected by pre or post multiplication by non singular matrices.

Results on ranks of matrices:

• An n by n matrix is non singular if and only if it is of rank n.

• If A is an n by p matrix then rank A>A = rank A = rank AAT

Definition: The trace of a square matrix is the sum of its diagonal elements i.e.

tr(A) =
∑
i

aii

• tr(AB) = tr(BA); tr(A + B) = tr(A) + tr(B); tr(A>) = tr(A)

• If A is idempotent (A2 = A) then

rank A = tr(A)
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11.4 Linear Equations

Consider a set of n linear equations in p unknowns

a11x1 + a12x2 + · · · + a1pxp = y1

a21x1 + a22x2 + · · · + a2pxp = y2
...

...
...

...
...

...
...

...
...

an1x1 + an2x2 + · · · + anpxp = yn

These equations can be written compactly in matrix notation as

Ax = y

where A is the n by p matrix with i, j element equal to aij, x is the p by one column vector
with jth element equal to xj and y is the n by one column vector with ith element equal to
yi.

Often such “equations” arise without knowledge of whether they are really equations, i.e.
does there exist a vector x which satisfies the equations? If such an x exists the equations
are said to be consistent, otherwise they are said to be inconsistent.

Result: The equations Ax = y are consistent if and only if

rank([A,y]) = rank(A)

In most situations n = p so that we have p equations in p unknowns. In this case we
have the following results:

1. If the rank of A is p (i.e. A has an inverse) then the equations have a unique solution
x given by

x = A−1y

2. If the rank of A is less than p and the rank of [A,y] is equal to the rank of A then
there are many solutions. One such solution is

x = A−y

where A− satisfies
AA−A = A

and is called a generalized inverse of A.
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For any matrix there a generalized inverse always exists.

example:

If A =

 2 1 1
1 1 0
1 0 1

 then a generalized inverse of A is A− =

 1 0 −1
0 0 0
−1 0 2


so that the equations  2 1 1

1 1 0
1 0 1

 b1

b2

b3

 =

 5
2
3


have a solution given by b1

b2

b3

 =

 1 0 −1
0 0 0
−1 0 2

  2
2
3

 =

 3
0
1


11.5 Characteristic Roots and Vectors

11.5.1 Definitions

Definition: A scalar λ is a characteristic root and a non-zero vector x is a character-
istic vector of the matrix A if

Ax = λ x

Other names for characteristic roots are proper value, latent root, eigenvalue and secular
value with similar adjectives appying to characteristic vectors. By convention we standardize
characteristic vectors so that

x>x = 1

11.5.2 Results and Properties

Result: λ is a characteristic root of A if and only if det(A− λI) = 0.

Result: If A is a real symmetric matrix with characteristic roots λ1, λ2, . . . , λn and charac-
teristic vectors x1, x2, . . . , xn then

A =
n∑
i=1

λixix
>
i
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This representation of A is called the spectral representation of A.

Definition: If A is a symmetric matrix with real elements x>Ax is called a quadratic
form. A quadratic form is said to be

• positive definite if x>Ax > 0 for all x 6= 0

• non negative definite if x>Ax ≥ 0 for all x 6= 0

If A is positve definite then all of its characteristic roots are positive while if A is non
negative definite then all of its characteristic roots are non negative.

• If λi 6= λj then the corresponding characteristic vectors are orthogonal

• The characteristic roots of a real symmetric matrix are real.

• tr(A) =
∑p

i=1 λi

• det(A) =
∏p

i=1 λi

• rank(A) = number of non-zero eigenvalues of A>A or AAT

11.5.3 The Singular Value Decomposition (SVD) of a Matrix

If A is any n by p matrix then there exists matrices U, V and D such that

A = UDV>

where

• U is n by p and U>U = Ip

• V is p by p and V>V = Ip

• D = diag(σ1, σ2, . . . , σp) and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0
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11.6 Matrix Calculus

Definition: If y = f(x) is a vector of p real valued functions

y1 = f1(x)
y2 = f2(x)
...

...
...

yp = fp(x)

where fi is a function of a q × 1 vector x then we define the derivative of y with respect to
x as the p× q matrix with i, j element equal to ∂yi

∂xj
i.e.

dy

dx
=


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xq

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xq

...
...

. . .
...

∂yp
∂x1

∂yp
∂x2

· · · ∂yp
∂xq


example: Let y = a + Bx where a and B do not depend on x. Then

dy

dx
= B

To see this note that

yi = ai +

q∑
k=1

bikxk

so that
∂yi
∂xj

= bij

example: If y = x>x then
dy

dx
= 2x>

To see this note that

y =

q∑
i=1

x2
i
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so that

dy

dx
=

[
∂y

∂x1

,
∂y

∂x2

, · · · ∂y
∂xq

]
= [2x1, 2x2, . . . , 2xq]

= 2x>

Theorem: If y = f(u) is a p×1 vector of functions of a q×1 vector u, where u is a function
of a r × 1 vector x then dy

dx
is the p× r matrix given by

dy

dx
=

[
dy

du

] [
du

dx

]

example: If s = (y −Xb)>(y −Xb) then

ds

db
= −2(y −Xb)>X

To see this let u = y −Xb then

ds

db
=

[
ds

du

] [
du

db

]
= 2u>(−X)

= −2(y −Xb)>X

example: If y = x>Ax where A is a symmetric non-negative matrix then

dy

dx
= 2x>A

To see this let A = BB> and u = BTx. Then y = u>u so that

dy

dx
=

[
dy

du

] [
du

dx

]
= 2u>BT

= 2x>BBT

= 2x>A
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A Complex Numbers

Complex numbers are defined as follows. z is a complex number if it is of the form z = (x, y)
where x and y are real numbers and

◦ (x, 0) equals the real number x

◦ (0, 1) is called the imaginary unit denoted by i

◦ R(z) = x is called the real part of z

◦ C(z) = y is called the imaginary part of z

◦ (x1, y1) = (x2, y2) if and only if x1 = x2 and y1 = y2

◦ z1 + z2 = (x1 + x2, y1 + y2)

◦ z1 × z2 = (x1x2 − y1y2 , x1y2 + x2y1)

◦ The conjugate of z is z = (x,−y)

◦ The absolute value or modulus of z is |z| = (z × z)1/2 = (x2 + y2)1/2

◦ |z1 + z2| ≤ |z1|+ z2|

Complex numbers have two equivalent representations:

◦ As a sum z = x+ iy where i2 = −1 and the usual operations of addition, subtraction
and multiplication are followed for expressions of the form a+ b

◦ As an exponential. Define exp(z) = ex[cos(y) + i sin(y)] where z is a complex number.
Then y = 0 gives the usual definition of the exponential function. Note that for θ real
we have

exp(iθ) = cos(θ) + i sin(θ) and exp(−iθ) = cos(θ)− i sin(θ)

so that
cos(θ) = exp(iθ)+exp(−iθ)

2
= eiθ+e−iθ

2

sin(θ) = exp(iθ)−exp(−iθ)
2i

= eiθ−e−iθ
2i

and it follows that
z = r[cos(θ) + i sin(θ)] = reiθ

where
r =

√
x2 + y2 and tan(θ) = y/x
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B Special Topics

B.1 Gaussian Probability Density Function

If

f(x) =
exp(−x2

2
)

√
2π

Then f is called the standard normal or Gaussian p.d.f.

B.2 Gamma Function

The integral

Γ(α) =

∫ ∞
0

xα−1e−xdx

defined for α > 0 is called the Gamma function with parameter α.

Properties

– Γ(1) =
∫∞

0
e−xdx = 1

– Γ
(

1
2

)
=
∫∞

0
x−

1
2 e−xdx =

√
π

– Γ(α) = (α− 1)Γ(α− 1) Thus if n is a positive integer

Γ(α) = (n− 1)!

B.3 Beta Function

The quantity

B(α, β) =

∫ 1

0

xα−1(1− x)β−1dx

is called the Beta function with parameters α and β.

Properties

– B(α, β) = B(β, α)

–

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

This fact is established in many advanced calculus texts.
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B.4 Stirling’s Approximation to n!

lim
n→∞

[
n!

√
2π nn+ 1

2 e−n

]
= 1

A more precise version of Stirling’s approximation is

n! =
√

2π nn+ 1
2 e−neθn

where
1

12n+ 1
< θn <

1

12n
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