Biostatistics 140.623 Third Term, 2002-2003

Laboratory Exercise 5 Answer Key

Below find times to "drug failure" (as determined by a treating psychiatrist) for 15 patients in a study comparing a new treatment for schizophrenia to a standard treatment (modification of SEP #11).

Trt group	Times (wks)
Standard	3, 5+, 6+, 9, 13+, 15+, 16+
New	4, 6, 9, 9, 10+, 11+, 13+, 14+

1. Construct the Kaplan-Meier survival curves by treatment. Compare to the Stata log on the next page:

	Stand	ard Trea	tment			New Treatment			
Event-	Number	Events	$(n_i - y_i)$	$\hat{S}(t_i)$	Event-	Number	Events	$(n_i - y_i)$	$\hat{S}(t_i)$
Time	at	(y_i)	n_i	(1)	Time	at	(y_i)	n_i	(1)
(t_i)	Risk	(, ,	i		(t_i)	Risk	(, ,	\sim i	
	(n_i)				(, ,	(n_i)			
0	-	-	-	1.000	0	-	-	-	1.000
3	7	1	(7-1)/7=		4	8	1	(8-1)/8=	
			0.857	0.857				0.875	0.875
9	4	1	(4-1)/4=		6	7	1	(7-1)/7=	
			0.750	0.643				0.857	0.750
					9	6	2	(6-2)/6=	
								0.667	0.500

. list

	weeks	trt	id	failure
1.	3	0	1	1
2.	5	0	2	0
3.	6	0	3	0

```
0
 4.
           9
 5.
          13
                       0
                                  5
                                  6
7
 6.
          15
                       0
                                              0
6. 15 0 6
7. 16 0 7
8. 4 1 8
9. 6 1 9
10. 9 1 10
11. 9 1 11
12. 10 1 12
13. 11 1 13
14. 13 1 14
15. 14 1 15
                                              0
                                  8
9
                                              1
                                               1
                                               1
                                               1
                                               0
                                               0
                                               0
                                          0
```

. stset weeks, failure(failure==1) id(id)

id: id

failure event: failure == 1

obs. time interval: $(weeks[_n-1], weeks]$

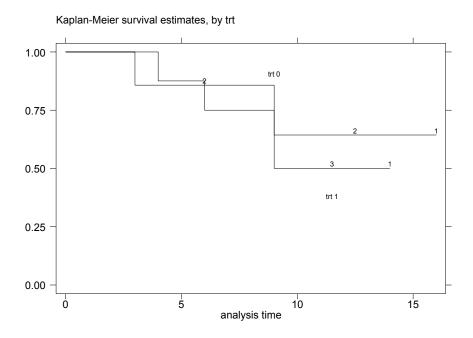
exit on or before: failure

- 15 total obs. 0 exclusions
- ______
 - 15 obs. remaining, representing
 - 15 subjects
 - 6 failures in single failure-per-subject data
 - 143 total analysis time at risk, at risk from t = earliest observed entry t = 0
 - last observed exit t = 16

. sts list if trt==0

failure _d: failure == 1
analysis time _t: weeks
 id: id

Time	Beg. Total	Fail	Net Lost	Survivor Function	Std. Error	[95% Cor	nf. Int.]
3	7	1	0	0.8571	0.1323	0.3341	0.9786
5	6	0	1	0.8571	0.1323	0.3341	0.9786
6	5	0	1	0.8571	0.1323	0.3341	0.9786
9	4	1	0	0.6429	0.2104	0.1515	0.9017
13	3	0	1	0.6429	0.2104	0.1515	0.9017
15	2	0	1	0.6429	0.2104	0.1515	0.9017
16	1	0	1	0.6429	0.2104	0.1515	0.9017


. sts list if trt==1

failure _d: failure == 1 analysis time _t: weeks id: id

> Beg. Net Survivor Std.

Time	Total	Fail	Lost	Function	Error	[95% Con	f. Int.]
4	8	1	0	0.8750	0.1169	0.3870	0.9814
6	7	1	0	0.7500	0.1531	0.3148	0.9309
9	6	2	0	0.5000	0.1768	0.1520	0.7749
10	4	0	1	0.5000	0.1768	0.1520	0.7749
11	3	0	1	0.5000	0.1768	0.1520	0.7749
13	2	0	1	0.5000	0.1768	0.1520	0.7749
14	1	0	1	0.5000	0.1768	0.1520	0.7749

2. Based upon the plot of the Kaplan-Meier curves for each treatment group, which treatment, if any, should be preferred?

There is much overlap between the two curves and the sample sizes are very small. The curves do not appear to be distinguishable from each other.

3. Calculate the log-rank statistic to test whether overall drug failure differs between the two treatments. Compute by hand the log-rank test statistic from the 2x2 tables based on each event time.

$$\chi^{2}_{LR} = \frac{\left[\sum_{j} (\mathbf{a}_{j} - E(\mathbf{a}_{j}))\right]^{2}}{\sum_{j} V \hat{a} r(\mathbf{a}_{j})} \text{ where } E(a_{j}) = \frac{d_{j} n_{ja}}{n_{j}} \text{ and } V \hat{a} r(a_{j}) = \frac{d_{j} (n_{j} - d_{j}) n_{ja} n_{jb}}{n_{j}^{2} (n_{j} - 1)}$$

	Event	No Event	Total
Standard Trt	a_{i}		n_{ja}
New Trt	c _i		n _{ib}
Total	di		n _i

Event Times:

Time=3 weeks:

	Event	No Event	Total
Standard Trt	1	6	7
New Trt	0	8	8
Total	1	14	15

$$a_j = 1$$
 $E(a_j) = (1)(7)/15$ $a_j - E(a_j) = 8/15$ $Var(a_j) = (1)(14)(7)(8)/[15^2(14)] = 0.2489$

Time=4 weeks:

	Event	No Event	Total
Standard Trt	0	6	6
New Trt	1	7	8
Total	1	13	14

$$a_j = 0$$
 $E(a_j) = (1)(6)/14$ $a_j - E(a_j) = -6/14$ $Var(a_j) = (1)(13)(6)(8)/[14^2(13)] = 0.2449$

Time=6 weeks:

		Event	No Event	Total	
	Standard Trt	0	5	5	
	New Trt	1	6	7	
	Total	1	11	12	
$a_j = 0$	$E(a_j) = (1)(5)/12$	a_j -E(a	$a_{\rm j}$) = -5/12	Var(a _j)	$=(1)(11)(5)(7)/[12^2(11)] = 0.2431$

$$a_j = 0$$
 $E(a_j) = (1)(5)/12$ $a_j - E(a_j) = -5/12$ $Var(a_j) = (1)(11)(5)(7)/[12^2(11)] = 0.2431$

Time=9 weeks:

	Event	No Event	Total
Standard Trt	1	3	4
New Trt	2	4	6
Total	3	7	10

$$a_i = 1$$
 $E(a_i) = (3)(4)/10$ $a_i - E(a_i) = -2/10$ $Var(a_i) = (3)(7)(4)(6)/[10^2(9)] = 0.56$

$$\mathbf{a_{j}=1} \quad \mathbf{E(a_{j})=(3)(4)/10} \quad \mathbf{a_{j}-E(a_{j})} = \frac{1}{\sum_{j} V \hat{a} r(\mathbf{a}_{j})} = \frac{(-0.5119)^{2}}{1.2969} = 0.2021 \text{ where p > 0.05 and we would fail to refect}$$

the null hypothesis of equal survival in both groups.

Compare your calculation to that obtained by Stata below.

Log-rank test for equality of survivor functions

trt	Events observed	Events expected
0	2 4	2.51
Total	6	6.00
	chi2(1) = Pr>chi2 =	0.20 0.6531