
Standard output from linear regression model fit: 
 
Section 1: Model description 
 
1) Number of obs =      51 
2) F(  2,    48) =   75.55 
3) Prob > F      =  0.0000 
4) R-squared     =  0.7589 
5) Adj R-squared =  0.7489 
6) Root MSE      =  302.65 
 

1) Number of observations, always make sure you are using the correct data (this is one place to check) 
 
2) Overall model F-test.  First you will see the F-statistic for testing: 

 
Ho: all beta’s in the model are equal to 0 
HA: at least one beta in the model is not equal to 0 

 
3) P-value corresponding to overall model F-test 
 
4) R-squared : 

fraction of variability in the response that can be explained using the linear model 
compared to just using the mean. 

    
    r2= SS(MODEL) / SS(TOTAL) 
 

The R-squared value will increase with each additional explanatory variable, even 
if the additional variable is not scientifically meaningful. 

 
5) Adjusted R-squared: 

 
R-square plus penalty for number of explanatory variables in the model 
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where n = number of observations, p = number of explanatory variables. 
 

6) Root MSE: 
 
Recall, that in a simple/multiple linear regression, you are assuming that your 
residuals are independent and identically distributed from a normal distribution 
with mean 0 and variance σ2.  The MSE (see below) is the estimate of this 
common variance.  Therefore, the ROOT MSE is the estimate of the standard 
deviation for the distribution of the residuals. 
 



In a residual plot, apply the general rule that approximately 95% of normal data 
will fall within 2 standard deviations of the mean and draw 95% bounds on the 
graph to identify observations, which may be labelled as “extreme”. 

 
 

Section 2: Analysis of Variance table 
   
 
  Source |       SS       df       MS                   
---------+------------------------------                
   Model |  13840987.8     2  6920493.90                
Residual |  4396616.24    48  91596.1716                
---------+------------------------------                
   Total |  18237604.0    50  364752.081                
 
 
In the analysis of variance table, we decompose the variability in the response, Y, into the portion that we can 
explain with our linear prediction and error.  Specifically, we have that 
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 SS(Total) = SS(Model) + SS(Error) 
 
Degrees of Freedom Total = DF(Total) = number of observations – 1 = n-1 
Degrees of Freedom Model = DF( Model) = number of explanatory variables in the model = p 
Degrees of Freedom Error = DF(Error) = DF Total – DF Model = n – 1 – p 
 
The Mean Squares are simply the Sums of Squares divided by the degrees of freedom (MS(total) = Variance for 
Y). 
 
The overall F-test from Section 1 is F = MS(Model) / MS(Error) which under the null hypothesis stated above 
will follow an F distribution with numerator degrees of freedom = DF(Model) and denominator degrees of 
freedom = DF(Error) 
 
 
 
 
 
 
 
 
 
 
 



 
Section 3: Regression Coefficients 
 
------------------------------------------------------------------------------ 
  expadm |      Coef.   Std. Err.       t     P>|t|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     los |   213.7967   42.20769      5.065   0.000       128.9325     298.661 
  salary |    .248994   .0217992     11.422   0.000       .2051638    .2928241 
   _cons |  -2582.736     464.77     -5.557   0.000      -3517.219   -1648.254 
------------------------------------------------------------------------------ 
 
 
This table will contain a row for every explanatory variable in the model plus a row for the intercept. 
 
For each row you will be given: 
 

a) the estimated regression coefficient ( ) β̂
b) the estimated standard error of the regression coefficient (se( )) β̂
c) the t-statistic for testing Ho: β = 0 vs. HA: β ≠ 0 
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Under the null hypothesis, this statistic will follow the t distribution with degrees of freedom 
equal to DF(Error). 

 
d) the corresponding p-value for t 
e) the 95% confidence interval for the regression coefficient 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Additional Regression Diagnostics: 
 
We discussed using added variables plots (aka adjusted variables plots) and residual plots to look for curvature 
and outlying/influencial data values.  We then discussed DFBETAS to assess the influence of individual data 
values in the analysis.  There are other common regression diagnostics used to look for influence of data values. 
 
First some quick definitions: 
 

Leverage point: data value that is “extreme” to the distribution of an explanatory variable 
  

Outlier: data value that is “extreme” to the distribution of the response variable or away from the general 
pattern of the response. 

 
Influencial data point: high leverage and an outlier 

 
Now some more regression diagnostics (See a reference for more details, these are additional diagnostics that 
you may have heard of or that are commonly used): 
 

1) L-R plots: plots the leverage verses the squared residuals.  Here you can identify points with high 
leverage and large residuals.  However, these don’t have to go hand-in-hand to warrant special 
attention.  You may have data points with high leverage and small residual that influence the 
regression estimates and vice-versa. 

 
2) Standardized and Studentized residuals: take your residuals and “standardize” them by dividing by 

some estimate of the error associated with the residuals.  Then identify standardized or studentized 
residuals with values more extreme than +/- 2. 

 
3) DFITS, Cook’s Distance and Welsch Distance: attempts to summarize information from the L-R 

plot. 
 
4) Variance inflation factors (VIFs): statistic calculated to measure presence of multi-collinearity.  

General rules of thumb exist for deleting explanatory variables based on this measure.  Best ways to 
address multi-collinearity: 

 
- science: let the science inform you of possible strong associations between explanatory 

variables. 
- Use scatter plot matrix to look for associations across explanatory variables: note only 

identifies pairwise associations. 
- Use added variable plots in conjunction with scatter plots: how will this work? 
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