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Randomized experiments often involve treatments that may induce
“interference between units”
Interference: the outcome for unit i depends on the treatment
assigned to unit j . If we administer a treatment to unit j , what are
the effects on unit i?
Recent work in non-parametric inference focuses on hypothesis testing
or estimation in hierarchical (i.e., multilevel) interference settings.
We develop a theory of estimation under general forms of interference.
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We provide a nonparametric design-based (c.f. Neyman 1923) method
for estimating average causal effects, including, but not limited to:

Direct effect of assigning a unit to treatment
Indirect effects of, e.g., a unit’s peer being assigned to treatment
More complex effects (e.g., effect of having a majority of proximal
peers treated)

In so doing, we highlight how equal probability of treatment
assignment does not imply equal probability of indirect exposure to
treatment (e.g., proximity to treated units)
We develop our main results drawing on classical sampling theory,
though model-assisted refinements are possible
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Method summary:
Design information gives probability distribution for treatment,

Z s.t. supp(Z) = Ω.

Specify an exposure model that converts assigned treatment vectors
z ∈ Ω to exposures based on unit attributes (e.g., network degree),

f (Z, θi ) ≡ Di

Implies the exact probabilities of exposure:

πi (dk) =
∑
z∈Ω

pz I(f (z, θi ) = dk)

Average causal effects are the average difference between the
potential outcomes under exposure dk vs. those under dl .
Estimate average causal effects accounting for varying probability of
exposures (via some variant of inverse probability weighting).

4 / 44



Roadmap:
Simple running example.
Some technical details.
Application.
Anticipating some concerns.
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Simple running example.
Consider a randomized experiment performed on a finite population
of four units in a simple, fixed network:
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One of these units is assigned to receive an advertisement and the
other three are assigned to control, equal probability
We want to estimate the effects of advertising on opinion
There are four possible randomizations z:
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So we have exact knowledge of the randomization scheme.
But what of the exposure model? This requires researcher discretion.
How do we model exposure to a treatment?
One example.
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Direct exposure means that you have been treated.
Indirect exposure means that a peer has been treated.

Di =


Di(rect) : zi = 1
In(direct) : zi±1 = 1
Co(ntrol) : zi = Zi±1 = 0.

There is nothing particularly special about this model, except for its
parsimony. Arbitrarily complex exposure models are possible.
Let’s visualize this.
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Summarizing:

Unit #

Ra
nd

.
#

1 2 3 4
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

Design Zi

−→

Unit #

Ra
nd

.
#

1 2 3 4
1 Di In Co Co
2 In Di In Co
3 Co In Di In
4 Co Co In Di

Exposure Di

19 / 44



We can figure out the exact probabilities that each of the four units would
be in each of the exposure conditions:

Unit #

Ra
nd

.
#

1 2 3 4
1 Di In Co Co
2 In Di In Co
3 Co In Di In
4 Co Co In Di

Exposure Di
Unit #

1 2 3 4
Direct 0.25 0.25 0.25 0.25

Indirect 0.25 0.50 0.50 0.25
Control 0.50 0.25 0.25 0.50

Probabilties πi (Di )
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Let’s make up some potential outcomes associated with each exposure:

Unit #
1 2 3 4 Mean

Direct 5 10 10 3 7
Indirect 0 3 3 2 2
Control 1 3 6 2 3

Potential outcomes Yi (Di )

Average causal effect: τ(dk , dl ) = 1
N
∑N

i=1 [Yi (dk)− Yi (dl )].
E.g., τ(Direct,Control) = 1

N
∑N

i=1 [Yi (Direct)− Yi (Control)] = 4.
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Unequal probability design provides a natural and design-unbiased
estimator.

Assuming πi (dk) > 0 and πi (dl ) > 0, the Horvitz-Thompson (HT)
estimator:

τ̂HT (dk , dl ) =
1
N

N∑
i=1

[ I(Di = dk)

πi (dk)
Yi (dk)− I(Di = dl )

πi (dl )
Yi (dl )

]

Unbiasedness follows from E [I(Di = dk)] = πi (dk).
Note: when, for some i , πi (dk) = 0 or πi (dj) = 0, τ(dk , dl ) must be
estimated only for units with some probability of receiving both
exposures.
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Applying estimators to this setup:
Ra

nd
.

#
Diff. in Means OLS w/ cov. adj. τ̂HT (dk , dl )

1 1.00 -1.00 3.00 -3.00 -2.00 -5.50
2 8.00 -0.50 5.00 -2.00 9.00 0.50
3 9.00 1.50 8.00 1.00 9.50 3.00
4 1.00 1.00 2.00 -5.44 -0.50 -2.00

E[.] 4.75 0.25 4.50 -1.00 4.00 -1.00
Bias 0.75 1.25 0.50 0.00 0.00 0.00

τ(Di ,Co) τ(In,Co) τ(Di ,Co) τ(In,Co) τ(Di ,Co) τ(In,Co)

Other approaches are biased and inconsistent (i.e., this is not just a
small sample problem).
Bias can go any number of ways depending on nature of confounding
and effect heterogeneity.
Another crucial point is that the variance of HT estimator is
straightforward. We cannot rely on standard methods to compute
standard errors or confidence intervals:
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Exact variance:

Var (τ̂HT (dk , dl )) =
1

N2

{
Var [Ŷ T

HT (dk)] + Var [Ŷ T
HT (dl )]

−2Cov [Ŷ T
HT (dk), Ŷ T

HT (dl )]
}
,

where

Var [Ŷ T
HT (dk)] =

N∑
i=1

N∑
j=1

Cov [I(Di = dk), I(Dj = dk)]
Yi (dk)

πi (dk)

Yj(dk)

πj(dk)

Cov [Ŷ T
HT (dk), Ŷ T

HT (dl )] =
N∑

i=1

N∑
j=1

Cov [I(Di = dk), I(Dj = dl )]
Yi (dk)

πi (dk)

Yj(dl )

πj(dl )
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Conservative variance estimator:

Via Young’s inequality (c.f., Aronow and Samii 2012), given
πij(dk , dl ) > 0, ∀i 6= j ,

V̂ar [τ̂HT (dk , dl)] =
1

N2

{∑
i∈U I(Di = dk)[1 − πi(dk)]

[
Yi (dk )
πi (dk )

]2

+
∑

i∈U

∑
j∈U\i I(Di = dk)I(Dj = dk)

πij (dk )−πi (dk )πj (dk )

πij (dk )
Yi (dk )
πi (dk )

Yj (dk )

πj (dk )

 V̂ar [µ̂HT (dl)]

+
∑

i∈U I(Di = dl)[1 − πi(dl)]
[

Yi (dl )
πi (dl )

]2

+
∑

i∈U

∑
j∈U\i I(Di = dl)I(Dj = dl)

πij (dl )−πi (dl )πj (dl )
πij (dl )

Yi (dl )
πi (dl )

Yj (dl )
πj (dl )

 V̂ar [µ̂HT (dk)]

−2
∑

i∈U

∑
j∈U\i

I(Di =dk )I(Dj =dl )
πij (dk ,dl )

Yi (dk )
πi (dk )

Yj (dl )
πj (dl )

+2
∑

i∈U

[
I(Di =dk )Yi (dk )2

2πi (dk )
+ I(Di =dl )Yi (dl )

2

2πi (dl )

]} }− 2Ĉov C [µ̂HT (dl), µ̂HT (dk)].

Unbiased under sharp null hypothesis of no effect, given πij(dk , dl ) > 0.
(More) conservative variance estimator when ∃i , j , k, l s.t. πij(dk , dl ) = 0.
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Asymptotics and intervals:
We adopt Brewer (1979)’s large sample scaling, analogous to
obtaining estimates by aggregating results from repeated
experimentation on a fixed finite population.
Consistency and asymptotic normality of τ̂HT (dk , dl ) follow from the
WLLN and classical CLT respectively. By the WLLN,
NV̂ar [τ̂HT (dk , dl )]

p−→ NVar [τ̂HT (dk , dl )] + c1, where c1 ≥ 0. Then
(τ̂HT (dk , dl )− τHT (dk , dl )) /

√
V̂ar [τ̂HT (dk , dl )]

d−→ N (0, 1− c2),
where 0 ≤ c2 < 1. Intervals constructed as
τ̂HT (dk , dl )± z1−α/2

√
V̂ar [τ̂HT (dk , dl )] will asymptotically cover

τHT (dk , dl ) at least 100(1− α)% of the time.
We’ve also proven consistency of estimators and variance under a
generalized m-dependence set-up. Restrictions on clustering are key.
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Paper proposes refinements for covariate adjustment, weight
stabilization, and variance approximation under a constant effect
assumption.
Further refinements include modeling outcomes based on
determinants of exposure probabilities, using HT results to determine
appropriate variance approximation.
Regardless of the method used, the implied inverse probability weights
are fundamental for the consistency of any estimator of average
causal effects.
Under proper specification, this weighting can be reproduced by
regression estimators (in particular, interaction with centered fixed
effects for all unique values of probability of exposure) in the limit.
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Let’s consider a richer example.
Goal is to estimate direct and indirect effects of a treatment offered
to a randomly selected set of individuals on a complex, undirected
network (e.g., an anti-prejudice curriculum in schools – Paluck and
Shepherd 2012)
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Network
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Suppose complete random assignment of M = .2N units to treatment.
Design implies Z has uniform probability over Ω, an N ×

(N
M
)

indicator
matrix, where z is a realization a Z, e.g.,

z = (z1, z2, z3, ..., zN−1, zN)′ = (0, 1, 0, ..., 1, 0)′.

30 / 44



Network
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Treatment Assignment
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Let θi be i ’s row in the adjacency matrix (with diagonal zeroed out):
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Define an exposure model corresponding to our substantive interests:

f (z, θi ) =


zi (I(z′θi = 0))

(1− zi )I(z′θi > 0)
zi I(z′θi > 0)

(1− zi )I(z′θi = 0)

 =


Isolated Direct

Indirect
Direct & Indirect

Control

 ,

34 / 44



Treatment Assignment
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Exposure Conditions
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And all possible randomizations...
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This yields a matrix of indicators for exposure k associated with each
randomization z:

Ik = [I(f (z, θi ) = dk)] z∈Ω

i=1,...,N
=


I(f (z1, θ1) = dk) I(f (z2, θ1) = dk) . . . I(f (zN , θ1) = dk)
I(f (z1, θ2) = dk) I(f (z2, θ2) = dk) . . . I(f (zN , θ2) = dk)

...
...

. . .
I(f (z1, θN) = dk) I(f (z2, θN) = dk) I(f (zN , θN) = dk)

 .
Then for exposure k, first and second-order exposure probabilities are,

Ik I′k
|Ω|

=


π1(dk) π12(dk) . . . πN1(dk)
π12(dk) π2(dk) . . . πN2(dk)

...
... . . .

πN1(dk) πN2(dk) πN(dk)

 ,

Cross exposure probabilities computed analogously.
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A real application along these lines: data snippet courtesy of Paluck and
Shepherd (2012)

Exposure Naive Cov. Adj. HT
(Diff-in-Means) (Fixed Effects) (Proposed)

Direct -0.775 -0.752 -1.400
(SE) (0.793) (0.927) (1.133)

Indirect -0.382 -0.648 -0.607
(SE) (0.434) (0.596) (1.106)

Combined -1.331 -1.663 -1.792
(SE) (0.956) (1.220) (1.617)
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Anticipating some concerns.
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f (Z, θi)

Concern: “What if you don’t believe the exposure model?!”
We always specify an exposure model to define causal effects.
But! The framework permits exposure models of arbitrary generality.
By definition, there is a finite (but potentially large) set of exposure
models that may be associated with any randomization scheme.
These models can be nested.
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Concern: “What if you don’t really know θ?!”
We can model the θ and then use available data to estimate a
probability distribution over θ’s.
Then, we can marginalize conditional estimates.

∫
Φ
τ

 f (Z, θ1(φ))
...

f (Z, θN (φ))

dF (φ)

E.g., graph models can use covariate data to predict possible
adjacency matrices. Impute 1,000 possible adjacency matrices (φ)
based on F (φ), estimate causal effects on each (τ), and then average.
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Some other thoughts / extensions:
Design implications?

Basic results from survey sampling suggest minimizing variation in
exposure probability vectors.
Variance expression suggests limiting clustering in exposures.
Possible to construct maximum entropy designs or minimum risk
designs given bounded potential outcomes – we are currently at work
on this (“solved” via brute-force optimization, but...)

Observational studies?
If we can estimate the treatment assignment mechanism, then simple
enough to specify an exposure model again.
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Thank you!

You can find our paper on my website:
http://j.mp/paronow
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