Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments Estimating Causal Effects of Air Quality Regulations Using Principal Stratification for Spatially-Correlated Multivariate Intermediate Outcomes

Corwin M. Zigler

Department of Biostatistics, Harvard School of Public Health

May 24, 2012

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Air Quality, Health, and Regulation

Accountability Assessment

- Long term exposure to air pollution is bad for health.
- EPA estimates \approx \$25 billion per year on air quality management.
 - 1970 Clean Air Act.
- For a **specific** regulatory action:
 - What were the causal effects on air quality?
 - What were the causal effects on health?

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

1990 Clean Air Act Amendments (CAAA)

EPA designates counties as:

- 1 Attainment of air quality standards for PM₁₀.
- 2 Nonattainment of air quality standards for PM₁₀ :
 - Required **states** to implement plans to achieve standards.

What were the **causal effects** of the 1990 nonattainment designations for PM_{10} on:

- Pollution
 - Ambient concentrations of PM₁₀ and O₃ in 1999-2001.
- Health
 - All-cause Medicare mortality in 2001.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Causal Inference for Air Quality Regulations

1 Potential outcomes in the EPA regulatory environment.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Causal Inference for Air Quality Regulations

Potential outcomes in the EPA regulatory environment.
Air quality is a posttreatment concomitant variable.

• \Rightarrow Principal stratification.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Causal Inference for Air Quality Regulations

Potential outcomes in the EPA regulatory environment.

2 Air quality is a posttreatment concomitant variable.

• \Rightarrow Principal stratification.

3 Regulations affect **multiple pollutants**.

• \Rightarrow Multivariate continuous intermediate variable.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Causal Inference for Air Quality Regulations

Potential outcomes in the EPA regulatory environment.

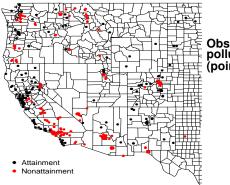
2 Air quality is a **posttreatment concomitant variable**.

- \Rightarrow Principal stratification.
- **3** Regulations affect **multiple pollutants**.
 - \Rightarrow Multivariate continuous intermediate variable.
- Pollution is spatially correlated.
 - Hierarchical spatial model.
- **5** Interference between observations (no SUTVA).

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference


Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Observed Regulation Program and Overall Causal Effect

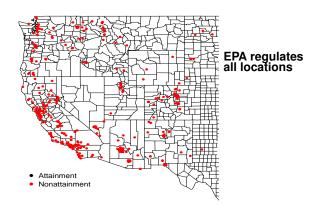
Observed Regulation Program

Observational unit: pollution monitor (point-referenced data)

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference


Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

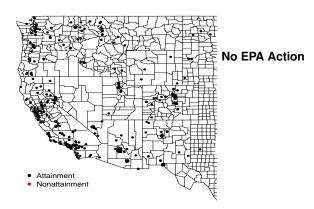
Observed Regulation Program and Overall Causal Effect

Overall Causal Effect

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference


Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Observed Regulation Program and Overall Causal Effect

Overall Causal Effect

Corwin M. Zigler Potential Outcomes

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Regulation program vector: $\mathbf{A} = [A(s_i)]_{i=1}^n$

- *n* = 362 locations.
- $A(s_i) = 1 \Rightarrow i^{th}$ location nonattainment.
- Specific regulation program **A** = **a**.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Potential Outcomes

Regulation program vector: $\mathbf{A} = [A(s_i)]_{i=1}^n$

- *n* = 362 locations.
- $A(s_i) = 1 \Rightarrow i^{th}$ location nonattainment.
- Specific regulation program **A** = **a**.

Potential Outcomes

- Pollution $X_{a}(s)$: vector of pollutant concentrations.
 - PM_{10} and O_3 .
- Mortality *Y*_a(*s*): all-cause mortality among Medicare beneficiaries living near a monitor.
 - \approx 7 million people aged 65+.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Spatial Correlation \rightarrow Interference

• Typical assumption of no interference (SUTVA) likely violated.

• Regulations can affect air quality in other areas.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Spatial Correlation \rightarrow Interference

- Typical assumption of no interference (SUTVA) likely violated.
 - Regulations can affect air quality in other areas.
- Full interference: every location interferes with every other location.
 - 2ⁿ potential outcomes for each location.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Spatial Correlation \rightarrow Interference

- Typical assumption of no interference (SUTVA) likely violated.
 - Regulations can affect air quality in other areas.
- Full interference: every location interferes with every other location.
 - 2ⁿ potential outcomes for each location.
- Partial interference.
 - Some locations interfere with some other locations.
 - How to define the interference groups?

Never Observe Potential Outcomes Under Regulation Programs of Interest

Causal Inference for

Air Quality Regulations

Corwin M. Zigler

Potential Outcomes and Interference

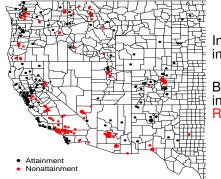
			Observed Regulation $\mathbf{A} = \mathbf{a}^{\mathbf{obs}}$		No Regulation $\mathbf{A} = 0$		Full Regulation $\underline{A} = \underline{1}$	
	i	$A^{obs}(s_i)$	$X_{aobs}(s_i)$	$Y_{aobs}(s_i)$	$X_0(s_i)$	$Y_0(s_i)$	$X_1(s_i)$	$Y_1(s_i)$
Observed	1	0	obs	obs				
Attainment	2	0	obs	obs				
(black dots)	:							:
Observed	:	:	:		:	:	:	:
nonattainment	n-1	1	obs	obs				
(red dots)	n	1	obs	obs				

Never Observe Potential Outcomes Under Regulation Programs of Interest

Causal Inference for

Air Quality Regulations

Corwin M. Zigler


Potential Outcomes and Interference

			Observed	Observed Regulation		No Regulation		Full Regulation	
			$A = a^{obs}$		$\mathbf{A} = 0$		<u>A = 1</u>		
	i	$A^{obs}(s_i)$	$X_{aobs}(s_i)$	$Y_{aobs}(s_i)$	$X_0(s_i)$	$Y_0(s_i)$	$X_1(s_i)$	$Y_1(s_i)$	
Observed	1	0	obs	obs	obs*	obs*	?	?	
Attainment	2	0	obs	obs	obs*	obs*	?	?	
(black dots)	:	:			:		:	:	
Observed	:	:	:		:	:	:	:	
nonattainment	n-1	1	obs	obs	?	?	obs*	obs*	
(red dots)	n	1	obs	obs	?	?	obs*	obs*	

Corwin M. Zigler

Potential Outcomes and Interference

Assignment Group Interference Assumption (AGIA)

Interference implicit in EPA decisions Black dots don't interfere with Red dots

Estimation

Causal Inference for Air Quality Regulations

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Models

- Potential pollution outcomes.
 - Multivariate spatial hierarchical model.
- Mortality outcomes, conditional on pollution.
 - Poisson regression.
- Estimation with data augmentation / MCMC.

Estimation

Causal Inference for Air Quality Regulations

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Models

- Potential pollution outcomes.
 - Multivariate spatial hierarchical model.
- Mortality outcomes, conditional on pollution.
 - Poisson regression.
- Estimation with data augmentation / MCMC.

Average Causal Effects

- Expected *K*-Dissociative Effect:
 - Average effect on mortality in areas where regulation **did not** affect pollution.

Estimation

Causal Inference for Air Quality Regulations

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Models

- Potential pollution outcomes.
 - Multivariate spatial hierarchical model.
- Mortality outcomes, conditional on pollution.
 - Poisson regression.
- Estimation with data augmentation / MCMC.

Average Causal Effects

- Expected *K*-Dissociative Effect:
 - Average effect on mortality in areas where regulation **did not** affect pollution.
- Expected *K*-Associative Effect:
 - Average effect on mortality in areas where regulation **decreased** pollution.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Spatial Hierarchical Model

$$X(s) = Z^{T}(s)\beta + W(s) + \epsilon(s)$$

- $s \equiv$ specific location.
- X(s) ≡ 4-dimensional vector of pollution concentrations under both regulations (X_{A=0}(s), X_{A=1}(s)).
- $Z(s) \equiv \text{covariates.}$
- $\epsilon(s) \equiv \text{nonspatial ("nugget") error.}$
- $W(s) \equiv$ spatially-varying random intercepts.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

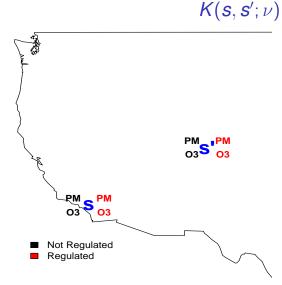
Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Spatial Hierarchical Model

$$X(s) = Z^{T}(s)\beta + W(s) + \epsilon(s)$$

- *s* ≡ specific location.
- X(s) ≡ 4-dimensional vector of pollution concentrations under both regulations (X_{A=0}(s), X_{A=1}(s)).
- $Z(s) \equiv \text{covariates.}$
- $\epsilon(s) \equiv \text{nonspatial}$ ("nugget") error.
 - $W(s) \equiv$ spatially-varying random intercepts.
 - *W*(*s*) ~ Multivariate Gaussian Process (MVGP).
 - Cross-covariance: $K(s, s'; \nu)$.
 - *ν* governs spatial decay and smoothness.

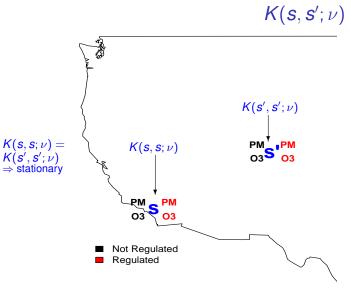

Corwin M. Zigler

Accountability for Air Quality

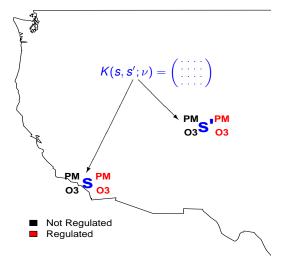
Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions



Accountability for Air Quality


Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

K(**s**, **s**'; ν)

Causal Inference for Air Quality Regulations

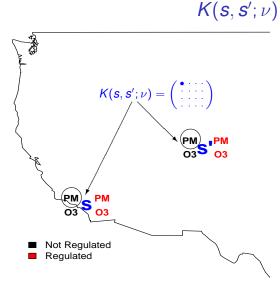
Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

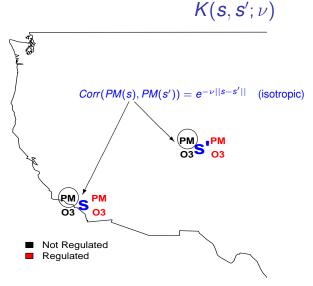

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions


Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Specifying Spatial Structure

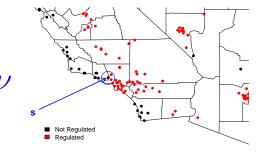
- **1** Specify *K*(*s*, *s*; *ν*)
 - Covariance matrix for potential pollution concentrations within a location.
 - Nonidentifiability \Rightarrow sensitivity parameter.
- 2 Specify spatial decay for each individual pollution concentration.
 - Separate isotropic exponential decay functions for each pollutant.
- - Computational feasibility.
 - Isoloate nonidentifiable associations between potential outcomes.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model


Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Why a Spatial Model?

Predicting potential outcomes:

- Predict missing potential outcomes at *s* using information at surrounding locations.
- Use estimates of ν to assess interference assumption.

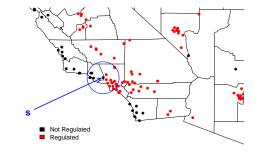
Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions


Analysis of the 1990 Clean Air Act Amendments

 ν

Why a Spatial Model?

Predicting potential outcomes:

- Predict missing potential outcomes at *s* using information at surrounding locations.
- Use estimates of ν to assess interference assumption.

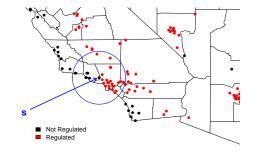
Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions


Analysis of the 1990 Clean Air Act Amendments

 ν

Why a Spatial Model?

Predicting potential outcomes:

- Predict missing potential outcomes at *s* using information at surrounding locations.
- Use estimates of ν to assess interference assumption.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference

Spatial Hierarchical Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Assess Interference Assumption

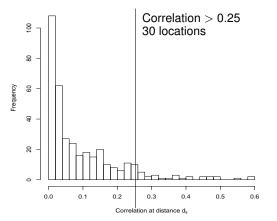
$\hat{\nu}$ has implications of interference

- $\hat{\nu} \Rightarrow$ estimated correlation between measurements at two locations.
- Examine correlations between observations assumed not to interfere.
 - Substantial correlation \Rightarrow violation of AGIA.

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference


Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

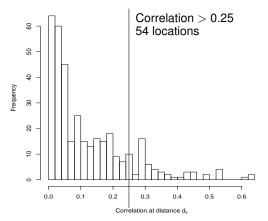
Assessment of AGIA for PM₁₀

Figure: PM_{10} , $\hat{\nu} = 3.13$

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference


Spatial Hierarchica Model

Assessing Interference Assumptions

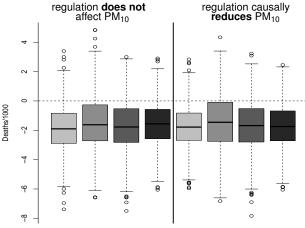
Analysis of the 1990 Clean Air Act Amendments

Figure: O_3 , $\hat{\nu} = 2.68$

Corwin M. Zigler

Accountability for Air Quality

Potential Outcomes and Interference


Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

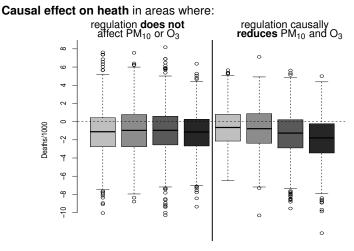
Associative and Dissociative Effects for PM₁₀

Causal effect on heath in areas where:

 $\omega = 0 \quad \omega = 0.3 \quad \omega = 0.6 \quad \omega = 0.9 \quad \omega = 0.3 \quad \omega = 0.6 \quad \omega = 0.9$

Corwin M. Zigler

Accountability for Air Quality


Potential Outcomes and Interference

Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Associative and Dissociative Effects for joint effect on both PM₁₀ and O₃

 $\omega = 0 \quad \omega = 0.3 \quad \omega = 0.6 \quad \omega = 0.9 \quad \omega = 0.3 \quad \omega = 0.6 \quad \omega = 0.9$

Summary

Zigler Accountability

Causal Inference for

Air Quality Regulations Corwin M.

for Air Quality

Potential Outcomes and Interference

Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Causal inference for accountability assessment

- Complex regulatory environment.
- Causal inference with spatial data.
- Principal stratification
 - Multivariate intermediate variable.
 - Multipollutant approach.
- Assumptions about interference between observations.
 - What do we assume?
 - How do we assess?
 - What are the implications of violations?

Thank You

Accountability for Air Quality

Causal Inference for

Air Quality Regulations Corwin M. Zigler

Potential Outcomes and Interference

Spatial Hierarchica Model

Assessing Interference Assumptions

Analysis of the 1990 Clean Air Act Amendments

Acknowledgments

- Francesca Dominici
- Yun Wang
- Funding: Health Effects Institute.
- Publication: Zigler CM, Dominici F, and Wang Y. Estimating causal effects of air quality regulations using principal stratification for spatially-correlated multivariate intermediate outcomes. *Biostatistics* 2012; 13(2): 289–302.