Modified G-estimation for Repeated Outcome Measures

Wei (Peter) Yang and Marshall Joffe

Department of Biostatistics and Epidemiology University of Pennsylvania Perelman School of Medicine

May 24, 2012

2 Methods

- Review of standard g-estimation
- Extensions of g-estimation

3 Illustration

- Simulation
- Data Analyses

Motivating Example

- To estimate the effect of Erythropoietin (EPO) dose on hematocrit level in incidence dialysis patients using the United States Renal Data System (USRDS) data.
- EPO is a glycoprotein hormone that controls red blood cell production and is often prescribed to treat anemia in dialysis patients.
- USRDS is the national data registry on the end-stage renal disease (ESRD) population in the U.S.
- USRDS is a claims database. Some key confounding variables, e.g., lab values other than hematocrit level, were not available.
- The data has relatively long follow-up time compared to the life span of red blood cells (100-120 days).

Notation

- $\overline{L}_{K} = \{L_{1}, \cdots, L_{K}\}$: time-updated covariates measures
- $\overline{A}_{K} = \{A_{1}, \cdots, A_{K}\}$: repeated treatment measures
- $\overline{Y}_{K} = \{Y_{1}, \cdots, Y_{K}\}$: repeated outcome measures
- The time ordering of these variables is L_t, A_t, Y_t .
- We assume that L_t and A_t are measured at the beginning of the time interval t and Y_t is measured at the end of the time interval t.

Notation (cont'd)

- Y_t^{A_s,0}, t = 1, · · · , K: potential outcomes if subjects receive the same treatment as was observed through time s and do not receive any treatment afterward.
- $Y_t^0, t = 1, \cdots, K$: potential outcomes if subjects do not receive any treatment.

Observed outcomes $Y_t, t = 1, \cdots, K$

t = K					Y_K
t = K - 1				Y_{K-1}	
t = K - 2			Y_{K-2}		
:					
t = 2		Y_2			
t = 1	Y_1				
t = 0					

• Start with Y_K and remove the effect of A_K on Y_K to get $Y_K^{\overline{A}_{K-1},0}$

- Remove the effect of A_{K-1} on Y_{K-1} to get $Y_{K-1}^{A_{K-2},0}$
- Remove the effect of A_{K-1} on $Y_K^{\overline{A}_{K-1},0}$ to get $Y_K^{\overline{A}_{K-2},0}$

t = K						Y_K
t = K - 1					Y_{K-1}	$Y_{K}^{\overline{A}_{K-1},0}$
t = K - 2				Y_{K-2}	$Y_{K-1}^{\overline{A}_{K-2},0}$	$Y_{K}^{\overline{A}_{K-2},0}$
:				÷	:	:
t = 2		Y_2		$Y_{K-2}^{\overline{A}_2,0}$	$Y_{K-1}^{\overline{A}_2,0}$	$Y_{K}^{\overline{A}_{2},0}$
t = 1	Y_1	$Y_2^{A_1,0}$	•••	$Y_{K-2}^{A_1,0}$	$Y_{K-1}^{A_1,0}$	$Y_K^{A_1,0}$
t = 0	Y_1^0	Y_{2}^{0}	•••	Y_{K-2}^{0}	Y_{K-1}^0	Y_K^0

- Remove the effect of \overline{A}_K on \overline{Y}_K to get \overline{Y}^0 .
- Similar ideas available for non-rank preserving structural nested distribution models and structural nested mean models.

The Blip Down Process (cont'd)

For example, when K = 6:

• SNMs used to parametrize the blip-down process. ψ represents the finite dimensional causal parameter.

The Likelihood Function

Using fully blipped down potential outcomes, the joint density of the data can be written as:

$$\begin{split} f(\overline{Y}_{K},\overline{A}_{K},\overline{L}_{K}) \\ &= \frac{\partial \overline{Y}_{K}^{0}}{\partial \overline{Y}_{K}} \times f(\overline{Y}_{K}^{0},\overline{A}_{K},\overline{L}_{K}) \\ &= f(\overline{Y}_{K}^{0}) \times \prod_{t=1}^{K} \left\{ f(L_{t}|\overline{L}_{t-1},\overline{A}_{t-1},\overline{Y}_{t-1},\underline{Y}_{t}^{\overline{A}_{t-1},0}) \times f(A_{t}|\overline{L}_{t},\overline{A}_{t-1},\overline{Y}_{t-1},\underline{Y}_{t}^{\overline{A}_{t-1},0}) \times \frac{\partial \underline{Y}_{t}^{\overline{A}_{t-1},0}}{\partial \underline{Y}_{t}^{\overline{A}_{t,0}}} \right\} \end{split}$$

where
$$\underline{Y}_{t}^{\overline{A}_{t-1},0} = \left\{ Y_{t}^{\overline{A}_{t-1},0}, Y_{t+1}^{\overline{A}_{t-1},0}, \cdots, Y_{K}^{\overline{A}_{t-1},0} \right\}$$

- Start with the whole vector of potential outcomes \overline{Y}_{K}^{0}
- For $t = 1, \cdots, K$
 - Generate L_t
 - Generate A_t
 - Blip up all potential outcomes adding the effect of A_t

Sequential Ignorability Assumption

•
$$A_t \coprod \underline{Y}_t^{\overline{A}_{t-1},0} | \overline{L}_t, \overline{A}_{t-1}, \overline{Y}_{t-1}, t = 1, \cdots, K$$

• Under sequential ignorability assumptions, the likelihood function is:

$$f(\overline{\mathbf{Y}}_{K},\overline{\mathbf{A}}_{K},\overline{\mathbf{L}}_{K}) = f(\overline{\mathbf{Y}}_{K}^{0}) \times \prod_{t=1}^{K} \left\{ f(\mathbf{L}_{t}|\overline{\mathbf{L}}_{t-1},\overline{\mathbf{A}}_{t-1},\overline{\mathbf{Y}}_{t-1},\underline{\mathbf{Y}}_{t}^{\overline{\mathbf{A}}_{t-1},0}) \times f(\mathbf{A}_{t}|\overline{\mathbf{L}}_{t},\overline{\mathbf{A}}_{t-1},\overline{\mathbf{Y}}_{t-1}) \times \frac{\partial \underline{\mathbf{Y}}_{t}^{\overline{\mathbf{A}}_{t-1},0}}{\partial \underline{\mathbf{Y}}_{t}^{\overline{\mathbf{A}}_{t,0}}} \right\}$$

An Estimating Equation

A choice of the estimating equation is:

$$S_{\psi} = \sum_{t=1}^{K} \left[\left\{ A_t - E\left(A_t | \overline{L}_t, \overline{A}_{t-1}, \overline{Y}_{t-1} \right) \right\} \left(\sum_{m=t}^{K} Y_m^{\overline{A}_{t-1}, 0}(\psi) \right) \right]$$

where $E\left(A_t | \overline{L}_t, \overline{A}_{t-1}, \overline{Y}_{t-1}\right)$ is the propensity score.

Partial Blip Down Process

- Motivation
 - Specification of the causal model is a concern especially when blipping down too many periods.
 - Scientifically may be only interested in the effect of treatments in short periods.
- Rather than defining all potential outcomes, only a subset of potential outcomes are modeled, i.e.,

 $\left\{Y_t^{\overline{A}_{t-1},0}, \cdots, Y_t^{\overline{A}_{t-\delta},0}\right\}, t = 1, \cdots, K$, where δ is the number of blip down periods.

- Similar to the idea of history-adjusted marginal structural models.
- Use finite dimensional parameter ψ for potential outcomes within δ periods; infinite dimensional parameter beyond that.

Partial Blip Down Process (cont'd)

For example, when $K = 6, \delta = 3$:

- Models for potential outcomes in red are parametrized with finite dimensional parameter ψ .
- Models for potential outcomes in gray are left unspecified.

Fully Vs. Partially Blipped Down Potential Outcomes

- Partially blipped down potential outcomes make less assumption about the structural models.
- Examples: consider two models with identical parametrization
 - Model for fully blipped down potential outcomes:

$$Y_{t+\delta}^0 = Y_{t+\delta} - \left(\sum_{j=t+1}^{t+\delta} A_j\right)\psi$$

- Model for partially blipped down potential outcomes: $Y_{t+\delta}^{\overline{A}_{t},0} = Y_{t+\delta} - \left(\sum_{j=t+1}^{t+\delta} A_j\right)\psi$
- First model implicitly assumes that treatment before time t, i.e., \overline{A}_t , has no direct effect on outcome $Y_{t+\delta}$.
- Second model does not make any restrictions on the effect of \overline{A}_t on $Y_{t+\delta}$.

The Revised Likelihood Function

$$\begin{split} &f(\overline{Y}_{K},\overline{A}_{K},\overline{L}_{K}) \\ &= \left\{ f(\overline{Y}_{\delta}^{0}) \times f(L_{1}|\overline{Y}_{\delta}^{0}) \times f(A_{1}|L_{1},\overline{Y}_{\delta}^{0}) \times \frac{\partial \overline{Y}_{\delta}^{0}}{\partial \overline{Y}_{\delta}^{A_{1},0}} \right\} \\ &\times \prod_{t=2}^{K-\delta+1} \left\{ \begin{array}{c} f(Y_{t+\delta-1}^{\overline{A}_{t-1},0}|\overline{L}_{t-1},\overline{A}_{t-1},\overline{Y}_{t-1}) \\ &\times f(L_{t}|\overline{L}_{t-1},\overline{A}_{t-1},\overline{Y}_{t-1},Y_{t:(t+\delta-1)}^{\overline{A}_{t-1},0}) \times f(A_{t}|\overline{L}_{t},\overline{A}_{t-1},\overline{Y}_{t-1},Y_{t:(t+\delta-1)}^{\overline{A}_{t-1},0}) \\ &\times \prod_{t=K-\delta+2}^{K} \left\{ f(L_{t}|\overline{L}_{t-1},\overline{A}_{t-1},\overline{Y}_{t-1},\underline{Y}_{t}^{\overline{A}_{t-1},0}) \times f(A_{t}|\overline{L}_{t},\overline{A}_{t-1},\overline{Y}_{t-1},\underline{Y}_{t}^{\overline{A}_{t-1},0}) \times \frac{\partial \underline{Y}_{t:(t+\delta-1)}^{\overline{A}_{t-1},0}}{\partial Y_{t:(t+\delta-1)}^{\overline{A}_{t-1},0}} \right\} \end{split} \right\} \end{split}$$

- When t = 1, start with the set of potential outcomes that are fully blipped down to time 1, i.e., Y⁰_δ.
- When $t = 2, \dots, K \delta + 1$, add $Y_{t+\delta-1}^{\overline{A}_{t-1},0}$, which is fully blipped down to time t, at each step.
- No additional potential outcomes is added after $t = K \delta + 2$.

Relaxing Sequential Ignorability Assumption

- Motivation: insufficient measured covariates to control for confounding in observational studies.
- Outcomes measured after treatment may contain information that allows control of confounding.
- Control for observed outcomes leads to bias in general.
- Potential outcomes can be viewed as pretreat variables and can be used to control for confounding in principle.

Relaxing Sequential Ignorability Assumption

- L_t^* denotes the complete set of covariates to achieve ignorability.
- *L_t* denotes the observed set of covariates.
- A_t is not ignorable conditioning on L_t alone.
- Ignorability can be achieved by conditioning on future potential outcomes, e.g., A₁ ∐ <u>Y</u>⁰₂ | Y⁰₁.

Relaxing Sequential Ignorability Assumption (cont'd)

Assume all outcomes are blipped down δ periods:

• Sequential ignorability assumption:

$$A_{t} \coprod Y_{t:(t+\delta-1)}^{A_{t-1},0} | \overline{L}_{t}, \overline{A}_{t-1}, \overline{Y}_{t-1}, t = 1, \cdots, K$$

• Relaxed ignorability assumption:

$$A_{t} \coprod Y_{(t+\tau):(t+\delta-1)}^{\overline{A}_{t-1},0} | \overline{L}_{t}, \overline{A}_{t-1}, \overline{Y}_{t-1}, Y_{t:(t+\tau-1)}^{\overline{A}_{t-1},0}, t = 1, \cdots, K - \tau$$

• Requires $\delta > \tau$.

The Revised Likelihood Function (cont'd)

Under the relaxed ignorability assumption, the likelihood function for the data is:

$$\begin{split} & f(\overline{Y}_{K},\overline{A}_{K},\overline{L}_{K}) \\ &= \prod_{t=1} \left\{ f(\overline{Y}_{\delta}^{0}) \times f(L_{1}|\overline{Y}_{\delta}^{0}) \times f(A_{1}|L_{1},\overline{Y}_{\tau}^{0}) \times \frac{\partial \overline{Y}_{\delta}^{0}}{\partial \overline{Y}_{\delta}^{A_{1},0}} \right\} \\ & \times \prod_{t=2}^{K-\delta+1} \left\{ \begin{array}{c} f(Y_{t-\delta+1}^{\overline{A}_{t-1},0}|\overline{L}_{t-1},\overline{A}_{t-1},\overline{Y}_{t-1}) \\ & \times f(L_{t}|\overline{L}_{t-1},\overline{A}_{t-1},\overline{Y}_{t-1},Y_{t(t+\delta-1)}^{\overline{A}_{t-1},0}) \times f(A_{t}|\overline{L}_{t},\overline{A}_{t-1},\overline{Y}_{t-1},Y_{t(t+\tau-1)}^{\overline{A}_{t-1},0}) \times \frac{\partial \overline{Y}_{t(t+\delta-1)}^{\overline{A}_{t-1},0}}{\partial Y_{t:(t+\delta-1)}^{A_{t-0}}} \right\} \\ & \times \prod_{t=K-\delta+2}^{K-\tau} \left\{ f(L_{t}|\overline{L}_{t-1},\overline{A}_{t-1},\overline{Y}_{t-1},Y_{t}^{\overline{A}_{t-1},0}) \times f(A_{t}|\overline{L}_{t},\overline{A}_{t-1},\overline{Y}_{t-1},Y_{t:(t+\tau-1)}^{\overline{A}_{t-1},0}) \times \frac{\partial \overline{Y}_{t}^{\overline{A}_{t-1},0}}{\partial Y_{t:0}^{\overline{A}_{t-0}}} \right\} \\ & \times \prod_{t=K-\tau+1}^{K} \left\{ f(L_{t}|\overline{L}_{t-1},\overline{A}_{t-1},\overline{Y}_{t-1},Y_{t}^{\overline{A}_{t-1},0}) \times f(A_{t}|\overline{L}_{t},\overline{A}_{t-1},\overline{Y}_{t-1},Y_{t}^{\overline{A}_{t-1},0}) \times \frac{\partial \overline{Y}_{t}^{\overline{A}_{t-1},0}}{\partial Y_{t}^{\overline{A}_{t,0}}} \right\} \end{split}$$

The Estimating Equation

• Under sequential ignorability assumption, a practical estimating equation is:

$$S_{\psi} = \sum_{t=1}^{K} \left[\left\{ A_t - E\left(A_t | \overline{L}_t, \overline{A}_{t-1}, \overline{Y}_{t-1} \right) \right\} \left(\sum_{m=t}^{\min(t+\delta-1,K)} Y_m^{\overline{A}_{t-1},0}(\psi) \right) \right]$$

• Under revised assumption, a practical estimating equation is:

$$S_{\psi} = \sum_{t=1}^{K-\tau} \left[\left\{ A_t - E\left(A_t | \overline{L}_t, \overline{A}_{t-1}, \overline{Y}_{t-1}, \mathbf{Y}_{t:(t+\tau-1)}^{\overline{A}_{t-1}, 0}(\psi) \right) \right\} \left(\sum_{m=t+\tau}^{\min(t+\delta-1, K)} Y_m^{\overline{A}_{t-1}, 0}(\psi) \right) \right]$$

The Estimating Procedure

• Estimation procedure:

- $\bullet\,$ Start with an arbitrary value for the causal parameter ψ and calculate the putative potential outcomes
- Update the parameters in the treatment model and the propensity score
- Update the causal parameter
- Iterate until convergence criterion is met
- Empirically works better than simultaneously updating all parameters
- Variance covariance matrix can be estimated using sandwich estimator

Simulation Setup

• Step 1: simulate $Y_1^0, Y_2^0, \cdots, Y_J^0$:

$$\left(\begin{array}{c} Y_1^0\\ Y_2^0\\ \vdots\\ Y_J^0 \end{array}\right) \sim N\left\{ \left(\begin{array}{c} 0\\ 0\\ \vdots\\ 0 \end{array}\right), \left(\begin{array}{cccc} 1 & \rho & \cdots & \rho^{J-1}\\ \rho & 1 & \cdots & \rho^{J-2}\\ \vdots & \vdots & \ddots & \vdots\\ \rho^{J-1} & \rho^{J-2} & \cdots & 1 \end{array}\right) \right\}$$

in which $\rho = 0.7, J = 9$.

• Step 2: set $L_0 = 0, A_0 = 0, Y_0 = 0$.

Simulation Setup (cont'd)

• Step 3: for
$$j = 1, 2, \dots, J$$
:
• 3a: $L_j \sim N(0.8L_{j-1} + 0.6A_{j-1} + 0.5Y_{j-1} + 0.4Y_j^0, 1)$
• 3b: logit { $E(A_j)$ } = $0.6A_{j-1} + 0.1L_{j-1} + 0.3L_j + 0.2Y_{j-1} + \gamma Y_j^0$
• 3c: $Y_j = Y_j^0 + \left(\sum_{t=\max(1,j-\delta+1)}^{j} A_t\right)\psi$, in which $\psi = 1$.

- γ determines whether treatment assignment depends on immediate future potential outcome.
- δ determines the time period during which the treatment has cumulative effect on the outcome.
- Simulated four scenarios:

•
$$\gamma = 0, \delta = 6$$

•
$$\gamma = 0.4, \delta = 9$$

•
$$\gamma = 0.4, \delta = 6$$

• Sample size is 1000 with 1000 replicates.

Simulation I

Table : $\gamma = 0, \delta = 9$: ignorable treatment assignment; treatment effect cumulative during follow-up.

Туре	δ	PE	Model-	Empirical	Coverage
			based SE	SE	Rate
Standard	9	1.00	0.016	0.016	94.1%
gostimation	6	1.00	0.018	0.019	94.6%
g-estimation	3	1.00	0.023	0.024	94.3%
Modified g-estimation	9	1.00	0.019	0.019	94.6%
	6	1.00	0.023	0.024	94.6%
	3	1.00	0.039	0.041	94.0%

Simulation II

Table : $\gamma = 0, \delta = 6$: ignorable treatment assignment; treatment effect cumulative over last six months only.

Туре	δ	PE	Model-	Empirical	Coverage
			based SE	SE	Rate
Standard	9	0.84	0.018	0.018	0.0%
gostimation	6	1.00	0.019	0.019	94.7%
g-estimation	3	1.00	0.023	0.023	94.9%
Modified g-estimation	9	0.77	0.029	0.026	0.0%
	6	1.00	0.024	0.024	95.5%
	3	1.00	0.038	0.038	96.0%

Simulation III

Table : $\gamma = 0.4, \delta = 9$: nonignorable treatment assignment; treatment effect cumulative over follow-up.

Туре	δ	ΡE	Model-	Empirical	Coverage
			based SE	SE	Rate
Standard	9	1.07	0.014	0.015	0.4%
gostimation	6	1.08	0.017	0.017	0.3%
g-estimation	3	1.13	0.023	0.022	0.0%
Modified g-estimation	9	1.00	0.020	0.020	94.5%
	6	1.00	0.024	0.025	94.2%
	3	0.99	0.042	0.042	95.3%

Simulation IV

Table : $\gamma = 0.4, \delta = 6$: nonignorable treatment assignment; treatment effect cumulative over last six months only.

Туре	δ	PE	Model-	Empirical	Coverage
			based SE	SE	Rate
Standard	9	0.92	0.015	0.016	0.1%
gostimation	6	1.09	0.017	0.017	0.1%
g-estimation	3	1.14	0.023	0.023	0.0%
Modified g-estimation	9	0.77	0.033	0.030	0.0%
	6	1.00	0.025	0.025	94.7%
	3	1.00	0.041	0.041	94.4%

USRDS Data

- Included N = 24,687 incident dialysis patients from USRDS 2004 data
- A total of 134,595 months follow-up (average 5.5 months per patient)
- Baseline covariates: hemoglobin level before initiation of dialysis, dialysis chain ID, type of dialysis chain
- Time-updated covariates: monthly EPO dose, hematocrit level and number of days of hospitalization

Results

Table : Cumulative EPO effect; fixed blip down periods $\delta=6$

Model	Standard	Modified
	g-estimation	g-estimation
au = 0	0.19 (0.011)	
au = 1	0.23 (0.011)	0.31 (0.013)
au = 2	0.22 (0.013)	0.27 (0.014)
au = 3	0.20 (0.014)	0.25 (0.015)
au = 4	0.18 (0.016)	0.22 (0.018)
au=5	0.14 (0.021)	0.18 (0.023)

- EPO effect estimated from modified g-estimation is consistently higher than from standard g-estimation.
 - Better control for confounding.
- The estimated EPO effect becomes smaller when au increases.
 - Better control for confounding.
 - Misspecified causal model.

Results (cont'd)

Table : Cumulative EPO effect; $\tau=1$ for modified g-estimation

Model	Standard	Modified
	g-estimation	g-estimation
$\delta = 1$	-0.15 (0.007)	
$\delta = 4$	0.19 (0.010)	0.37 (0.014)
$\delta = 6$	0.23 (0.011)	0.31 (0.013)
$\delta = 8$	0.19 (0.010)	0.31 (0.009)
$\delta = 12$	0.19 (0.009)	0.29 (0.007)

- The estimated EPO effect becomes smaller when δ increases.
- May indicate misspecification of the causal model.

Summary

- Modified g-estimation for repeated outcomes:
 - Partially blipped down potential outcomes
 - Relaxed sequential ignorability assumption by conditioning on future potential outcomes
- Increased EPO dose is associated with increased hematocrit level
 - The effect was larger using modified g-estimation.
- Assumed linear dose response relationship and constant treatment effect over time.
 - Will relax both assumptions in future analyses.

Thank you!

Reserved Slides...

The Optimal Estimating Equation

The optimal estimating equation for location shift model, i.e., $\frac{\partial y_t^{\bar{0}}}{\partial y_t} = 1, t = 1, \cdots, K$

$$S_{\psi,eff} = \sum_{t=1}^{K} \left[\left\{ \frac{\partial \underline{Y_{t}^{\overline{A}_{t-1},0}}}{\partial \psi} - E\left(\frac{\partial \underline{Y_{t}^{\overline{A}_{t-1},0}}}{\partial \psi} | \overline{L}_{t}, \overline{A}_{t-1}, \overline{Y}_{t-1}\right) \right\} \frac{\partial \log f\left(\underline{Y_{t}^{\overline{A}_{t-1},0}} | \overline{L}_{t}, \overline{A}_{t-1}, \overline{Y}_{t-1}\right)}{\partial \underline{Y_{t}^{\overline{A}_{t-1},0}}} \right]$$

which depends on the joint distribution of potential outcomes

Results

- M1: Standard g-estimation w/o covariate adjustment
- M2: Standard g-estimation w covariate adjustment
- M3: Modified g-estimation w/o covariate adjustment
- M4: Modified g-estimation w covariate adjustment

Model	M1	M2	M3	M4
$\tau = 0$	0.51 (0.043)	0.73 (0.043)		
au = 1	0.79 (0.054)	1.06 (0.053)	1.33 (0.077)	1.57 (0.070)
au = 2	0.87 (0.067)	1.11 (0.064)	1.24 (0.085)	1.41 (0.076)
au = 3	0.92 (0.080)	1.10 (0.077)	1.24 (0.096)	1.34 (0.085)
au = 4	0.97 (0.095)	1.04 (0.095)	1.29 (0.11)	1.25 (0.10)
au = 5	1.02 (0.11)	0.85 (0.13)	1.31 (0.13)	1.07 (0.13)

Table : Average EPO effect; fixed blip down periods $\delta = 6$

Results (cont'd)

- M1: Standard g-estimation w/o covariate adjustment
- M2: Standard g-estimation w covariate adjustment
- M3: Modified g-estimation w/o covariate adjustment
- M4: Modified g-estimation w covariate adjustment

Table : Average EPO effect; different blip down periods. $\tau=0$ for M1 and M2. $\tau=1$ for M3 and M4

Model	M1	M2	M3	M4
$\delta = 1$	-0.18 (0.008)	-0.15 (0.007)		
$\delta = 4$	0.37 (0.029)	0.59 (0.031)	1.23 (0.061)	1.48 (0.057)
$\delta = 8$	0.65 (0.050)	0.86 (0.049)	1.50 (0.087)	1.74 (0.078)
$\delta = 12$	0.79 (0.054)	0.99 (0.052)	1.67 (0.091)	1.98 (0.079)

Results

- M1: Standard g-estimation w/o covariate adjustment
- M2: Standard g-estimation w covariate adjustment
- M3: Modified g-estimation w/o covariate adjustment
- M4: Modified g-estimation w covariate adjustment

Model	M1	M2	M3	M4
au = 0	0.13 (0.011)	0.19 (0.011)		
au = 1	0.17 (0.012)	0.23 (0.011)	0.35 (0.010)	0.31 (0.013)
au = 2	0.17 (0.013)	0.22 (0.013)	0.32 (0.010)	0.27 (0.014)
au = 3	0.17 (0.014)	0.20 (0.014)	0.31 (0.010)	0.25 (0.015)
au = 4	0.17 (0.016)	0.18 (0.016)	0.31 (0.010)	0.22 (0.018)
au = 5	0.17 (0.019)	0.14 (0.021)	0.32 (0.010)	0.18 (0.023)

Table : Cumulative EPO effect; fixed blip down periods $\delta = 6$

Results (cont'd)

- M1: Standard g-estimation w/o covariate adjustment
- M2: Standard g-estimation w covariate adjustment
- M3: Modified g-estimation w/o covariate adjustment
- M4: Modified g-estimation w covariate adjustment

Table : Cumulative EPO effect, different blip down periods. $\tau=$ 0 for M1 and M2. $\tau=$ 1 for M3 and M4

Model	M1	M2	M3	M4
$\delta = 1$	-0.18 (0.008)	-0.15 (0.007)		
$\delta = 4$	0.12 (0.009)	0.19 (0.010)	0.37 (0.012)	0.37 (0.014)
$\delta = 6$	0.17 (0.012)	0.23 (0.011)	0.35 (0.010)	0.31 (0.013)
$\delta = 8$	0.14 (0.011)	0.19 (0.010)	0.34 (0.008)	0.31 (0.009)
$\delta = 12$	0.16 (0.010)	0.19 (0.009)	0.32 (0.006)	0.29 (0.007)