Modeling time-varying behavioral variables in HIV prevention trials

James Y. Dai

Fred Hutchinson Cancer Research Center

2012 Atlantic Causal Inference Conference

Healthy, sexually active participants

- typically placebo controlled and double blind, but some open label
- time-to-HIV acquisition endpoint, quarterly or monthly visits
- extensive sexual risk taking data and product use data, collected longitudinally
- the prevention effect depends on sexual risk taking and adherence

Secondary analysis involves adjusting for sexual risk taking and adherence

- post-randomization selection bias:
 - risk compensation/behavioral disinhibition(open label)
 - differential adherence because of adverse effect (blind trials),
- measurement error, over-report of adherence, biomarker
- longitudinal covariates with time-to-event endpoint for causal inference

- HPTN 035 was a multi-site phase 2B trial that tested the safety and effectiveness of two vaginal microbicide gel:
 - BufferGel: maintain normal PH
 - 0.5% PRO 2000 Gel: inhibit viral attachment and entry
 - Placebo Gel
 - No-Gel
- The motivation is to let women have self-initiated prevention method,
- topical use of gel; before sex act
- Rationale of adding the No-Gel arm; but it is unblinded

Differential condom use

- All four arms receive standard treatment: condom counseling and provision
- Differential condom-use post treatment assignment

South Africa - Durban

• Because male partners know whether women are getting a gel or not, they could change sexual risk taking - self-reported condom use in last sex act

perceived reduction in risk \rightarrow altered behavior

- Consistent use of condoms offers over 90% protection
- Treatment (gel) effect may be offset by decreased condom-use!

	Hazard Ratio vs Placebo Gel (95% Cl), p value	Hazard Ratio vs No Gel (95% Cl), p value	
PRO 2000 Gel	0.70 (0.46, 1.08), p=0.10	0.67 (0.44, 1.02), p=0.06	
BufferGel	1.10 (0.75-1.62), p=0.63	1.05 (0.72-1.55), p=0.78	

BufferGel	PRO 2000	Placebo	No Gel
71.8%	71.9%	71.3%	80.7%

How to adjust for differential condom-use?

- For the MIRA trial, Rosenblum et al (JRSSA 2009) estimated the direct effects of assignment to the diaphragm arm.
 - "controlled" direct effect if participants in both arms are constrained to use condoms consistently, or not use at all.
 - assume sequential ignorability that conditional on covariates, condom use can be viewed as if "randomized".
 - Inverse probability weighted estimators

• The ability to manipulate behavioral intermediates, such as condom use, is limited.

• The behavior of condom-use is not well understood, nor it is well predicted.

• there are subgroups in the population who does not use condom. this is precisely the reason to develop microbicide for women,

Principal Stratification at a single time point

		No-Gel	Gel
principal stratum	U	X(0)	X(1)
Low Condom	1	0	0
Risk Gambling	2	1	0
High Condom	3	1	1

- assume a monotonicity assumption
- Risk gambling stratum drives the phenomena of risk disinhibition
- estimate the principal effect within low condom user, and the effect in high condom user.

How to model longitudinal condom use by principal stratification?

principal stratification with time-varying variables

Our approach

- The number of possible strata is 3^k , k is the number of visits.
- average condom use seems stable over time, but women could switch condom use status
- we put constrait on time-varying strata by a partially Hidden Markov Model (pHMM)

principal stratification with time-varying variables

Our approach

- The number of possible strata is 3^k , k is the number of visits.
- average condom use seems stable over time, but women could switch condom use status
- we put constrait on time-varying strata by a partially Hidden Markov Model (pHMM)

Related work: Lin, Ten Have and Elliott (JASA 2008)

- longitudinal adherence and longitudinal outcomes
- the large number of principal strata were collapsed into superclasses in which principal effects were defined.
- Bayesian MCMC to fit the model

for subject *i* in 1 : *n*

- Z_i treatment assignment 0, 1
- a_j discrete time for visits, j = 1, ...J
- T_i time to HIV infection
- C_i time to censor

$$Y_i = \min(T_i, C_i)$$
 observed infection-free time

$$\Delta_i = 1_{[T_i < C_i]}$$
Indicator of censoring

 X_{ij} condom use in last sex act in the j^{th} visit

$$\overline{X}_{ij} = \{X_{i1}, ..., X_{ij}, a_j = Y_i\}$$
 the observed condom-use history
 W_i Baseline Covariates

Observed data:

$$(Z_i, Y_i, \Delta_i, \overline{X}_{ij}, W_i).$$

Principal stratification on longitudinal condom-use

latent pattern of potential condom use

$$ar{U}_{iJ} = \left(egin{array}{cccc} X_{i1}(0) & X_{i2}(0) & \cdots & X_{iJ}(0) \ X_{i1}(1) & X_{i2}(1) & \cdots & X_{iJ}(1) \end{array}
ight).$$

• Consider { $U_{ij}, j = 1, ...J$ } a sequence of sexual risk taking behavior under either treatment assignment

		Condom-only	Gel + Condom
principal state	U_{ij}	$X_{ij}(0)$	$X_{ij}(1)$
Low - Condom	1	0	0
Risk Gambling	2	1	0
High-Condom	3	1	1

Table: At *j*th visit

Cumulative relative risk (CRR)

$$CRR(j)^{1} = \frac{1 - \Pr(T_{i}(1) > a_{j} | \bar{U}_{ij} = 1)}{1 - \Pr(T_{i}(0) > a_{j} | \bar{U}_{ij} = 1)}$$

$$CRR(j)^{3} = \frac{1 - \Pr(T_{i}(1) > a_{j} | \bar{U}_{ij} = 3)}{1 - \Pr(T_{i}(0) > a_{j} | \bar{U}_{ij} = 3)}$$

For women whose partner uses condom all the time regardless treatment

assignment, how much protection she will get if she was assigned to PRO2000 arm as compared to No-Gel arm?

For women whose male partner never use condom regardless treatment assignment, how much protection she will get if she was assigned to PRO2000 arm as compared to No-Gel arm?

Hidden Markov Models

- U_{ij} is a partially observed, latent process that determines X_{ij} and at-risk probability
- The markov chain stops when HIV +, or censoring.

HMM assumptions

• Markov property on the partially hidden states U_{ij}

$$Pr(U_{ij} = s | U_{ij-1} = r, ..., U_{i1})$$

= $Pr(U_{ij} = s | U_{ij-1} = r)$
= q_{sr} ,

• Conditional independence

$$Pr(T_i(z) = a_j | T_i(z) \ge a_j, U_{ij}, U_{ij-1}, ..., U_{i1})$$

= $Pr(T_i(z) = a_j | T_i(z) \ge a_j, U_{ij}),$

so that

$$\mathsf{Pr}(\mathit{T}_i(z) > \mathsf{a}_j | \overline{\mathit{U}}_{ij}) = \prod_j [1 - \mathsf{Pr}(\mathit{T}_i(z) = \mathsf{a}_j | \mathit{T}_i(z) \ge \mathsf{a}_j, \mathit{U}_{ij})]$$

Checking Markov assumption

partially HMM, some states are observable!

No-condom to No-condom in the no-gel arm

randomization

$\mathbf{Z} \perp (\bar{U}_i, T_i(0), T_i(1), C_i(0), C_i(1), Y_i(0), Y_i(1), \Delta_i(0), \Delta_i(1)) | W_i$

• SUTVA (Stable Unit Treatment Value Assumption)

• Independent censoring

Identifiability of parameters

denote Θ the set of parameters in HMM
 p_s the initial probability for state *s q_{st}* the transition matrix
 π_{sj} the probability of HIV acquisition for *s* state at *a_j β_s* the treatment effect for *s* state

• denote the Ω the set of parameters that describe the observed process X_{ij} and $Y_i | X_{ij}$

 $\bullet~\Omega$ is reparameterization of $\Theta,$ and Ω is identifiable

Likelihood

$$\begin{split} &\prod_{i=1}^{n} [f \mathsf{Pr}(\mathbf{Y}_{i}, \Delta_{i}, \bar{X}_{i} \mathbf{1}_{[a_{j} < \mathbf{Y}_{i}]} | Z_{i}, W_{i})]^{Z_{i}} [(1-f) \mathsf{Pr}(\mathbf{Y}_{i}, \Delta_{i}, \bar{X}_{i} \mathbf{1}_{[a_{j} < \mathbf{Y}_{i}]} | Z_{i}, W_{i})]^{1-Z_{i}} \\ &= \prod_{i=1}^{n} [f \sum_{\bar{U}_{i} \in \bar{X}_{i}} \mathsf{Pr}(\mathbf{Y}_{i}, \Delta_{i} | \bar{U}_{i}, Z_{i}, W_{i}) \mathsf{Pr}(\bar{U}_{i} | Z_{i}, W_{i})]^{Z_{i}} \\ &= [(1-f) \sum_{\bar{U}_{i} \in \bar{X}_{i}} \mathsf{Pr}(\mathbf{Y}_{i}, \Delta_{i} | \bar{U}_{i}, Z_{i}, W_{i}) \mathsf{Pr}(\bar{U}_{i} | Z_{i}, W_{i})]^{1-Z_{i}} \\ &\propto \prod_{i=1}^{n} \left\{ f \sum_{\bar{U}_{i} \in \bar{X}_{i}} \prod_{j=1}^{J_{i-1}} (1-\lambda_{ij}(1)) \lambda_{iJ_{i}}(1)]^{\Delta_{i}} [\prod_{j=1}^{J_{i}} (1-\lambda_{ij}(1))]^{1-\Delta_{i}} \mathcal{P}_{U_{i1}} \prod_{j=2}^{J_{i}} q_{U_{ij}} U_{ij-1} \right\}^{Z_{i}} \\ &\times \left\{ (1-f) \sum_{\bar{U}_{i} \in \bar{X}_{i}} [\prod_{j=1}^{J_{i}-1} (1-\lambda_{ij}(0)) \lambda_{iJ_{i}}(0)]^{\Delta_{i}} [\prod_{j=1}^{J_{i}} (1-\lambda_{ij}(0))]^{1-\Delta_{i}} \mathcal{P}_{U_{i1}} \prod_{j=2}^{J_{i}} q_{U_{ij}} U_{ij-1} \right\}^{1-Z_{i}} \right\}^{1-Z_{i}} \end{split}$$

• modified Baum-Welch (backward-forward) algorithm

• baseline predictors are incorporated in both markov-state and disease risk models

• bootstrap to get the variance estimate

Model diagnostics

The ITT effect of $\mathsf{PRO}/\mathsf{2000}$ gel assignment compared to the No-gel assignment

Cumulative Relative Risk

principal stratum	estimate	95% C.I.
Low - Condom	0.56	[0.16,2.04]
Risk Gambling	1.02	[0.22,4.70]
High - Condom	0.70	[0.45,1.09]

Baseline distribution of condom-use states

Low-Condom	Risk Gambling	High-Condom
0.15	0.16	0.70

Transition matrix of markov states

	Low-Condom	Risk Gambling	High-Condom
Low-Condom	0.532	0.270	0.198
Risk Gambling	0.282	0.003	0.715
High-Condom	0.084	0.090	0.826

- We proposed a principal stratification approach to adjust for time-varying post-treatment behavior.
- Using HMM models, we exploits the pattern of behavioral risk taking, and the transient nature of prevention effect.
- limitation: condom-use is self reported.
- could be extended to deal with longitudinal compliance

Statistical Center for HIV/AIDS Research & Prevention

Peter Gilbert Ben Mâsse Jim Hughes