Achieving Optimal Covariate Balance Under General Treatment Regimes

Marc Ratkovic

Princeton University

$$
\text { May 24, } 2012
$$

Motivation

For many questions of interest in the social sciences, experiments are not possible
\Rightarrow Possible bias in effect estimates
Regression adjustment or inverse weighting can be used to adjust for selection bias
\Rightarrow Model dependence
Matching reduces bias and model dependence by identifying a set of untreated observations that are similar to the treated observations

Problems with Existing Matching Methods

Existing matching methods, such as propensity matching, Genetic matching, and Coarsened Exact Matching,

- rely on many user inputs
- are sensitive to these choices
- have no formal statistical properties
- can only handle a binary treatment

Benefits of the Proposed Method

The proposed method

- rely on many user inputs
is fully automated
- are sensitive to these choices
- have no formal statistical properties
- can only handle a binary treatment

Benefits of the Proposed Method

The proposed method

- rely on many user inputs
is fully automated
- are sensitive to these choices
makes no functional form assumptions
- have no formal statistical properties
- can only handle a binary treatment

Benefits of the Proposed Method

The proposed method

- rely on many user inputs
is fully automated
- are sensitive to these choices
makes no functional form assumptions
- have no formal statistical properties identifies the largest balanced subset
- can only handle a binary treatment

Benefits of the Proposed Method

The proposed method

- rely on many user inputs
is fully automated
- are sensitive to these choices
makes no functional form assumptions
- have no formal statistical properties identifies the largest balanced subset
- can only handle a binary treatment
can also accommodate continuous treatments

The Setup

The Setup

- Treatment: T_{i}
- Binary treatment: $T_{i} \in\{0,1\}$
- Continuous treatment: $T_{i} \in(a, b)$
- Potential outcome: $Y_{i}(t)$
- Pre-treatment covariates: X_{i}
- IID observations $\left(Y_{i}\left(T_{i}\right), T_{i}, X_{i}\right)$ observed

Assumptions

- No interference among units
- Treatment occurs with uncertainty
- No omitted variables

Assumptions and Estimands

Goal of Matching:
Identify a subset of the data such that the covariates are balanced

- $T_{i} \Perp X_{i}$

Assumptions and Estimands

Goal of Matching:
Identify a subset of the data such that the covariates are balanced

- $T_{i} \Perp X_{i}$

Common estimands identified on a balanced subset of the data:

- Average Treatment Effect:

$$
E\left(Y_{i}(1)-Y_{i}(0)\right)
$$

- Average Treatment Effect on the Treated:

$$
E\left(Y_{i}(1)-Y_{i}(0) \mid T_{i}=1\right)
$$

Basic Insight of Proposed Method

The proposed method formulates a Support Vector Machine that identifies a balanced subset of the data.

Basic Insight of Proposed Method

The proposed method formulates a Support Vector Machine that identifies a balanced subset of the data.

The logic of the proposed method proceeds in three steps:

- The optimality condition for an SVM sets an inner product between the treatment level and a covariate to zero
- Centering the treatment and covariate transforms this inner product to balance-in-mean or zero covariance.
- Balancing along a nonparametric basis extends the mean/covariance result to joint independence.

A Simple Example: The Binary Matching SVM

Assume an observed covariate vector, X_{i}, and target function $X_{i}^{\top} \beta$.

A Simple Example: The Binary Matching SVM

Assume an observed covariate vector, X_{i}, and target function $X_{i}^{\top} \beta$.

Center X_{i} on the treated observations as:

$$
X_{i}^{*}=X_{i}-\frac{\sum_{i} X_{i} \cdot \mathbf{1}\left(T_{i}=1\right)}{\sum_{i} \mathbf{1}\left(T_{i}=1\right)}
$$

A Simple Example: The Binary Matching SVM

Assume an observed covariate vector, X_{i}, and target function $X_{i}^{\top} \beta$.

Center X_{i} on the treated observations as:

$$
X_{i}^{*}=X_{i}-\frac{\sum_{i} X_{i} \cdot \mathbf{1}\left(T_{i}=1\right)}{\sum_{i} \mathbf{1}\left(T_{i}=1\right)}
$$

Transform T_{i} from $\{0,1\}$ to $\{-1,1\}$:

$$
T_{i}^{*}=2 T_{i}-1
$$

A Simple Example: The Binary Matching SVM

Define the "hinge loss" $|z|_{+}=\max (z, 0)$
Loss function:

$$
\mathcal{L}(\beta)=\sum_{i}\left|1-T_{i}^{*} X_{i}^{* \top} \beta\right|_{+} \quad \text { s.t. } X_{i}^{* \top} \beta \cdot \mathbf{1}\left(T_{i}=1\right)<1
$$

A Simple Example: The Binary Matching SVM

Define the "hinge loss" $|z|_{+}=\max (z, 0)$
Loss function:

$$
\mathcal{L}(\beta)=\sum_{i}\left|1-T_{i}^{*} X_{i}^{* \top} \beta\right|_{+} \quad \text { s.t. } X_{i}^{* \top} \beta \cdot \mathbf{1}\left(T_{i}=1\right)<1
$$

"Hard to classify" and "Easy to classify" cases:

- $T_{i}^{*}=1 ; X_{i}^{* \top} \beta=2:|1-1 \cdot 2|_{+}=|-1|_{+}=0$

Easy to classify

A Simple Example: The Binary Matching SVM

Define the "hinge loss" $|z|_{+}=\max (z, 0)$
Loss function:

$$
\mathcal{L}(\beta)=\sum_{i}\left|1-T_{i}^{*} X_{i}^{* \top} \beta\right|_{+} \quad \text { s.t. } X_{i}^{* \top} \beta \cdot \mathbf{1}\left(T_{i}=1\right)<1
$$

"Hard to classify" and "Easy to classify" cases:

- $T_{i}^{*}=1 ; X_{i}^{* \top} \beta=2:|1-1 \cdot 2|_{+}=|-1|_{+}=0$

Easy to classify

- $T_{i}^{*}=-1 ; X_{i}^{* \top} \beta=-0.5$: $|1-(-1) \cdot(-0.5)|_{+}=|0.5|_{+}=0.5$

Hard to classify
The constraint keeps the loss for all treated observations as non-zero to identify the ATT.

Geometric Intuition of Proposed Method

Properly classified cases outside the margin are "easy-to-classify."

Cases in the margin, or improperly classified, have a treatment assignment estimated with some uncertainty.

A Simple Example: The Binary Matching SVM

Define $\mathcal{M}=\left\{i: 1-T_{i}^{*} X_{i}^{*^{\top}} \beta>0\right\}$

A Simple Example: The Binary Matching SVM

Define $\mathcal{M}=\left\{i: 1-T_{i}^{*} X_{i}^{* \top} \beta>0\right\}$
Taking and expanding the first order condition:

$$
\frac{\partial}{\partial \beta} \sum_{i}\left|1-T_{i}^{*} X_{i}^{* \top} \beta\right|_{+}=\sum_{i} T_{i}^{*} X_{i}^{*} \cdot \mathbf{1}(i \in \mathcal{M})=0
$$

A Simple Example: The Binary Matching SVM

Define $\mathcal{M}=\left\{i: 1-T_{i}^{*} X_{i}^{*^{\top}} \beta>0\right\}$
Taking and expanding the first order condition:

$$
\begin{gathered}
\frac{\partial}{\partial \beta} \sum_{i}\left|1-T_{i}^{*} X_{i}^{* \top} \beta\right|_{+}=\sum_{i} T_{i}^{*} X_{i}^{*} \cdot \mathbf{1}(i \in \mathcal{M})=0 \\
\sum_{i} X_{i}^{*} \cdot \mathbf{1}\left(T_{i}=0, i \in \mathcal{M}\right)=\sum_{i} X_{i}^{*} \cdot \mathbf{1}\left(T_{i}=1\right)
\end{gathered}
$$

A Simple Example: The Binary Matching SVM

Define $\mathcal{M}=\left\{i: 1-T_{i}^{*} X_{i}^{* \top} \beta>0\right\}$
Taking and expanding the first order condition:

$$
\begin{gathered}
\frac{\partial}{\partial \beta} \sum_{i}\left|1-T_{i}^{*} X_{i}^{* \top} \beta\right|_{+}=\sum_{i} T_{i}^{*} X_{i}^{*} \cdot \mathbf{1}(i \in \mathcal{M})=0 \\
\sum_{i} X_{i}^{*} \cdot \mathbf{1}\left(T_{i}=0, i \in \mathcal{M}\right)=\sum_{i} X_{i}^{*} \cdot \mathbf{1}\left(T_{i}=1\right) \\
\sum_{i} X_{i}^{*} \cdot \mathbf{1}\left(T_{i}=0, i \in \mathcal{M}\right)=\underbrace{\sum_{i} X_{i}^{*} \cdot \mathbf{1}\left(T_{i}=1\right)=0}_{\text {since } X_{i}^{*} \text { is centered on } T_{i}=1}
\end{gathered}
$$

A Simple Example: The Binary Matching SVM

Define $\mathcal{M}=\left\{i: 1-T_{i}^{*} X_{i}^{*^{\top}} \beta>0\right\}$
Taking and expanding the first order condition:

$$
\begin{gathered}
\frac{\partial}{\partial \beta} \sum_{i}\left|1-T_{i}^{*} X_{i}^{* \top} \beta\right|_{+}=\sum_{i} T_{i}^{*} X_{i}^{*} \cdot \mathbf{1}(i \in \mathcal{M})=0 \\
\sum_{i} X_{i}^{*} \cdot \mathbf{1}\left(T_{i}=0, i \in \mathcal{M}\right)=\sum_{i} X_{i}^{*} \cdot \mathbf{1}\left(T_{i}=1\right) \\
\sum_{i} X_{i}^{*} \cdot \mathbf{1}\left(T_{i}=0, i \in \mathcal{M}\right)=\underbrace{\sum_{i} X_{i}^{*} \cdot \mathbf{1}\left(T_{i}=1\right)=0}_{\text {since } X_{i}^{*} \text { is centered on } T_{i}=1}
\end{gathered}
$$

Law of Large Numbers gives

$$
E\left(X_{i} \mid T_{i}=1\right)=E\left(X_{i} \mid T_{i}=0, i \in \mathcal{M}\right)
$$

The Binary Treatment SVM

Balance-in-means is not balance in distribution.

The Binary Treatment SVM

Balance-in-means is not balance in distribution.
To achieve joint independence (Proposition 1):

- Change the target functional from $X_{i}^{* \top} \beta$ to $\eta^{*}\left(X_{i}\right)$
- Add a regularization term, to balance covariate imbalance and model complexity
- Observations in \mathcal{M} are balanced

The Binary Treatment SVM

Balance-in-means is not balance in distribution.
To achieve joint independence (Proposition 1):

- Change the target functional from $X_{i}^{* \top} \beta$ to $\eta^{*}\left(X_{i}\right)$
- Add a regularization term, to balance covariate imbalance and model complexity
- Observations in \mathcal{M} are balanced

The proof follows nearly exactly as the linear case, except in a high-dimensional space.

Extension to a Continuous Treatment

Follows nearly exactly from the binary case.

Extension to a Continuous Treatment

Follows nearly exactly from the binary case.
Using identical reasoning, I show that, for observations in \mathcal{M}, the treatment and a single covariate is uncorrelated.

Extension to a Continuous Treatment

Follows nearly exactly from the binary case.
Using identical reasoning, I show that, for observations in \mathcal{M}, the treatment and a single covariate is uncorrelated.

Extension to a nonparametric function of X_{i} transforms uncorrelatedness to joint independence (Proposition 2).

Properties and Comparisons

- Selects largest balanced subset

Properties and Comparisons

- Selects largest balanced subset
- In a simple randomized experiment, the sample size is twice the expected misclassification loss

Properties and Comparisons

- Selects largest balanced subset
- In a simple randomized experiment, the sample size is twice the expected misclassification loss
- Number of balanced observations approaches twice the expected misclassification loss asymptotically

Properties and Comparisons

- Selects largest balanced subset
- In a simple randomized experiment, the sample size is twice the expected misclassification loss
- Number of balanced observations approaches twice the expected misclassification loss asymptotically
- Answers question of "how many matches"

Properties and Comparisons

- Selects largest balanced subset
- In a simple randomized experiment, the sample size is twice the expected misclassification loss
- Number of balanced observations approaches twice the expected misclassification loss asymptotically
- Answers question of "how many matches"
- Tuning parameters selected through GACV criterion

Properties and Comparisons

- Selects largest balanced subset
- In a simple randomized experiment, the sample size is twice the expected misclassification loss
- Number of balanced observations approaches twice the expected misclassification loss asymptotically
- Answers question of "how many matches"
- Tuning parameters selected through GACV criterion
- Identifies observations that appear to follow a simple randomization
- Most useful when researcher does not know which variables to match finely, exactly, in mean, etc.

Returning the Experimental Result from Experimental Data

The 1975-1978 National Supported Work Study (Lalonde 1986)

- Treatment: job training, close management, peer support
- Recipients: welfare recipients, ex-addicts, young school dropouts, and ex-offenders
- $n=445$: 260 treated; 185 control
- PSID data used for matching, $n=2490$
- X: age, years of education, race, marriage status, high school degree, 1974 earnings, 1975 earnings, zero earnings in 1974, zero earnings in 1975

Analyses

Competitors

- Logistic propensity matching (Ho, et al. 2011)
- Genetic Matching (Sekhon 2011)
- Coarsened Exact Matching (Iacus, et al. 2011)
- CEM estimates ATT through extrapolation
- BART+ Optimal Matching (Hill, et al. 2011; Hansen 2004)

Analyses

Competitors

- Logistic propensity matching (Ho, et al. 2011)
- Genetic Matching (Sekhon 2011)
- Coarsened Exact Matching (Iacus, et al. 2011)
- CEM estimates ATT through extrapolation
- BART+ Optimal Matching (Hill, et al. 2011; Hansen 2004)

Outcomes

- 1978 earnings
- 1978 earnings - 1975 earnings

Analyses

Competitors

- Logistic propensity matching (Ho, et al. 2011)
- Genetic Matching (Sekhon 2011)
- Coarsened Exact Matching (Iacus, et al. 2011)
- CEM estimates ATT through extrapolation
- BART+ Optimal Matching (Hill, et al. 2011; Hansen 2004)

Outcomes

- 1978 earnings
- 1978 earnings - 1975 earnings

Datasets

- Experimental treated and untreated observations
- Experimental treated observations; observational untreated observations

Experimental Results

Density of Treatment Effect Estimates Across Model Specifications, Using NSW Experimental Data

Experimental Results

Density of Treatment Effect Estimates Across Model Specifications, Using NSW Experimental Data

Experimental Results

Density of Treatment Effect Estimates Across Model Specifications, Using NSW Experimental Data

Observational Results

Density of Treatment Effect Estimates Across Model Specifications,
Untreated Observations Taken from Observational PSID Data

Observational Results

Density of Treatment Effect Estimates Across Model Specifications,
Untreated Observations Taken from Observational PSID Data

Observational Results

Density of Treatment Effect Estimates Across Model Specifications,
Untreated Observations Taken from Observational PSID Data

Smoking and Medical Expenditures

The 1987 National Medical Expenditure Survey (Johnson, et al. 2003; Imai and van Dyk 2004)

- Treatment: $\log ($ pack - years $):$ packs a day times number of years smoking, logged
- Respondents: Representative sample of US population
- $n=9,708$ smokers; to be balanced
- $n=9$, 804 non-smokers; reference group
- Outcome: Medical expenditure, dollars
- X: age at survey, age when started smoking, gender, race, education, marital status, census region, poverty status, seat-belt use

Assessing Balance

Treatment (Logged Packyears) vs. Key Predictors

For the Matched (Black) and Complete (Gray) Observations

Assessing Balance

Treatment (Logged Packyears) vs. Key Predictors

For the Matched (Black) and Complete (Gray) Observations

Assessing Balance

Quantile Plot of Coefficient p-values from Regressing the Treatment On Pretreatment Covariates, Versus a Uniform Distribution

Estimated Effect

Medical Expenditures Relative to Non-Smokers
Versus Pack-years

Conclusion

The proposed method adapts the SVM technology to the matching problem.

The method:

- is fully automated
- makes no functional form assumptions
- identifies the largest balanced subset
- can also accommodate continuous treatments

