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Motivation

For many questions of interest in the social sciences,
experiments are not possible
⇒ Possible bias in effect estimates

Regression adjustment or inverse weighting can be used to
adjust for selection bias
⇒Model dependence

Matching reduces bias and model dependence by identifying a
set of untreated observations that are similar to the treated
observations
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Problems with Existing Matching Methods

Existing matching methods, such as propensity matching,
Genetic matching, and Coarsened Exact Matching,

rely on many user inputs

are sensitive to these choices

have no formal statistical properties

can only handle a binary treatment
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Benefits of the Proposed Method

The proposed method

rely on many user inputs
is fully automated
are sensitive to these choices
makes no functional form assumptions
have no formal statistical properties
identifies the largest balanced subset
can only handle a binary treatment
can also accommodate continuous treatments
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The Setup

The Setup
Treatment: Ti

Binary treatment: Ti ∈ {0, 1}
Continuous treatment: Ti ∈ (a, b)

Potential outcome: Yi(t)
Pre-treatment covariates: Xi

IID observations (Yi(Ti), Ti, Xi) observed

Assumptions
No interference among units
Treatment occurs with uncertainty
No omitted variables
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Assumptions and Estimands

Goal of Matching:
Identify a subset of the data such that the covariates are
balanced

Ti⊥⊥Xi

Common estimands identified on a balanced subset of the data:
Average Treatment Effect:

E(Yi(1) − Yi(0))
Average Treatment Effect on the Treated:

E(Yi(1) − Yi(0)|Ti = 1)
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Basic Insight of Proposed Method

The proposed method formulates a Support Vector Machine
that identifies a balanced subset of the data.

The logic of the proposed method proceeds in three steps:

The optimality condition for an SVM sets an inner product
between the treatment level and a covariate to zero
Centering the treatment and covariate transforms this
inner product to balance-in-mean or zero covariance.
Balancing along a nonparametric basis extends the
mean/covariance result to joint independence.
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A Simple Example: The Binary Matching SVM

Assume an observed covariate vector, Xi, and target function
X>i β.

Center Xi on the treated observations as:

X∗i = Xi −

∑
i Xi · 1(Ti = 1)∑

i 1(Ti = 1)

Transform Ti from {0, 1} to {−1, 1}:

T∗i = 2Ti − 1
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A Simple Example: The Binary Matching SVM

Define the ”hinge loss” |z|+ = max(z, 0)

Loss function:

L(β) =
∑

i

|1 − T∗i X∗>i β|+ s.t. X∗
>

i β · 1(Ti = 1) < 1

“Hard to classify” and “Easy to classify” cases:
T∗i = 1; X∗>i β = 2 : |1 − 1 · 2|+ = |− 1|+ = 0
Easy to classify
T∗i = −1; X∗>i β = −0.5 : |1 − (−1) · (−0.5)|+ = |0.5|+ = 0.5
Hard to classify

The constraint keeps the loss for all treated observations as
non-zero to identify the ATT.
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Geometric Intuition of Proposed Method

Properly classified cases outside the margin are
“easy-to-classify.”

Cases in the margin, or improperly classified, have a treatment
assignment estimated with some uncertainty.
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A Simple Example: The Binary Matching SVM

Define M = {i : 1 − T∗i X∗
>

i β > 0}

Taking and expanding the first order condition:

∂

∂β

∑
i

|1 − T∗i X∗>i β|+ =
∑

i

T∗i X∗i · 1(i ∈M) = 0

∑
i

X∗i · 1(Ti = 0, i ∈M) =
∑

i

X∗i · 1(Ti = 1)

∑
i

X∗i · 1(Ti = 0, i ∈M) =
∑

i

X∗i · 1(Ti = 1) = 0︸                        ︷︷                        ︸
since X∗i is centered on Ti = 1

Law of Large Numbers gives

E(Xi|Ti = 1) = E(Xi|Ti = 0, i ∈M)
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The Binary Treatment SVM

Balance-in-means is not balance in distribution.

To achieve joint independence (Proposition 1):

Change the target functional from X∗>i β to η∗(Xi)

Add a regularization term, to balance covariate imbalance
and model complexity
Observations in M are balanced

The proof follows nearly exactly as the linear case, except in a
high-dimensional space.

Marc Ratkovic, Princeton University Optimal Covariate Balance



The Binary Treatment SVM

Balance-in-means is not balance in distribution.

To achieve joint independence (Proposition 1):

Change the target functional from X∗>i β to η∗(Xi)

Add a regularization term, to balance covariate imbalance
and model complexity
Observations in M are balanced

The proof follows nearly exactly as the linear case, except in a
high-dimensional space.

Marc Ratkovic, Princeton University Optimal Covariate Balance



The Binary Treatment SVM

Balance-in-means is not balance in distribution.

To achieve joint independence (Proposition 1):

Change the target functional from X∗>i β to η∗(Xi)

Add a regularization term, to balance covariate imbalance
and model complexity
Observations in M are balanced

The proof follows nearly exactly as the linear case, except in a
high-dimensional space.

Marc Ratkovic, Princeton University Optimal Covariate Balance



Extension to a Continuous Treatment

Follows nearly exactly from the binary case.

Using identical reasoning, I show that, for observations in M,
the treatment and a single covariate is uncorrelated.

Extension to a nonparametric function of Xi transforms
uncorrelatedness to joint independence (Proposition 2).
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Properties and Comparisons

Selects largest balanced subset

In a simple randomized experiment, the sample size is
twice the expected misclassification loss
Number of balanced observations approaches twice the
expected misclassification loss asymptotically

Answers question of “how many matches”
Tuning parameters selected through GACV criterion
Identifies observations that appear to follow a simple
randomization

Most useful when researcher does not know which
variables to match finely, exactly, in mean, etc.
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Returning the Experimental Result from Experimental
Data

The 1975-1978 National Supported Work Study (Lalonde 1986)
Treatment: job training, close management, peer support
Recipients: welfare recipients, ex-addicts, young school
dropouts, and ex-offenders
n=445: 260 treated; 185 control
PSID data used for matching, n=2490
X: age, years of education, race, marriage status, high
school degree, 1974 earnings, 1975 earnings, zero earnings
in 1974, zero earnings in 1975
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Analyses

Competitors
Logistic propensity matching (Ho, et al. 2011)
Genetic Matching (Sekhon 2011)
Coarsened Exact Matching (Iacus, et al. 2011)

CEM estimates ATT through extrapolation

BART+ Optimal Matching (Hill, et al. 2011; Hansen 2004)

Outcomes
1978 earnings
1978 earnings - 1975 earnings

Datasets
Experimental treated and untreated observations
Experimental treated observations; observational
untreated observations
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Experimental Results
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Observational Results
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Smoking and Medical Expenditures

The 1987 National Medical Expenditure Survey (Johnson, et al.
2003; Imai and van Dyk 2004)

Treatment: log(pack − years): packs a day times number of
years smoking, logged
Respondents: Representative sample of US population
n = 9, 708 smokers; to be balanced
n = 9, 804 non-smokers; reference group
Outcome: Medical expenditure, dollars
X: age at survey, age when started smoking, gender, race,
education, marital status, census region, poverty status,
seat-belt use
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Assessing Balance
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Assessing Balance
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Assessing Balance
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Conclusion

The proposed method adapts the SVM technology to the
matching problem.

The method:
is fully automated
makes no functional form assumptions
identifies the largest balanced subset
can also accommodate continuous treatments
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